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Preface

This volume contains the papers accepted for presentation at the 7th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation,
held January 8-10, 2006, at Charleston, South Carolina, USA.

VMCAI provides a forum for researchers from the communities of verifica-
tion, model checking, and abstract interpretation, facilitating interaction, cross-
fertilization, and advancement of hybrid methods.

The program was selected from 58 submitted papers. In addition, the pro-
gram included invited talks by Edmund M. Clarke (Carnegie Mellon University),
James R. Larus (Microsoft Research), and Greg Morrisett (Harvard University),
and invited tutorials by Nicolas Halbwachs (VERIMAG) and David Schmidt
(Kansas State University).

VMCAI was sponsored by the University of Texas at Austin, with additional
support from Microsoft Research and NEC Research Labs. We are grateful for
the support. We would like to thank the Program Committee and the review-
ers for their hard work and dedication in putting together this program. We
especially wish to thank Jacob Abraham, director of the Computer Engineering
Research Center at the University of Texas at Austin and Debi Prather for their
invaluable support and assistance, and Rich Gerber for his help with the START
conference management system.

January 2006 E. Allen Emerson
Kedar S. Namjoshi
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Jesse Bingham, Zvonimir Rakamarić . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Monitoring Off-the-Shelf Components
A. Prasad Sistla, Min Zhou, Lenore D. Zuck . . . . . . . . . . . . . . . . . . . . . 222

Parallel External Directed Model Checking with Linear I/O
Shahid Jabbar, Stefan Edelkamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Piecewise FIFO Channels Are Analyzable
Naghmeh Ghafari, Richard Trefler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Ranking Abstraction of Recursive Programs
Ittai Balaban, Ariel Cohen, Amir Pnueli . . . . . . . . . . . . . . . . . . . . . . . . . 267

Relative Safety
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Closure Operators for ROBDDs

Peter Schachte� and Harald Søndergaard

Department of Computer Science and Software Engineering,
The University of Melbourne, Vic. 3010, Australia

Abstract. Program analysis commonly makes use of Boolean functions
to express information about run-time states. Many important classes of
Boolean functions used this way, such as the monotone functions and the
Boolean Horn functions, have simple semantic characterisations. They
also have well-known syntactic characterisations in terms of Boolean for-
mulae, say, in conjunctive normal form. Here we are concerned with
characterisations using binary decision diagrams. Over the last decade,
ROBDDs have become popular as representations of Boolean functions,
mainly for their algorithmic properties. Assuming ROBDDs as repre-
sentation, we address the following problems: Given a function ψ and
a class of functions Δ, how to find the strongest ϕ ∈ Δ entailed by ψ
(when such a ϕ is known to exist)? How to find the weakest ϕ ∈ Δ that
entails ψ? How to determine that a function ψ belongs to a class Δ?
Answers are important, not only for several program analyses, but for
other areas of computer science, where Boolean approximation is used.
We give, for many commonly used classes Δ of Boolean functions, algo-
rithms to approximate functions represented as ROBDDs, in the sense
described above. The algorithms implement upper closure operators, fa-
miliar from abstract interpretation. They immediately lead to algorithms
for deciding class membership.

1 Introduction

Propositional logic is of fundamental importance to computer science. While its
primary use has been within switching theory, there are many other uses, for
example in verification, machine learning, cryptography and program analysis. In
complexity theory, Boolean satisfiability has played a seminal role and provided
deep and valuable results.

Our own interest in Boolean functions stems from work in program analysis.
In this area, as in many other practical applications of propositional logic, we are
not so much interested in solving Boolean equations, as in using Boolean func-
tions to capture properties and relations of interest. In the process of analysing
programs, we build and transform representations of Boolean functions, in order
to provide detailed information about runtime states.

In this paper we consider various instances of the following problem. Given
a Boolean function ϕ and a class of Boolean functions Δ, how can one decide

� Peter Schachte’s work has been supported in part by NICTA Victoria Laboratories.

E.A. Emerson and K.S. Namjoshi (Eds.): VMCAI 2006, LNCS 3855, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 P. Schachte and H. Søndergaard

(efficiently) whether ϕ belongs to Δ? How does one find the strongest statement
in Δ which is entailed by ϕ (assuming this is well defined)? Answers of course
depend on how Boolean functions are represented.

ROBDDs [4] provide a graphical representation of Boolean functions, based
on repeated Boolean development, that is, the principle that in any Boolean
algebra, ϕ = (x ∧ ϕ0

x) ∨ (x ∧ ϕ1
x) where ϕu

x denotes ϕ with x fixed to the truth
value u. In this paper, ROBDDs are used to represent Boolean functions.

The classes of Boolean functions studied here are classes that have simple
syntactic and semantic characterisations. They are are of importance in many
areas of computer science, including program analysis. They include the Horn
fragment, monotone and antitone Boolean functions, sub-classes of bijunctive
functions, and others.

There are many examples of the use of approximation in program analysis.
Trivial cases are where a program analysis tool uses intermediate results that are
of a finer granularity that what gets reported to a user or used by an optimising
compiler. Consider for example classical two-valued strictness analysis [18]. The
strictness result for the functional program

g(x,y,z) = if even(x) then y/2 else 3*z + 1

is calculated to be x∧ (y ∨ z). This contains a disjunctive component indicating
that g needs at least one of its last two arguments, in addition to the first.
This disjunctive information is not useful for a compiler seeking to replace call-
by-name by call-by-value—instead of x ∧ (y ∨ z) a compiler needs the weaker
statement x. (Once we have the definitions of Section 3 we can say that what is
needed is the strongest V consequence of the calculated result.) That the more
fine-grained x∧(y∨z) is useful as an intermediate result, however, becomes clear
when we consider the function

f(u,v) = g(u,v,v)

whose strictness result is u ∧ (v ∨ v), that is, u ∧ v. Without the disjunctive
component in g’s result, the result for f would be unnecessarily weak.

Less trivial cases are when approximation is needed in intermediate results,
to guarantee correctness of the analysis. Genaim and King’s suspension analysis
for logic programs with dynamic scheduling [9] is an example. The analysis,
essentially a greatest-fixed-point computation, produces for each predicate p a
Boolean formula ϕi expressing groundness conditions under which the atomic
formulae in the body of p may be scheduled so as to obtain suspension-free
evaluation. In each iteration, the re-calculation of the formulae ϕ includes a
crucial step where ϕ is replaced by its weakest monotone implicant. Similarly,
set-sharing analysis as presented by Codish et al. [5] relies on an operation that
replaces a positive formula by its strongest definite consequence.

The contribution of the present paper is two-fold. First, we view a range of
important classes of Boolean functions from a new angle. Studying these classes
of Boolean functions through the prism of Boolean development (provided by
ROBDDs) yields deeper insight both into ROBDDs and the classes themselves.
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The first three sections of this paper should therefore be of value to anybody
with an interest in the theory of Boolean functions. Second, we give algorithms
for ROBDD approximation. The algorithms are novel, pleasingly simple, and
follow a common pattern. This more practical contribution may be of interest
to anybody who works with ROBDDs, but in particular to those who employ
some kind of approximation of Boolean functions, as it happens for example in
areas of program analysis, cryptography, machine learning and property testing.

The reader is assumed to be familiar with propositional logic and ROBDDs.
Section 2 recapitulates ROBDDs and some standard operations, albeit mainly to
establish our notation. In Section 3 we define several classes of Boolean functions
and establish, for each, relevant properties possessed by their members. Section 4
presents new algorithms for approximating Boolean functions represented as
ROBDDs. The aim is to give each method a simple presentation that shows its
essence and facilitates a proof of correctness. Section 5 discusses related work
and Section 6 concludes.

2 ROBDDs

We briefly recall the essentials of ROBDDs [4]. Let the set V of propositional
variables be equipped with a total ordering≺. Binary decision diagrams (BDDs)
are defined inductively as follows:

– 0 is a BDD.
– 1 is a BDD.
– If x ∈ V and R1 and R2 are BDDs then ite(x,R1, R2) is a BDD.

Let R = ite(x,R1, R2). We say a BDD R′ appears in R iff R′ = R or R′ appears
in R1 or R2. We define vars(R) = {v | ite(v, , ) appears in R}. The meaning of
a BDD is given as follows.

[[0]] = 0
[[1]] = 1
[[ite(x,R1, R2)]] = (x ∧ [[R1]]) ∨ (x ∧ [[R2]])

A BDD is an OBDD iff it is 0 or 1 or if it is ite(x,R1, R2), R1 and R2 are
OBDDs, and ∀x′ ∈ vars(R1) ∪ vars(R2) : x ≺ x′.

An OBDD R is an ROBDD (Reduced Ordered Binary Decision Diagram,
[3, 4]) iff for all BDDs R1 and R2 appearing in R, R1 = R2 when [[R1]] =
[[R2]]. Practical implementations [2] use a function mknd(x,R1, R2) to create all
ROBDD nodes as follows:

1. If R1 = R2, return R1 instead of a new node, as [[ite(x,R1, R2)]] = [[R1]].
2. If an identical ROBDD was previously built, return that one instead of a new

one; this is accomplished by keeping a hash table, called the unique table, of
all previously created nodes.

3. Otherwise, return ite(x,R1, R2).

This ensures that ROBDDs are strongly canonical: a shallow equality test is suf-
ficient to determine whether two ROBDDs represent the same Boolean function.
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x

y

z

1 0

Fig. 1. (x ← y) → z

Figure 1 shows an example ROBDD in diagram-
matic form. This ROBDD denotes the function
(x← y)→ z. An ROBDD ite(x,R1, R2) is depicted
as a directed acyclic graph rooted in x, with a solid
arc from x to the dag for R1 and a dashed line from
x to the dag for R2.

It is important to take advantage of fan-in to
create efficient ROBDD algorithms. Often some
ROBDD nodes will appear multiple times in a
given ROBDD, and algorithms that traverse that
ROBDD will meet these nodes multiple times. Many algorithms can avoid
repeated work by keeping a cache of previously seen inputs and their corre-
sponding outputs, called a computed table. See Brace et al. [2] for details. We
assume a computed table is used for all recursive ROBDD algorithms presented
here.

3 Boolean Function Classes as Closure Operators

Let B = {0 , 1}. A Boolean function over variable set V = {x1, . . . , xn} is a
function ϕ : Bn → B. We assume a fixed, finite set V of variables, and use B to
denote the set of all Boolean functions over V . The ordering on B is the usual:
x ≤ y iff x = 0 ∨ y = 1 . B is ordered pointwise, that is, the ordering relation is
entailment, |=.

The class C ⊂ B contains just the two constant functions. As is common, we
use ‘0 ’ and ‘1 ’ not only to denote the elements of B, but also for the elements
of C. The class 1 ⊂ C, contains only the element 1 .

A valuation μ : V → B is an assignment of truth values to the variables in
V . Valuations are ordered pointwise. We will sometimes write a valuation as the
set of variables which are assigned the value 1 . In this view, the meet operation
on valuations is set intersection, and the join is set union.

A valuation μ is a model for ϕ, denoted μ |= ϕ, if ϕ(μ(x1), . . . , μ(xn)) = 1 .
In the “set” view, the set of models of ϕ is a set of sets of variables, namely

[[ϕ]]V =
{
{x ∈ V | μ(x) = 1}

∣∣μ |= ϕ
}
.

Again, we will often omit the subscript V as it will be clear from the context.
We will also switch freely amongst the views of ϕ as a function, a formula, and
as its set of models, relying on the reader to disambiguate from context.

We say that a Boolean function ϕ is model-meet closed if, whenever μ |= ϕ
and μ′ |= ϕ, we also have μ ∩ μ′ |= ϕ. In other words, ϕ is model-meet closed
if [[ϕ]] is closed under intersection. Similarly, ϕ is model-join closed if, whenever
μ |= ϕ and μ′ |= ϕ, also μ∪μ′ |= ϕ. We likewise say that a Boolean function ϕ is
downward closed if, whenever μ |= ϕ, we also have μ ∩ μ′ |= ϕ for all valuations
μ′, and similarly ϕ is upward closed if, whenever μ |= ϕ, we also have μ∪μ′ |= ϕ
for all valuations μ′. Note that a downward closed function is necessarily model-
meet closed, and an upward closed function is model-join closed.
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Let V = {x | x ∈ V} be the set of negated variables. A literal is a member
of the set L = V ∪ V , that is, a variable or a negated variable. We say that ϕ
is independent of literal x (and also of literal x) when for all models μ of ϕ,
μ \ {x} |= ϕ iff μ ∪ {x} |= ϕ.

The dual of a Boolean function ϕ is the function that is obtained by inter-
changing the roles of 1 and 0 . A simple way of turning a formula for ϕ into a
formula for ϕ’s dual is to change the sign of every literal in ϕ and negate the
whole resulting formula. For example, the dual of x∧ (y ∨ z) is x∨ (y ∧ z) — De
Morgan’s laws can be regarded as duality laws.

Define ϕ◦ as the dual of ϕ. Following Halmos [13], we call ϕ◦ the contra-dual
of ϕ. Clearly, given a formula for ϕ, a formula for ϕ◦ is obtained by changing
the sign of each literal in ϕ. As an example, ((x ↔ y) → z)◦ = (x ↔ y) → z.
Alternatively, given a truth table for a Boolean function, the truth table for
its contra-dual is obtained by turning the result column upside down. Given an
ROBDD R for ϕ, we can also talk about R’s contra-dual, R◦, which represents
ϕ◦. An ROBDD’s contra-dual is obtained by simultaneously making all solid
arcs dashed, and all dashed arcs solid.

Clearly the mapping ϕ �→ ϕ◦ is an involution, and monotone: ψ |= ϕ iff
ψ◦ |= ϕ◦. Note that ϕ◦ is model-join closed iff ϕ is model-meet closed. For any
class Δ of Boolean functions, we let Δ◦ denote the class {ϕ◦ | ϕ ∈ Δ}.

The classes of Boolean functions considered in this paper can all be seen as
upper closures of B. Recall that an upper closure operator (or just uco) ρ : L→ L
on a complete lattice L satisfies the following constraints:

– It is monotone: x � y implies ρ(x) � ρ(y) for all x, y ∈ L.
– It is extensive: x � ρ(x) for all x ∈ L.
– It is idempotent: ρ(x) = ρ(ρ(x)) for all x ∈ L.

As each class Δ under study contains 1 and is closed under conjunction (this
will be obvious from the syntactic characterisations given below), Δ is a lattice.
Moreover, the mapping ρΔ : B→ B, defined by

ρΔ(ψ) =
∧
{ϕ ∈ Δ | ψ |= ϕ}

is a uco on B. Since it is completely determined by Δ, and vice versa, we will
usually denote ρΔ simply as Δ. The view of such classes (abstract domains) Δ
as upper closure operators has been popular ever since the seminal papers on
abstract interpretation [6, 7].

We list some well-known properties of closure operators [23, 6]. Let L be a
complete lattice (L,⊥,�,�,�) and let ρ : L → L be a uco. Then ρ(L) is a
complete lattice (ρ(L), ρ(⊥),�,�, λS.ρ(�S)). It is a complete sublattice of L
if and only if ρ is additive, that is, ρ(�S) =� ρ(S) for all S ⊆ L. In any case,

ρ(�S) � � ρ(S)= ρ(� ρ(S)) (1)

� ρ(S) � ρ(�S)= ρ(� ρ(S)) (2)
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Given two upper closure operators ρ and ρ′ on the same lattice L, ρ◦ρ′ need not
be an upper closure operator. However, if ρ ◦ ρ′ = ρ′ ◦ ρ then the composition is
also an upper closure operator, and ρ(ρ′(L)) = ρ′(ρ(L)) = ρ(L) ∩ ρ′(L) [10, 19].

C

V◦ V

M◦ V→ M

H H◦

B

Fig. 2. Boolean function classes

The Boolean function classes we focus
on here are those characterised by combina-
tions of certain interesting semantic proper-
ties: model-meet closure, model-join closure,
downward closure, and upward closure. Nine
classes are spanned, as shown in the Hasse
diagram of Figure 2. These classes are cho-
sen for their importance in program analysis,
although our method applies to many other
natural classes, as we argue in Section 5.

We define H to be the set of model-meet
closed Boolean functions, so H◦ is the set
of model-join closed functions. Similarly, we
define M to be the upward-closed functions,
with M◦ the downward-closed functions. We
define V→ to be the set of Boolean functions that are both model-meet and
model-join closed; i.e., H∩H◦. In what follows we utilise that V→ is a uco, and
therefore H ◦H◦ = H◦ ◦H = V→. We also define V = H ∩M = V→ ∩M and
V◦ = H◦ ∩M◦ = V→ ∩M◦, both of which are ucos, as well. Finally, we observe
that C = M ∩M◦ = V ∩V◦ is also a uco. One can think of these elements as
classes of functions, ordered by subset ordering, or alternatively, as upper closure
operators, ordered pointwise (in particular, B is the identity function, providing
loss-less approximation).

These classes (ucos) have a number of properties in common. All are closed
under conjunction and existential quantification. None are closed under nega-
tion, and hence none are closed under universal quantification. All are closed
under the operation of fixing a variable to a truth value. Namely, we can express
instantiation using only conjunction and existential quantification. We write the
fixing of x in ϕ to 0 as ϕ0

x ≡ ∃x : ϕ ∧ x and the fixing of x in ϕ to 1 as
ϕ1

x ≡ ∃x : ϕ ∧ x. Finally, all of these classes enjoy a property that is essential to
our algorithms: they do not introduce variables. For each uco Δ considered and
each x ∈ V and ϕ ∈ B, if ϕ is independent of x, then so is Δ(ϕ). In Section 5
we discuss a case where this property fails to hold.

We now define the various classes formally and establish some results that
are essential in establishing the correctness of the algorithms given in Section 4.

3.1 The Classes M and M◦

The class M of monotone functions consists of the functions ϕ satisfying the
following requirement: for all valuations μ and μ′, μ ∪ μ′ |= ϕ when μ |= ϕ.
(These functions are also referred to as isotone.) Syntactically the class is most
conveniently described as the the class of functions generated by {∧,∨, 0 , 1}, see
for example Rudeanu’s [21] Theorem 11.3. It follows that the uco M is additive.
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The class M◦ = {ϕ◦ | ϕ ∈ M} consists of the antitone Boolean functions.
Functions ϕ in this class have the property that, for all valuations μ and μ′, if
μ |= ϕ, then μ ∩ μ′ |= ϕ. M◦, too, is additive.

As ROBDDs are based on the idea of repeated Boolean development, we are
particularly interested in characterising class membership for formulae of the
forms x ∨ ϕ and x ∨ ϕ (with ϕ independent of x).

Lemma 1. Let ϕ ∈ B be independent of x ∈ V . Then

(a) x ∨ ϕ ∈M iff ϕ ∈M (c) x ∨ ϕ ∈M◦ iff ϕ ∈ 1
(b) x ∨ ϕ ∈M iff ϕ ∈ 1 (d) x ∨ ϕ ∈M◦ iff ϕ ∈M◦

Proof: In all cases, the ‘if’ direction is obvious from the well-known syntactic
characterisations of M and M◦. We show the ‘only if’ direction for cases (a) and
(b); the proofs for (c) and (d) are similar.

(a) Let ϕ ∈ B be independent of x ∈ V , such that x ∨ ϕ ∈ M. Consider a
model μ of ϕ. Since ϕ is independent of x, we have that μ\{x} |= x∨ϕ. Let μ′ be
an arbitrary valuation. Then (μ\{x})∪ (μ′ \{x}) |= x∨ϕ, so (μ∪μ′)\{x} |= ϕ.
Thus μ ∪ μ′ |= ϕ, and since μ′ was arbitrary, ϕ ∈M.

(b) Suppose x ∨ ϕ ∈ M. We show that every valuation is a model of ϕ. For
any valuation μ, μ \ {x} |= x ∨ ϕ. But then, μ ∪ {x} |= x ∨ ϕ, as x ∨ ϕ ∈M. As
ϕ is independent of x, μ |= ϕ. But μ was arbitrary, so ϕ must be 1 .

3.2 The Classes H and H◦

The class H of propositional Horn functions is exactly the set of model-meet
closed Boolean functions. That is, every H function ϕ satisfies the following
requirement: for all valuations μ and μ′, if μ |= ϕ and μ′ |= ϕ, then μ ∩ μ′ |= ϕ.
Similarly, H◦ is the set of model-join closed Boolean functions, satisfying the
requirement that for all valuations μ and μ′, if μ |= ϕ and μ′ |= ϕ, then μ∪μ′ |= ϕ.

There are well-known syntactic characterisations of these classes. H is the
set of functions that can be written in conjunctive normal form

∧
(�1 ∨ · · · ∨ �n)

with at most one positive literal � per clause, while H◦ functions can be written
in conjunctive normal form with each clause containing at most one negative
literal.1 It is immediate that M ⊆ H◦ and M◦ ⊆H.

The next lemma characterises membership of H and H◦, for the case � ∨ ϕ.

Lemma 2. Let ϕ ∈ B be independent of x ∈ V . Then

(a) x ∨ ϕ ∈ H iff ϕ ∈M◦ (c) x ∨ ϕ ∈ H◦ iff ϕ ∈ H◦

(b) x ∨ ϕ ∈ H iff ϕ ∈ H (d) x ∨ ϕ ∈ H◦ iff ϕ ∈M

Proof: In all cases, the ‘if’ direction follows easily from the syntactic character-
isations of the classes. We prove the ‘only if’ directions for (a) and (b), as (c)
and (d) are similar.
1 An unfortunate variety of nomenclatures is used in Boolean taxonomy. For example,

Schaefer [22] uses “weakly negative” for H and “weakly positive” for H◦. Ekin
et al. [8] use the term “Horn” to refer to {ϕ | ϕ ∈ H} and “positive” for M, while
we use the word “positive” to refer to another class entirely (see Section 5).
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(a) Assume x∨ϕ ∈ H and x is independent of ϕ. Let μ be a model for ϕ and
let μ′ be an arbitrary valuation. Both μ \ {x} and μ′ ∪ {x} are models for x∨ϕ.
As x∨ϕ ∈ H, their intersection is a model as well, that is, (μ∩μ′)\{x} |= x∨ϕ.
But then (μ ∩ μ′) |= x ∨ ϕ, and as μ′ was arbitrary, it follows that ϕ ∈M◦.

(b) Assume x ∨ ϕ ∈ H and x is independent of ϕ. Consider models μ and μ′

for ϕ. As ϕ is independent of x, μ \ {x} and μ′ \ {x} are models for x ∨ ϕ, and
so (μ \ {x}) ∩ (μ′ \ {x}) |= x ∨ ϕ. But then (μ \ {x}) ∩ (μ′ \ {x}) |= ϕ, hence
μ ∩ μ′ |= ϕ, so ϕ ∈ H.

3.3 The Class V→

We define V→ = H ∩ H◦. Hence this is the class of Boolean functions ϕ that are
both model-meet and model-join closed. For all valuations μ and μ′, μ ∩ μ′ |= ϕ
and μ ∪ μ′ |= ϕ when μ |= ϕ and μ′ |= ϕ. Since H and H◦ commute as closure
operators, we could equally well have defined V→ = H ◦H◦.

Syntactically, V→ consists of exactly those Boolean functions that can be
written in conjunctive normal form

∧
c with each clause c taking one of four

forms: 0 , x, x, or x→ y. Note that V◦
→ = V→.

Lemma 3. Let ϕ ∈ B be independent of x ∈ V . Then

(a) x ∨ ϕ ∈ V→ iff ϕ ∈ V◦ (b) x ∨ ϕ ∈ V→ iff ϕ ∈ V

Proof: (a) Since x∨ϕ ∈ V→, we know that x∨ϕ ∈ H and x∨ϕ ∈ H◦. Then by
Lemma 2, ϕ ∈M◦ and ϕ ∈ H◦. Thus ϕ ∈ V◦. The proof for (b) is similar.

3.4 The Classes V, V◦, C, and 1

We define V to be the class of model-meet and upward closed Boolean functions.
Syntactically, ϕ ∈ V iff ϕ = 0 or ϕ can be written as a (possibly empty) con-
junction of positive literals. Dually, V◦ is the class of model-join and downward
closed Boolean functions — those that can be written as 0 or (possibly empty)
conjunctions of negative literals. C is the set of Boolean functions that are both
upward and downward closed. This set contains only the constant functions 0
and 1 . Finally, 1 consists of only the constant function 1 . The next lemma is
trivial, but included for completeness.

Lemma 4. Let ϕ ∈ B be independent of x ∈ V . Then

(a) x ∨ ϕ ∈ V iff ϕ ∈ C (e) x ∨ ϕ ∈ C iff ϕ ∈ 1
(b) x ∨ ϕ ∈ V iff ϕ ∈ 1 (f) x ∨ ϕ ∈ C iff ϕ ∈ 1
(c) x ∨ ϕ ∈ V◦ iff ϕ ∈ 1 (g) x ∨ ϕ ∈ 1 iff ϕ ∈ 1
(d) x ∨ ϕ ∈ V◦ iff ϕ ∈ C (h) x ∨ ϕ ∈ 1 iff ϕ ∈ 1

Proof: The proof is similar to that of Lemma 3.
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4 Algorithms for Approximating ROBDDs

In this section we show how to find upper approximations within the classes of
the previous section. Algorithms for lower approximation can be obtained in a
parallel way. We assume input and output given as ROBDDs. In this context,
the main obstacle to the development of algorithms is a lack of distributivity and
substitutivity properties amongst closure operators. To exemplify the problems
in the context of H, given ϕ = x↔ y and ψ = x ∨ y, we have

H(ϕ ∧ ψ) = H(x ∧ y) = x ∧ y �= (x↔ y) ∧ 1 = H(ϕ) ∧H(ψ)
H(x ∨ y) = 1 �= x ∨ y = H(x) ∨H(y)

(H(x ∨ y))0x = 1 0
x = 1 �= y = H(y) = H((x ∨ y)0x)

Nevertheless, for a large number of commonly used classes, Boolean development
gives us a handle to restore a limited form of distributivity. The idea is as follows.
Let σ = (x ∧ ϕ) ∨ (x ∧ ψ). We can write σ alternatively as

σ = (ψ → x) ∧ (x→ ϕ)

showing how the “subtrees” ϕ and ψ communicate with x. As we have seen,
we cannot in general find ρ(σ), even for “well-behaved” closure operators ρ, by
distribution—the following does not hold:

ρ(σ) = ρ(ψ → x) ∧ ρ(x→ ϕ)

Suppose however that we add a redundant conjunct to the expression for σ:

σ = (ψ → x) ∧ (x→ ϕ) ∧ (ϕ ∨ ψ)

The term ϕ∨ψ is redundant, as it is nothing but ∃x(σ). The point that we utilise
here is that, for a large number of natural classes (or upper closure operators)
ρ, distribution is allowed in this context, that is,

ρ(σ) = ρ(ψ → x) ∧ ρ(x→ ϕ) ∧ ρ(ϕ ∨ ψ)

The intuition is that the information that is lost by ρ(ψ → x) ∧ ρ(x → ϕ),
namely the “ρ” information shared by ϕ and ψ is exactly recovered by ρ(ϕ∨ψ).
Figure 3 shows, for reference, the ROBDD for a function, (x → z) ∧ (y → z),
and the ROBDDs that result from different approximations.

Before we present our approximation algorithms, we need one more lemma.

Lemma 5. Let ϕ ∈ B be independent of x ∈ V .

(a) if x ∨ ϕ ∈ Δ↔ ϕ ∈ Δ′ then Δ(x ∨ ϕ) = x ∨Δ′(ϕ)
(b) if x ∨ ϕ ∈ Δ↔ ϕ ∈ Δ′ then Δ(x ∨ ϕ) = x ∨Δ′(ϕ)
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H◦(ϕ) = (x → z) ∧ (y ∨ z)
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1 z

0 1

V→(ϕ) = x → z

Fig. 3. ROBDDs for (x → z) ∧ (y ↔ z) and some approximations of it

Proof: We show (a)—the proof for (b) is similar. Assume x ∨ ϕ ∈ Δ↔ ϕ ∈ Δ′.

Δ(x ∨ ϕ) =
∧
{ψ′ ∈ Δ | x ∨ ϕ |= ψ′}

=
∧
{ψ′ ∈ Δ | x |= ψ′ and ϕ |= ψ′}

=
∧
{x ∨ ψ | x ∨ ψ ∈ Δ and ϕ |= x ∨ ψ} ψ′ is of the form x ∨ ψ

=
∧
{x ∨ ψ | x ∨ ψ ∈ Δ and ϕ |= ψ} ϕ is independent of x

=
∧
{x ∨ ψ | ψ ∈ Δ′ and ϕ |= ψ} premise

= x ∨
∧
{ψ | ψ ∈ Δ′ and ϕ |= ψ}

= x ∨Δ′(ϕ).

4.1 The Upper Closure Operators H and H◦

Algorithm 1. To find the strongest H consequence of a Boolean function:

H(0) = 0
H(1) = 1
H(ite(x,R1, R2)) = mknd(x,Rt, Rf)

where R′ = H(or(R1, R2))
and Rt = H(R1)
and Rf = and(M◦(R2), R′)
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To prove the correctness of this algorithm, we shall need the following lemma:

Lemma 6. Let ϕ ∈ B be independent of x ∈ V . Then

(a) H(x ∧ ϕ) = x ∧ H(ϕ) (c) H◦(x ∧ ϕ) = x ∧ H◦(ϕ)
(b) H(x ∧ ϕ) = x ∧ H(ϕ) (d) H◦(x ∧ ϕ) = x ∧ H◦(ϕ)

Proposition 1. For any ROBDD R, H[[R]] = [[H(R)]].

Proof: By induction on vars(R). When vars(R) = ∅, R must be either 0 or 1; in
these cases the proposition holds.

Assume vars(R) �= ∅ and take R = ite(x,R1, R2). vars(R) ⊃ vars(or(R1, R2)),
so the induction is well-founded. Let R′ = H(or(R1, R2)). By the induction hy-
pothesis, [[R′]] = H[[or(R1, R2)]] = H([[R1]] ∨ [[R2]]).

We prove first that H[[R]] |= [[H(R)]]. Note that

x ∨H(ψ) |= H(x ∨H(ψ)) = H(x ∨ ψ)
x ∨H(ϕ) |= H(x ∨H(ϕ)) = H(x ∨ ϕ)
H(ϕ) ∨H(ψ) |= H(H(ϕ) ∨H(ψ)) = H(ϕ ∨ ψ)

Since H and ∧ are monotone, H[(x ∨H(ψ)) ∧ (x ∨H(ϕ)) ∧ (H(ϕ) ∨H(ψ))] |=
H[H(x ∨ ψ) ∧H(x ∨ ϕ) ∧H(ϕ ∨ ψ)]. Hence, by (1),

H[(x ∨H(ψ)) ∧ (x ∨H(ϕ)) ∧ (H(ϕ) ∨H(ψ))]
|= H(x ∨ ψ) ∧H(x ∨ ϕ) ∧H(ϕ ∨ ψ) (3)

Now we have

H[[R]]
= H[(x ∧ [[R1]]) ∨ (x ∧ [[R2]])]
= H(H(x ∧ [[R1]]) ∨H(x ∧ [[R2]])) uco property
= H[(x ∧H[[R1]]) ∨ (x ∧H[[R2]])] Lemma 6
= H[(x ∨H[[R2]]) ∧ (x ∨H[[R1]]) distribution
= H[(x ∨H[[R2]]) ∧ (x ∨H[[R1]]) ∧ (H[[R1]] ∨H[[R2]])]
|= H(x ∨ [[R2]]) ∧H(x ∨ [[R1]])) ∧H([[R1]] ∨ [[R2]]) Equation 3
= (x ∨M◦[[R2]]) ∧ (x ∨H[[R1]]) ∧ [[R′]] Lemmas 2 and 5
= (x ∧H[[R1]] ∧ [[R′]]) ∨ (x ∧M◦[[R2]] ∧ [[R′]]) distribution
= (x ∧H[[R1]]) ∨ (x ∧M◦[[R2]] ∧ [[R′]]) H is monotone
= (x ∧ [[H(R1)]]) ∨ (x ∧ [[M◦(R2)]] ∧ [[R′]]) Ind. hyp., Prop 4
= [[mknd(x,H(R1), and(M◦(R2), R′))]]
= [[H(R)]]

Next we show [[H(R)]] |= H[[R]]. From the development above, it is clear that this
amounts to showing that

(x ∧H[[R1]] ∧ [[R′]]) ∨ (x ∧M◦[[R2]] ∧ [[R′]]) |= H[(x ∧ [[R1]]) ∨ (x ∧ [[R2]])]

By Lemma 6, x ∧H[[R1]] = H(x ∧ [[R1]]). So clearly x ∧H[[R1]] ∧ [[R′]] |= H(x ∧
[[R1]])∨H(x∧ [[R2]]), so x∧H[[R1]]∧ [[R′]] |= H((x∧ [[R1]])∨(x∧ [[R2]])). It remains
to prove that x∧M◦[[R2]]∧ [[R′]] |= H[(x∧ [[R1]])∨(x∧ [[R2]])]. If the left-hand side
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is false, then the claim holds trivially. So let μ be a model of x∧M◦[[R2]]∧ [[R′]].
Thus μ |= x, μ |= M◦[[R2]], and μ |= [[R′]], and we must show μ entails the
right-hand side. Let us consider three exhaustive cases.

First assume μ |= H[[R2]]. Then since μ |= x, and by Lemma 6, μ |= H(x ∧
[[R2]]), so certainly μ |= H(x ∧ [[R1]]) ∨ H(x ∧ [[R2]]). Then μ must entail the
weaker H(H(x ∧ [[R1]]) ∨H(x ∧ [[R2]])), which by uco properties is equivalent to
H((x ∧ [[R1]]) ∨ (x ∧ [[R2]])).

Next assume μ |= H[[R1]] and μ �|= H[[R2]]. Since μ |= M◦[[R2]], we know
that there is some μ′ such that μ′ |= [[R2]], and that μ ⊆ μ′. Then μ′ \ {x} |=
x∧H[[R2]]∨(x∧[[R1 ]]), so μ′\{x}must entail the weaker H((x∧[[R1]])∨(x∧[[R2]])).
We have also assumed μ |= H[[R1]], so by similar argument μ ∪ {x} |= H((x ∧
[[R1]]) ∨ (x ∧ [[R2]])). Then (μ ∪ {x}) ∩ (μ′ \ {x}) |= H((x ∧ [[R1]]) ∨ (x ∧ [[R2]])).
But since μ ⊆ μ′, and since x �∈ μ, (μ ∪ {x}) ∩ (μ′ \ {x}) = μ, and therefore
μ |= H((x ∧ [[R1]]) ∨ (x ∧ [[R2]])).

Finally, assume μ �|= H[[R1]] and μ �|= H[[R2]]. Since μ |= [[R′]], μ must be the
intersection models of H[[R1]] and H[[R2]]. So let μ+ and μ− be interpretations
such that μ+ |= H[[R1]] and μ− |= H[[R2]] and μ = μ+ ∩μ−. Then, similar to the
previous case, (μ+ ∪{x}) |= H((x∧ [[R1 ]])∨ (x∧ [[R2]])) and (μ− \ {x}) |= H((x∧
[[R1]])∨(x∧ [[R2]])). But since μ = μ+∩μ−, we know (μ+∪{x})∩(μ− \{x}) = μ,
and therefore μ |= H((x ∧ [[R1]]) ∨ (x ∧ [[R2]])).

Algorithm 2. To find the strongest H◦ consequence of a Boolean function:

H◦(0) = 0
H◦(1) = 1
H◦(ite(x,R1, R2)) = mknd(x,Rt, Rf )

where R′ = H◦(or(R1, R2))
and Rt = and(M(R1), R′)
and Rf = H◦(R2)

Proposition 2. For any ROBDD R, H◦[[R]] = [[H◦(R)]].

Proof: Similar to Proposition 1.

4.2 The Upper Closure Operators M and M◦

The algorithms and proofs for M and M◦ are simpler, because these closure
operators are additive.

Algorithm 3. To find the strongest M consequence of a Boolean function:

M(0) = 0
M(1) = 1
M(ite(x,R1, R2)) = mknd(x, or(R′

1, R
′
2), R

′
2)

where R′
1 = M(R1)

and R′
2 = M(R2)

Proposition 3. For any ROBDD R, M[[R]] = [[M(R)]].
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Proof: By structural induction. For R = 0 and R = 1 the proposition clearly
holds. Consider R = ite(x,R1, R2) and let R′

1 = M(R1) and R′
2 = M(R2).

M[[R]] = M((x ∧ [[R1]]) ∨ (x ∧ [[R2]]))
= (M(x) ∧M[[R1]]) ∨ (M(x) ∧M[[R2]]) M is additive
= (x ∧M[[R1]]) ∨M[[R2]]
= (x ∧ [[R′

1]]) ∨ [[R′
2]] induction hypothesis

= (x ∧ ([[R′
1]] ∨ [[R′

2]])) ∨ (x ∧ [[R′
2]]) development around x

= (x ∧ [[or(R′
1, R

′
2)]]) ∨ (x ∧ [[R′

2]])
= [[mknd(x, or(R′

1, R
′
2), R

′
2)]]

= [[M(R)]]

Algorithm 4. To find the strongest M◦ consequence of a Boolean function:

M◦(0) = 0
M◦(1) = 1
M◦(ite(x,R1, R2)) = mknd(x,R′

1, or(R′
1, R

′
2))

where R′
1 = M◦(R1)

and R′
2 = M◦(R2)

Proposition 4. For any ROBDD R, M◦[[R]] = [[M◦(R)]].

Proof: Similar to Proposition 3.

4.3 The Upper Closure Operator V→

Algorithm 5. To find the strongest V→ consequence of a Boolean function:

V→(0) = 0
V→(1) = 1
V→(ite(x,R1, R2)) = mknd(x, and(V(R1), R′), and(V◦(R2), R′))

where R′ = V→(or(R1, R2))

Proposition 5. For any ROBDD R, V→[[R]] = [[V→(R)]].

Proof: This follows from the fact that V→ = H ∩H◦. We omit the details.

4.4 The Upper Closure Operators C, V, and V◦

The remaining algorithms are given here for completeness. Their correctness
proofs are straightforward.

Algorithm 6. To find the strongest V consequence of a Boolean function:

V(0) = 0
V(1) = 1

V(ite(x,R1, R2)) = mknd(x,R′, and(C(R2), R′))
where R′ = V(or(R1, R2))

Algorithm 7. To find the strongest V◦ consequence of a Boolean function:

V◦(0) = 0
V◦(1) = 1

V◦(ite(x,R1, R2)) = mknd(x, and(C(R1), R′), R′)
where R′ = V◦(or(R1, R2))

Algorithm 8. To find the strongest C consequence of a Boolean function:

C(0) = 0 C(1) = 1 C(ite(x,R1, R2)) = 1
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5 Discussion and Related Work

The classes we have covered are but a few examples of the generality of our ap-
proach. Many other classes fall under the same general scheme as the algorithms
in Section 4. One such is L. Syntactically, ϕ ∈ L iff ϕ = 0 or ϕ can be written
as a (possibly empty) conjunction of literals. Slightly more general is the class
Bij of bijunctive functions. Members of this class can be written in clausal form
with at most two literals per clause.

A class central to many analyses of logic programs is that of positive func-
tions [16, 17]. Let μ� be the unit valuation, that is, μ� = 1 for all x ∈ V . Then
ϕ is positive iff μ� |= ϕ. We denote the class of positive functions by Pos. This
class is interesting in the context of ROBDDs, as it is a class which is easily
recognisable but problematic to find approximations in. To decide whether an
ROBDD represents a positive function, simply follow the solid-arc path from
the root to a sink—the function is positive if and only if the sink is 1 . Approx-
imation, however, can not be done in general without knowledge of the entire
space of variables, and not all variables necessarily appear in the ROBDD. For
example, if the set of variables is V , then Pos(xi) = xi →

∧
V , which depends on

every variable in V . We should note, however, that this does not mean that our
approximation algorithms are useless for sub-classes of Pos. On the contrary,
they work seamlessly for the positive sub-classes commonly used in program
analysis, discussed below, as long as positive functions are being approximated
(which is invariably the case).

V→

H

B

���

���

���

2IMP

Def

Pos

Fig. 4. Positive fragments

The classes we have discussed above are not
sub-classes of Pos. (In both M and V, however,
the only non-positive element is 0 .) Restricting
the classes to their positive counterparts, we
obtain classes that all have found use in pro-
gram analysis. Figure 4 shows the correspon-
dence. The classes on the right are obtained
by intersecting those on the left with Pos. We
mention just a few example uses. In the context
of groundness analysis for constraint logic programs, Pos and Def are discussed
by Armstrong et al. [1]. Def is used for example by Howe and King [15]. 2IMP
is found in the exception analysis of Glynn et al. [12]. We have also omitted char-
acterizations and algorithms for V↔, the class of functions that can be written
as conjunctions of literals and biimplications of the form x ↔ y with x, y ∈ V .
This class corresponds to the set of all possible partitionings of V ∪ {0 , 1}. Its
restriction to the positive fragment is exactly Heaton et al.’s “EPos” domain [14].

M is a class which is of considerable interest in many contexts. In program
analysis it has a classical role: Mycroft’s well-known two-valued strictness analy-
sis for first-order functional programs [18] uses M to capture non-termination
information.

The classes we have considered are of much theoretical interest. The classes
Bij, H, H◦, Pos and Pos◦ are five of the six classes from Schaefer’s dichotomy
result [22] (the sixth is the class of affine Boolean functions). M plays a role in
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Post’s functional completeness result [20], together with the affine functions, Pos
and its dual, and the class of self-dual functions. Giacobazzi and Scozzari pro-
vide interesting characterisations of domains including Pos in terms of domain
completion using natural domain operations [11].

The problem of approximating Boolean functions appears in many contexts in
program analysis. We already mentioned Genaim and King’s suspension analy-
sis [9] and the formulation of set-sharing using Pos, by Codish et al. [5]. An-
other possible application is in the design of widening operators for abstract
interpretation-based analyses.

6 Conclusion

We have provided algorithms to find upper approximations for Boolean functions
represented as ROBDDs. The algorithms all follow the same general pattern,
which works for a large number of important classes of Boolean functions. They
also provide a way of checking an ROBDD R for membership of a given class
Δ: Simply check whether R = Δ(R).

In the design of our algorithms we have emphasised clarity rather than effi-
ciency. We note that the critical term Δ(ϕ ∨ ψ) is identical to the join Δ(ϕ) �Δ
Δ(ψ), so in many cases, efficient approximation algorithms may boil down to
efficient computation of the join. Future research will include a search for appro-
priate data structures and associated complexity analyses, as well as attempts
at a more general and abstract approach to the algorithms and proofs.
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Abstract. We present an implementation of symbolic reachability analysis with
the features of compositionality, and intermittent abstraction, in the sense of pe-
frorming approximation only at selected program points, if at all. The key advan-
tages of compositionality are well known, while those of intermittent abstraction
are that the abstract domain required to ensure convergence of the algorithm can
be minimized, and that the cost of performing abstractions, now being intermit-
tent, is reduced.

We start by formulating the problem in CLP, and first obtain compositional-
ity. We then address two key efficiency challenges. The first is that reasoning is
required about the strongest-postcondition operator associated with an arbitrarily
long program fragment. This essentially means dealing with constraints over an
unbounded number of variables describing the states between the start and end of
the program fragment at hand. This is addressed by using the variable elimination
or projection mechanism that is implicit in CLP systems. The second challenge is
termination, that is, to determine which subgoals are redundant. We address this
by a novel formulation of memoization called coinductive tabling.

We finally evaluate the method experimentally. At one extreme, where ab-
straction is performed at every step, we compare against a model checker. At the
other extreme, where no abstraction is performed, we compare against a program
verifier. Of course, our method provides for the middle ground, with a flexible
combination of abstraction and Hoare-style reasoning with predicate transform-
ers and loop-invariants.

1 Introduction

Predicate abstraction [15] is a successful method of abstract interpretation. The abstract
domain, constructed from a given finite set of predicates over program variables, is
intuitive and easily, though not necessarily efficiently, computable within a traversal
method of the program’s control flow structure.

While it is generally straightforward to optimize the process of abstraction to a cer-
tain extent by performing abstraction at selected points only (eg. several consecutive
asignments may be compressed and abstraction performed accross one composite as-
signment, as implemented in the BLAST system [19]), to this point there has not been
a systematic way of doing this. Moreover, since the abstract description is limited to
a fixed number of variables, such an ad-hoc method would not be compositional. For
example, [2] requires an elaborate extension of predicate abstraction which essentially
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〈0〉 i := 0 ; c := 0
〈1〉 while (i < n) do
〈2〉 i++
〈3〉 c++
〈4〉 c++
〈5〉 end 〈6〉

(a)

even(0, i,n,c) �→ even(1, i1,n1,c1), i1 = 0,n1 = n,c1 = 0.
even(1, i,n,c) �→ even(2, i1,n1,c1), i1 = i,n1 = n, i < n,c1 = c.
even(2, i,n,c) �→ even(3, i1,n1,c1), i1 = i+1,n1 = n,c1 = c.
even(3, i,n,c) �→ even(4, i1,n1,c1), i1 = i+1,n1 = n,c1 = c+1.
even(4, i,n,c) �→ even(5, i1,n1,c1), i1 = i+1,n1 = n,c1 = c+1.
even(5, i,n,c) �→ even(2, i1,n1,c1), i1 = i,n1 = n,c1 = c, i< n.
even(5, i,n,c) �→ even(6, i1,n1,c1), i1 = i,n1 = n,c1 = c, i≥ n.

(b)

Fig. 1. Even counts

considers a second set of variables (called “symbolic constants”), in order to describe
the behaviour of a function, in the language of predicate abstraction. This provides only
a limited form of compositionality.

In this paper, we present a way of engineering a general proof method of program
reasoning based on predicate abstraction in which the process of abstraction is inter-
mittent, that is, approximation is performed only at selected program points, if at all.
There is no restriction of when abstraction is performed, even though termination issues
will usually restrict the choices. The key advantages are that (a) the abstract domain re-
quired to ensure convergence of the algorithm can be minimized, and (b) the cost of
performing abstractions, now being intermittent, is reduced.

For example, to reason that x = 2 after executing x := 0; x++; x++, one needs
to know that x = 1 holds before the final assignment. Thus, in a predicate abstraction
setting, the abstract domain must contain the predicate x = 1 for the above reasoning
to be possible. Also, consider proving x = 2n for the program snippet in Figure 1a. A
textbook Hoare-style loop invariant for the loop is c = 2i. Having this formula in the
abstract domain would, however, not suffice; one in fact needs to know that c = 2i−1
holds in between the two increments to c. Thus in general, a proper loop invariant is
useful only if we could propagate its information throughout the program exactly.

A main challenge with exact propagation is that reasoning will be required about the
strongest-postcondition operator associated with an arbitrarily long program fragment.
This essentially means dealing with constraints over an unbounded number of variables
describing the states between the start and end of the program fragment at hand. The
advantages in terms of efficiency, however, are significant: less predicates needed in the
abstract domain, and also, less frequent execution of the abstraction operation. Alterna-
tively, it may be argued that using the weakest precondition operator for exact propa-
gation may result in a set of constraints over a constant number of variables, and thus
circumvent the challenge mentioned above. To see that this is not true, let us consider
the following program fragment: while(x%7!=0)x++ ; while(x%11!=0)x++. Also,
let us assume that we have an exact propagation algorithm, based on either the weak-
est preconditon or the strongest postcondition propagation operator, which computes
a constraint that reflects the relationship between the values of x before and after the
execution of the program fragment. Our algorithm needs to record the fact that between
the two while loops the value of x is a multiple of 7. This cannot be done without in-
troducing an auxilliary variable in the set of constraints. Assume now that this program
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fragment appears in the body of another loop. Since that (outer) loop may be traversed
multiple times in the analysis process, and every traversal of the loop will introduce
a new auxilliary variable, the number of auxilliary variables is potentially unbounded,
irrespective of the propagation operator that is used.

An important feature of our proof method is that it is compositional. We represent
a proof as a Hoare-style triple which, for a given program fragment, relates the input
values of the variables to the output values. This is represented as a formula, and in
general, such a formula must contain auxiliary variables in addition to the program
variables. This is because it is generally impossible to represent the projection of a
formula using a predefined set of variables, or equivalently, it is not possible to perform
quantifier elimination. Consequently, in order to have unrestricted composition of such
proofs, it is (again) necessary to deal with an unbounded number of variables.

The paper is organized as follows. We start by formulating the problem in CLP,
and first obtain compositionality. We then address two key efficiency challenges. The
first is that reasoning is required about the strongest-postcondition operator associated
with an arbitrarily long program fragment. This means dealing with constraints over an
unbounded number of variables describing the states between the start and end of the
program fragment at hand. We address this problem by using the variable elimination or
projection mechanism that is implicit in CLP systems. The second challenge is termi-
nation, which translates into determining the redundancy of subgoals. We address this
by a novel formulation of memoization called coinductive tabling.

We finally evaluate the method experimentally. At one extreme, where abstraction
is performed at every step, we compare against the model checker BLAST [19]. Here
we employ a standard realization of intermittence by abstracting at prespecified points,
and thus our algorithm becomes automatic. At the other extreme, where no abstraction
is performed (but where invariants are used to deal with loops), we compare against the
program-verifier ESC/Java [6]. Of course, our method provides for the middle ground,
with a flexible combination of abstraction and Hoare-style reasoning with predicate
transformers and loop-invariants.

In summary, we present a CLP-based proof method which has the properties of be-
ing compositional, and which employs intermittent abstraction. The major technical
contributions, toward this goal, are: the CLP formulation of the proof obligation, which
provides expressiveness, and compositionality; a coinduction principle, which provides
the basic mechanism for termination; and engineering the use of the underlying CLP
projection mechanism in the process of exact propagation. Our method thus provides
a flexible combination of abstraction and Hoare-style reasoning with predicate trans-
formers and loop-invariants, that is compositional, and its practical implementation is
feasible.

1.1 Related Work

An important category of tools that use program verification technology have been de-
veloped within the framework of the Java Modelling Language (JML) project. JML
allows one to specify a Java method’s pre- and post-conditions, and class invariants.
Examples of such program verification tools are: Jack [11], ESC/Java2 [6], and
Krakatoa [24]. All these tools employ weakest precondition/strongest postcondition
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calculi to generate proof obligations which reflect whether the given post-conditions
and class invariants hold at the end of a method, whenever the corresponding pre-
conditions are valid at the procedure’s entry point. The resulting proof obligations are
subsequently discharged by theorem provers such as Simplify [6], Coq [3], PVS [27],
or HOL light [18]. While these systems perform exact propagation, they depend on
user-provided loop invariants, as opposed to an abstract domain.

Cousot and Cousot [7] have recognized a long time ago that coarse-grained abstrac-
tions are better than fine-grained ones. Moreover, recently there have emerged systems
based on abstract interpretation, and in particular, on predicate abstraction. Some ex-
amples are BLAST [19], SLAM [1], MAGIC [5], and Murphi– – [8], amongst others.
While abstract interpretation is central, these systems employ a further technique of
automatically determining the abstract domain needed for a given assertion. This tech-
nique iteratively refines the abstract domain based on information derived from previous
counterexamples. These systems do not perform exact propagation in a systematic way.

The use of CLP for program reasoning is not new (see for example [14] for a non-
exhaustive survey). Due to its capability for handling constraints, CLP has been no-
tably used in verification of infinite-state systems [9, 10, 13, 17, 23], although results for
finite-state systems are also available [26, 12]. Indeed, it is generally straightforward to
represent program transitions as CLP rules, and to use the CLP operational model to
prove assertions stated as CLP goals. What is novel in our CLP formulation is firstly,
the compositional assertion, and then, coinductive tabling. More importantly, our for-
mulation considers CLP programs, assertions and tabling in full generality.

2 Preliminaries

Apart from a program counter k, whose values are program points, let there be n system
variables ṽ = v1, · · · ,vn with domains D1, · · · ,Dn respectively. In this paper, we shall
use just two example domains, that of integers, and that of integer arrays. We assume
the number of system variables is larger than the number of variables required by any
program fragment or procedure.

Definition 1 (States and Transitions). A system state (or simply state) is of the form
(k,d1, · · · ,dn) where k is a program point and di ∈ D i,1 ≤ i ≤ n, are values for the
system variables. A transition is a pair of states. ��
In what follows, we define a language of first-order formulas. Let V denote an infinite
set of variables, each of which has a type in D1, · · · ,Dn, let Σ denote a set of functors,
and Π denote a set of constraint symbols. A term is either a constant (0-ary functor) in
Σ or of the form f (t1, · · · ,tm), m ≥ 1, where f ∈ Σ and each ti is a term, 1 ≤ i ≤ m. A
primitive constraint is of the form φ(t1, · · · ,tm) where φ is a m−ary constraint symbol
and each ti is a term, 1≤ i≤ m.

A constraint is constructed from primitive constraints using logical connectives in
the usual manner. Where Ψ is a constraint, we write Ψ(X̃) to denote that Ψ possibly
refers to variables in X̃ , and we write ∃̃Ψ(X̃) to denote the existential closure of Ψ(X̃)
over variables distinct from those in X̃ .

A substitution is a mapping which simultaneously replaces each variable in a term
or constraint by some expression. Where e is a term or constraint, we write eθ to denote
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the result of applying θ to e. A renaming maps each variable in a given sequence, say
X̃ , into the corresponding variable in another given sequence, say Ỹ . We write [X̃ �→
Ỹ ] to denote such a mapping. A grounding substitution, or simply grounding maps
each variable of an expression into a ground term representing a value in its respective
domain. We denote by [[e]] the set of all possible groundings of e.

3 Constraint Transition Systems

A key concept is that a program fragment P operates on a sequence of anonymous
variables, each corresponding to a system variable at various points in the computation
of P. In particular, we consider two sequences x̃ = x1, · · · ,xn and x̃t = xt

1, · · · ,xt
n of

anonymous variables to denote the system values before executing P and at the “target”
point(s) of P, respectively. Typically, but not always, the target point is the terminal
point of P. Our proof obligation or assertion is then of the form

{Ψ(x̃)} P {Ψ1(x̃, x̃t)}
where Ψ and Ψ1 are constraints over the said variables, and possibly including new
variables. Like the Hoare-triple, this states that if P is executed in a state satisfying
Ψ, then all states at the target points (if any) satisfy Ψ1. Note that, unlike the Hoare-
triple, P may be nonterminating and Ψ1 may refer to the states of a point that is reached
infinitely often. We will formalize all this below.

For example, let there be just one system variable x, let P be <0> x := x + 1 <1>,
and let the target point be <1>. Then {true}P{xt = x + 1} holds, meaning P is the
successor function on x. Similarly, if P were the (perpetual) program <0> while (true)
x := x + 2 <1> endwhile <2>, and if <1> were the target point, then {true}P{xt =
x + 2z} holds, that is, any state (1,x) at point <1> satisfies ∃z(xt = x + 2z). This shows,
amongst other things, that the parity of x always remains unchanged.

Our proof method accomodates concurrent programs of a fixed number of processes.
Where we have n processes, we shall use as a program point, a sequence of n program
points so that the ith program point is one which comes from the ith process, 1≤ i≤ n.

We next represent the program fragment P as a transition system which can be ex-
ecuted symbolically. The following key definition serves two main purposes. First, it
is a high level representation of the operational semantics of P, and in fact, it repre-
sents its exact trace semantics. Second, it is an executable specification against which
an assertion can be checked.

Definition 2 (Constraint Transition System). A constraint transition of P is a formula

p(k, x̃) �→ p(k1, x̃1),Ψ(x̃, x̃1)
where k and k1 are variables over program points, each of x̃ and x̃1 is a sequence of
variables representing a system state, and Ψ is a constraint over x̃ and x̃1, and possibly
some additional auxiliary variables.

A constraint transition system (CTS) of P is a finite set of constraint transitions of P.
The symbol p is called the CTS predicate of P. ��

In what follows, unless otherwise stated, we shall consistently denote by P the program
of interest, and by p its CTS predicate.
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Process 1:
while (true) do

〈0〉 x := y + 1
〈1〉 await (x<y ∨ y=0)
〈2〉 x := 0

end

Process 2:
while (true) do

〈0〉 y := x + 1
〈1〉 await (y<x ∨ x=0)
〈2〉 y := 0

end

Fig. 2. Two Process Bakery

bak(0, p2,x,y) �→ bak(1, p2,x1,y),x1 = y+1.
bak(1, p2,x,y) �→ bak(2, p2,x,y),x < y∨ y = 0.
bak(2, p2,x,y) �→ bak(0, p2,x1,y),x1 = 0.
bak(p1,0,x,y) �→ bak(p1,1,x,y1),y1 = x+1.
bak(p1,1,x,y) �→ bak(p1,2,x,y),y < x∨ x = 0.
bak(p1,2,x,y) �→ bak(p1,0,x,y1),y1 = 0.

Fig. 3. CTS of Two Process Bakery

Consider for example the program in Figure 1a; call it Even. Figure 1b shows a CTS
for Even, whose CTS predicate is even.

Consider another example: the Bakery algorithm with two processes in Figure 2. A
CTS for this program, call it Bak, is given in Figure 3. Note that we use the first and
second arguments of the term bak to denote the program points of the first and second
process respectively.

Clearly the variables in a constraint transition may be renamed freely because their
scope is local to the transition. We thus say that a constraint transition is a variant
of another if one is identical to the other when a renaming subsitution is performed.
Further, we may simplify a constraint transition by renaming any one of its variables x
by an expression y provided that x = y in all groundings of the constraint transition. For
example, we may simply state the last constraint transition in Figure 3 into

bak(p1,2,x,y) �→ bak(p1,0,x,0)
by replacing the variable y1 in the original transition with 0.

The above formulation of program transitions is familiar in the literature for the
purpose of defining a set of transitions. What is new, however, is how we use a CTS to
define symbolic transition sequences, and thereon, the notion of a proof.

By similarity with logic programming, we use the term goal to denote a formula that
can be subjected to an unfolding process in order to infer a logical consequence.

Definition 3 (Goal). A query or goal of a CTS is of the form p(k, x̃),Ψ(x̃) , where k is
a program point, x̃ is a sequence of variables over system states, and Ψ is a constraint
over some or all of the variables x̃, and possibly some additional variables. The vari-
ables x̃ are called the primary variables of this goal, while any additional variable in
Ψ is called an auxiliary variable of the goal. ��

Thus a goal is just like the conclusion of a constraint transition. We say the goal is a
start goal if k is the start program point. Similarly, a goal is a target goal if k is the
target program point. Running a start goal is tantamount to asking the question: which
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bak(2,1,x1 ,y1),
x1 = 1,x1 = 2

bak(0,0,x2,y),
x2 = 0,y = 0

bak(0,0,x,y2),
x = 0,y2 = 0x1 = 2,y1 = 1

bak(2,0,x1 ,y),
x1 = 1,y = 0

bak(2,1,x1 ,y1),
x1 = 1,x1 = 2

bak(1,1,x1 ,y1),
x1 = 1,y1 = 2

bak(1,0,x1 ,y),
x1 = 1,y = 0

bak(1,1,x1,y1),
x1 = 2,y1 = 1

bak(0,1,x,y1),
x = 0,y1 = 1

bak(0,2,x,y1),
x = 0,y1 = 1

bak(0,0,x,y),
x = 0,y = 0

bak(1,2,x1 ,y1),
x1 = 2,y1 = 1

bak(1,2,x1 ,y1),

Fig. 4. Proof Tree of 2-Process Bakery Algorithm (Partially Shown)

values of x̃ which satisfy ∃̃Ψ(x̃) will lead to a goal at the target point(s)? The idea is that
we successively reduce one goal to another until the resulting goal is at a target point,
and then inspect the results.

Next we define the meaning of proving a goal against a CTS.

Definition 4 (Proof Step, Sequence and Tree). Let there be a CTS for p, and let G =
p(k, x̃),Ψ be a goal for this. A proof step from G is obtained via a variant
p(k, ỹ) �→ p(k1, ỹ1),Ψ1 of a transition in the CTS in which all the variables are fresh.
The result is a goal of the form p(k1, ỹ1),Ψ, x̃ = ỹ,Ψ1, providing that the constraints
Ψ, x̃ = ỹ,Ψ1 are satisfiable.

A proof sequence is a finite or infinite sequence of proof steps. A proof tree is defined
from proof sequences in the obvious way. A tree is complete if every internal node
representing a goal G is succeeded by nodes representing every goal obtainable in a
proof step from G . ��
Consider again the CTS in Figure 1b, and we wish to prove {n = 1}p{c = 2}. There is
in fact only one proof sequence from the start goal

even(0, i,n,c),n = 1,c = 0.

or equivalently, even(0, i,1,0). This proof sequence is shown in Figure 5, and note that
the counter, represented in the last goal by the variable c2, has the value 2.

Definition 5 (Assertion). Let p be a program with start variables x̃, and let Ψ be a
constraint. Let x̃t denote a sequence of variables representing system states not appear-

even(6, i2,n,c2), i2 = 1,n = 1,c2 = 2

even(4, i2,n,c1), i2 = 1,n = 1,c1 = 1

even(5, i2,n,c2), i2 = 1,n = 1,c2 = 2

even(3, i2,n,c), i2 = 1,n = 1,c = 0

even(2, i1,n,c), i1 = 0,n = 1,c = 0

even(0, i,n,c),n = 1,c = 0

even(1, i1,n,c), i1 = 0,n = 1,c = 0

Fig. 5. Proof Tree of Even Counts Program
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ing in p or Ψ. (These represent the target values of the system variables.) An assertion
for p wrt to x̃t is of the form p(k, x̃),Ψ |= Ψ1(x̃, x̃t). In particular, when k is the start
program point, we may abberviate the assertion using the notation {Ψ}p{Ψ1}. ��

It is intuitively clear what it means for an assertion to hold. That is, execution from
every instance θ of p(k, x̃),Ψ cannot lead to a target state where the property Ψ1(x̃θ, x̃t )
is violated.

In the example above, we could prove the assertion even(0, i,n,c) |= ct = 2n where
it is understood that the final variable ct corresponds to the start variable c. Note that
the last occurrence of n in the assertion means that we are comparing ct with the initial
and not final value of n (though in this example, the two are in fact the same).

We now state the essential property of proof sequences:

Theorem 1. Let a CTS for p have the start point k and target point kt , and let x̃ and x̃1

each be sequences of variables over system states. The assertion {Ψ(x̃)} p {Ψ1(x̃t , x̃)}
holds if for any goal of the form p(kt , x̃1), Ψ2(x̃1, x̃) appearing in a proof sequence from
the goal p(k, x̃), Ψ(x̃), the following holds: ∃̃Ψ2(x̃1, x̃) |= ∃̃Ψ1(x̃1, x̃) ��
The above theorem provides the basis of a search method, and what remains is to pro-
vide a means to ensure termination of the search. Toward this end, we next define the
concepts of subsumption and coinduction and which allow the (successful) termination
of proof sequences. However, these are generally insufficient. In the next section, we
present our version of abstraction whose purpose is to transform a proof sequence so
that it is applicable to the termination criteria of subsumption and coinduction.

3.1 Subsumption

Consider a finite and complete proof tree from some start goal. A goal G in the tree
is subsumed if there is a different path in the tree containing a goal G ′ such that
[[G ]]⊆ [[G ′]].

The principle here is simply memoization: one may terminate the expansion of a
proof sequence while constructing a proof tree when encountering a subsumed goal.

3.2 Coinduction

The principle here is that, within one proof sequence, the proof obligation associated
with the final goal may assume that the proof obligation of an ancestor goal has already
been met. This can be formally explained as a principle of coinduction (see eg: Appen-
dix B of [25]). Importantly, this simple form of coinduction does not require a base case
nor a well-founded ordering.

We shall simply demonstrate this principle by example. Suppose we had the tran-
sition p(0,x) �→ p(0,x′),x′ = x + 2 and we wished to prove the assertion p(0,x) |=
even(xt − x), that is, the difference between x and its final value is even. Consider the
derivation step:

p(0,x) |= even(xt− x)
p(0,x′),x′ = x + 2 |= even(xt− x)

We may use, in the latter goal, the fact that the earlier goal satisfies the assertion. That is,
we may reduce the obligaton of the latter goal to even(xt−x′),x′ = x+2 |= even(xt−x).
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It is now a simple matter of inferring whether this formula holds. In general practice, the
application of coinduction testing is largely equivalent to testing if one goal is simply
an instance of another.

4 Abstraction

In the literature on predicate abstraction, the abstract description is a specialized data
structure, and the abstraction operation serves to propagate such a structure though a
small program fragment (a contiguous group of assignments, or a test), and then ob-
taining another structure. The strength of this method is in the simplicity of using a
finite set of predicates over the fixed number of program variables as a basis for the
abstract description.

We choose to follow this method. However, our abstract description shall not be a
distinguished data structure. In fact, our abstract description of a goal is itself a goal.

Definition 6 (Abstraction). An abstraction A is applied to a goal. It is specified by a
program point pc(A), a sequence of variables var(A) corresponding to a subset of the
system variables, and finally, a finite set of constraints pred(A) over var(A), called the
“predicates” of A .

Let A be an abstraction and G be a goal p(k, x̃),Ψ where k = pc(A). Let x̃1 de-
note the subsequence of x̃ corresponding to the system variables var(A). Let x̄ denote
the remaining subsequence of x̃. Without losing generality, we assume that x̃1 is an
initial subsequence of x̃, that is, x̃ = x̃1, x̄. Then the abstraction A(G) of G by A is
p(k, Z̃, x̄),Ψ,Ψ2[var(A) �→ Z̃], where Z̃ is a sequence of fresh variables renaming x̃1,
and Ψ2 is the finite set of constraints {ψ2 ∈ pred(A) : Ψ |= ψ2[var(A) �→ x̃1]} ��

For example, let A be such that pc(A) = 0, var(A) = {v1} and pred(A) = {v1 <
0,v1 ≥ 0}. That is, the first variable is to be abstracted into a negative or a nonneg-
ative value. Let G be p(0, [x1,x2,x3]),x1 = x2,x2 = 1. Then the abstraction A(G) is
a goal of the form p(0, [Z,x2,x3]),x1 = x2,x2 = 1,Z ≥ 0, which can be simplified into
p(0, [Z,x2,x3]),x2 = 1,Z ≥ 0. Note that the orginal goal had ground instances

Composition)
(Proof

bub(8, i3, j1,t3,n), i3 = n−1,t3 = n× i3− (i23− i3)/2

(Coinduction using (A))
bub(2, i3, j1,t3,n), i3 < n−1,t3 = n× i3− (i23− i3)/2

(Satisfies t3 = (n2−n)/2)

bub(7, i3, j1,t3,n), i3 < n,t3 = n× i3− (i23− i3)/2

bub(6, i2, j1,t3,n), i2 < n−1,t3 = n× (i2 +1)− ((i2 +1)2− i2−1)/2

bub(2, i2, j,t2,n), i2 < n−1,t2 = n× i2− (i22− i2)/2 (Intermittent abstraction)

(A)bub(2, i1, j,t1,n), i1 = 0,t1 = 0,n> 1

bub(8, i1, j,t1,n), i1 = 0,t1 = 0,0≤ n≤ 1 (Satisfies t1 = (n2−n)/2)

bub(1, i1, j,t1,n), i1 = 0,t1 = 0,n≥ 0

bub(0, i, j,t,n),n≥ 0

Fig. 6. Compositional Proof
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〈0〉 t := 0; i := 0
〈1〉 while (i < n-1) do
〈2〉 j := 0
〈3〉 while ( j < n-i-1) do
〈4〉 j := j+1; t := t+1
〈5〉 end
〈6〉 i := i+1
〈7〉 end 〈8〉

bub(0, i, j,t,n) �→ bub(1, i1, j,t1,n), i1 = 0,t1 = 0.
bub(1, i, j,t,n) �→ bub(8, i, j,t,n), i≥ n−1.
bub(1, i, j,t,n) �→ bub(2, i, j,t,n), i < n−1.
bub(2, i, j,t,n) �→ bub(3, i, j1,t,n), j1 = 0.
bub(3, i, j,t,n) �→ bub(6, i, j,t,n), j ≥ n− i−1.
bub(3, i, j,t,n) �→ bub(4, i, j,t,n), j < n− i−1.
bub(4, i, j,t,n) �→ bub(5, i, j1,t1,n), j1 = j +1,t1 = t +1.
bub(5, i, j,t,n) �→ bub(6, i, j,t,n), j ≥ n− i−1.
bub(5, i, j,t,n) �→ bub(4, i, j,t,n), j < n− i−1.
bub(6, i, j,t,n) �→ bub(7, i1, j,t1,n), i1 = i+1.
bub(7, i, j,t,n) �→ bub(8, i, j,t,n), i≥ n−1.
bub(7, i, j,t,n) �→ bub(2, i, j,t,n), i < n−1.

(a) (b)

Fig. 7. Program “Bubble”

p(0, [1,1,n]) for all n, while the abstracted goal has the instances p(0, [m,1,n]) for all
n and all nonnegative m. Note that the second variable x2 has not been abstracted even
though it is tightly constrained to the first variable x1. Note further that the value of x3

is unchanged, that is, the abstraction would allow any constraint on x3, had the example
goal contained such a constraint, to be propagated.

Lemma 1. Let A be an abstraction and G a goal. Then [[G]]⊆ [[A(G)]]. ��
The critical point is that the abstraction of a goal has the same format as the goal itself.
Thus an abstract goal has the expressive power of a regular goal, while yet containing
a notion of abstraction that is sufficient to produce a finite-state effect. Once again, this
is facilitated by the ability to reason about an unbounded number of variables.

Consider the “Bubble” program and its CTS in Figures 7(a) and 7(b), which is a sim-
plified skeleton of the bubble sort algorithm (without arrays). Consider the subprogram
corresponding to start point 2 and whose target point is 6, that is, we are considering
the inner loop. Further suppose that the following assertion had already been proven:

bub(2, i, j, t,n) |= it = i,tt = t + n− i−1,nt = n

that is, the subprogram increments t by n− i−1 while preserving both i and n, but not
j. Consider now a proof sequence for the goal bub(0, i, j, t,n),n≥ 0, where we want to
prove that at program point 〈8〉, t = (n2−n)/2. The proof tree is depicted in Figure 6.
The proof shows a combination of the use of intermittent abstraction and compositional
proof:

• At point (A), we abstract the goal bub(2, i1, j,t1,n), i1 = 0,t1 = 0,n > 1 using the
predicates i< n−1 and t = n× i− (i2− i)/2. Call this abstraction A . Here the set
of variables is var(A) = {i, t}, hence both the variables i1 and t1 that correspond
respectively to system variables i and t are renamed to fresh variables i2, and t2.
Meanwhile, the variables j and n retain their original values.
• After performing the above abstraction, we reuse the proof of the inner loop above.

Here we immediately move to program point 〈6〉, incrementing t with n− i−1, and
updating j to an unknown value. However, i and n retain their original values at 〈2〉.
• The result of the intermittent abstraction above is a coinductive proof.
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5 The Whole Algorithm

We now summarize our proof method for an assertion

{Ψ}p{Ψ1}
Suppose the start program point of p is k and the start variables of p are x̃. Then consider
the start goal p(k, x̃),Ψ and incrementally build a complete proof tree. For each path in
the tree constructed so far leading to a goal G if:

• G is either subsumed or is coinductive, then consider this path closed, ie: not to be
expanded further;
• G is a goal on which an abstraction A is defined, replace G by A(G);
• G is a target goal, and if the constraints on the primary variables x̃1 in G do not

satisfy Ψθ, where θ renames the target variables in Ψ into x̃1, terminate and return
false.
• the expansion of the proof tree is no longer possible, terminate and return true.

Theorem 2. If the above algorithm, applied to the assertion {Ψ}p{Ψ1}, terminates
and does not return false, then the assertion holds. ��

6 CLP Technology

It is almost immediate that CTS is implementable in CLP. Given a CTS for p, we build
a CLP program in the following way: (a) for every transition of the form (k, x̃) �→
(k′, x̃′),Ψ we use the CLP rule the clause p(k, x̃) :−p(k′, x̃′),Ψ (assuming that Ψ is
in the constraint domain of the CLP implementation at hand); (b) for every terminal
program point k, we use the CLP fact p(k, , . . . , ,), where the number of anonymous
variables is the same as the number of variables in x̃.

We see later that the key implementation challenge for a CLP system is the in-
cremental satisfiability problem. Roughly stated, this is the problem of successively
determining that a monotonically increasing sequence of constraints (interpreted as a
conjunction) is satisfiable.

6.1 Exact Propagation is “CLP-Hard”

Here we informally demonstrate that the incremental satisfiability problem is reducible
to the problem of analyzing a straight line path in a program. We will consider here con-
straints in the form of linear diophantine equations, i.e., multivariate polynomials over
the integers. Without loss of generality, we assume each constraint is written in the form
X = Y +Z or X = nY where n is an integer. Throughout this section, we denote by X , Y ,
Z logic variables, and by x, y, z their corresponding program variables, respectively.

Suppose we already have a sequence of constraints Ψ0, · · · ,Ψi and a corresponding
path in the program’s control flow.

Suppose we add a new constraint Ψi+1 = (X = Y + Z). Then, if one of these vari-
ables, say Y , is new, we add the assignment y := x− z where y is a new variable created
to correspond to Y . The remaining variables x and z are each either new, or are the cor-
responding variables to X and Z, respectively. If however all of X , Y and Z are not new,
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then add the statement if (x = y + z) ... . Hereafter we pursue the then branch of
this if statement.

Similarly, suppose the new constraint were of the form X = nY . Again, if x is new,
we simply add the assignment x := n ∗ y where x is newly created to correspond to X .
Otherwise, add the statement if (x = n * y) ... to the path, and again, we now
pursue the then branch of this if statement.

Clearly an exact analysis of the path we have constructed leading to a successful
traversal required, incrementally, the solving of the constraint sequence Ψ0, · · · ,Ψn.

6.2 Key Elements of CLP Systems

A CLP system attempts to find answers to an initial goal G by searching for valid sub-
stitutions of its variables, in a depth-first manner. Each path in the search tree in fact
involves the solving of an incremental satisfiability problem. Along the way, unsatisfi-
ability of the constraints at hand would entail backtracking.

The key issue in CLP is the incremental satisfiability problem, as mentioned above.
A standard approach is as follows. Given that the sequence of constraints Ψ0, . . . ,Ψi

has been determined to be satisfiable, represent this fact in a solved form. Essentially,
this means that when a new constraint Ψi+1 is encountered, the solved form can be
combined efficiently with Ψi+1 in order to determine the satisfiability of the new con-
junction of constraints.

This method essentially requires a representation of the projection of a set of con-
straints onto certain variables. Consider, for example, the set x0 = 0,x1 = x1 + 1,x2 =
x1 +1, · · · ,xi = xi−1 +1. Assuming that the new constraint would only involve the vari-
able xi (and this happens vastly often), we desire a representation of xi = i. This pro-
jection problem is well studied in CLP systems [21]. In the system CLP(R ) [22] for
example, various adaptations of the Fourier-Motzkin algorithm were implemented for
projection in Herbrand and linear arithmetic constraints.

We finally mention another important optimization in CLP: tail recursion. This tech-
nique uses the same space in the procedure call stack for recursive calls. Amongst other
benefits, this technique allows for a potentially unbounded number of recursive calls.
Tail recursion is particurly relevant in our context because the recursive calls arising
from the CTS of programs are often tail-recursive.

The CLP(R ) system that we use to implement our prototype has been engineered to
handle constraints and auxiliary variables efficiently using the above techniques.

7 Experiments

7.1 Exact Runs

We start with an experiment which shows that concrete execution can potentially be
less costly than abstract execution. To that end, we compare the timing of concrete ex-
ecution using our CLP-based implementation and a predicate abstraction-based model
checker. We run a simple looping program, whose C code is shown in Figure 8 (a).
First, we have BLAST generate all the 100 predicates it requires. We then re-run BLAST

by providing these predicates. BLAST took 22.06 seconds to explore the state space.
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int main()
{ int i=0, j, x=0;

while (i<7) {
j=0;
while (j<7) { x++; j++; }
i++; }

if (x>49) { ERROR: }}
(a)

int main()
{ int i=0, j, x=0;

while (i<50) {
i++; j=0;
while (j<10) { x++; j++; }
while (x>i) { x--; }}

if (x<50) { ERROR: }}
(b)

Fig. 8. Programs with Loop

On the same machine, and without any abstraction, our verification engine took only
0.02 seconds. For comparison, SPIN model checker [20] executes the same program
written in PROMELA in less than 0.01 seconds. Note that for all our experiments, we
use a Pentium 4 2.8 GHz system with 512 MB RAM running GNU/Linux 2.4.22.

Next, consider the synthetic program consisting of an initial assignment x := 0 fol-
lowed by 1000 increments to x, with the objective of proving that x = 1000 at the
end. Consider also an alternative version where the program contains only a single loop
which increments its counter x 1000 times. We input these two programs to our program
verifier, without using abstraction, and to ESC/Java 2 as well. The results are shown in
Table 1. For both our verifier and ESC/Java 2 we run both with x initialized to 0 and not
initialized, hopefully forcing symbolic execution.

Table 1 shows that our verifier runs faster for the non-looping version. However,
there is a noticeable slowdown in the looping version for our implementation. This is
caused by the fact that in our implementation of coinductive tabling, subsumption check
is done based on similarity of program point. Therefore, when a program point inside

Table 1. Timing Comparison with ESC/Java

Time (in Seconds)
CLP with Tabling ESC/Java 2
x==0 — x==0 —

Non-Looping 2.45 2.47 9.89 9.68
Looping 22.05 21.95 1.00 1.00

a loop is visited for the i-th time,
there are i− 1 subsumption checks
to be performed. This results in
a total of about 500,000 subsump-
tion checks for the looping program.
In comparison, the non-looping ver-
sion requires only 1,000 subsump-
tion checks. However, our imple-
mentation is currently at a prototype

stage and our tabling mechanism is not implemented in the most efficient way. For
the looping version, ESC/Java 2 employs a weakest precondition propagation calculus;
since the program is very small, with a straightforward invariant (just the loop condi-
tion), the computation is very fast. Table 1 also shows that there is almost no difference
between having x initialized to 0 or not.

7.2 Experiments Using Abstraction

Next we show an example that demonstrates that the intermittent approach requires
fewer predicates. Let us consider a second looping program written in C, shown in
Figure 8 (b). The program’s postcondition can be proven by providing an invariant
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x=i ∧ i<50 before the first statement of the loop body of the outer while loop. For
predicate abstraction, we use the following predicates x=i, i<50, and respectively their
negationsx�=i, i≥50 for that program point to our verifier. The proof process finishes in
less than 0.01 seconds. If we do not provide an abstract domain, the verification process
finishes in 20.34 seconds. Here intermittent predicate abstraction requires fewer predi-
cates: We also run the same program with BLAST and provide the predicates x=i and
i<50 (BLAST would automatically also consider their negations). BLAST finishes in
1.33 seconds, and in addition, it also produces 23 other predicates through refinements.
Running it again with all these predicates given, BLAST finishes in 0.28 seconds.

Further, we also tried our proof method on a version of the bakery mutual exclusion
algorithm. We need abstraction since the bakery algorithm is an infinite-state program.
The pseudocode for process i is shown in Figure 9. Here we would like to verify mu-
tual exclusion, that is, no two processes are in the critical section (program point 〈2〉)
at the same time. Our version of the bakery algorithm is a concurrent program with

while (true) do
〈0〉 xi := max(x j �=i) + 1
〈1〉 await (∀ j : j �= i→ xi<x j ∨ x j=0)
〈2〉 xi := 0

end

Fig. 9. Bakery Algorithm Peudocode for

asynchronous composition of
processes. Nondeterminism due
to concurrency can be encoded
using nondeterministic choice.
We encode the algorithm for 2,
3 and 4 processes in BLAST,
where nondeterministic choice
is implemented in using the spe-
cial variable BLAST NONDET
which has a nondeterministic

value. When N is the number of processes, each of the program has the N variables
pci, where 1 ≤ i ≤ N, each denoting the program point of process i. pci can only take
a value from {0,1,2}. and also N variables xi, each denoting the “ticket number” of a
process. We also translate the BLAST code into CTS.

In our experiments, we attempt to verify mutual exclusion property, that is, no two
processes can be in the critical section at the same time. Here we perform 3 sets of runs,
each consisting of runs with 2, 3 and 4 processes. In all 3 sets, we use a basic set of
predicates: xi=0, xi≥0, pci=0, pci=1, pci=2, where i = 1, . . . ,N and N the number of
processes, and also their negations.

• Set 1: Use of predicate abstraction at every state with full predicate set. We
perform abstraction at every state encountered during search. In addition to the
basic predicates, we also require the predicates shown in Table 2 (a) (and their
negations) to avoid spurious counterexamples.
• Set 2: Intermittent predicate abstraction with full predicate set. We use inter-

mittent abstraction on our prototype implementation. We abstract only when for
some process i, pci=1 holds. The set of predicates is as in the first set.
• Set 3: Intermittent predicate abstraction with reduced predicate set. We use

intermittent abstraction on our tabled CLP system. Wee only abstract whenever there
are N−1 processes at program point 0 (in the 2-process sequential version this means
either pc1=0 or pc2=0). For a N-process bakery algorithm, we only need the basic
predicates and their negations without the additional predicates shown in Table 2 (a).
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Table 2. Results of Experiments Using Abstraction. (a) Additional Predicates. (b) Timing Con-
straints.

Bakery-2 x1<x2
Bakery-3 x1<x2, x1<x3, x2<x3
Bakery-4 x1<x2, x1<x3, x1<x4

x2<x3, x2<x4, x3<x4

(a)

Time (in Seconds)
CLP with Tabling BLAST

Set 1 Set 2 Set 3

Bakery-2 0.02 0.01 <0.01 0.17
Bakery-3 0.83 0.14 0.09 2.38
Bakery-4 131.11 8.85 5.02 78.47

(b)

We have also compared our results with BLAST. We supplied the same set of pred-
icates that we used in the first and second sets to BLAST. Again, in BLAST we do
not have to specify their negations explicitly. Interestingly, for 4-process bakery algo-
rtihm BLAST requires even more predicates to avoid refinement, which are x1=x3+1,
x2=x3+1, x1=x2+1, 1≤x4, x1≤x3, x2≤x3 and x1≤x2. We suspect this is due to the fact
that precision in predicate abstraction-based state-space traversal depends on the power
of the underlying theorem prover. We have BLAST generate these additional predicates
it needs in a pre-run, and then run BLAST using them. Here since we do not run BLAST

with refinement, as the lazy abstraction technique [19] has no effect, and BLAST uses
all the supplied predicates to represent any abstract state.

For these problems, using our intermittent abstraction with CLP tabling is also
markedly faster than both full predicate abstraction with CLP and BLAST. We show
our timing results in Table 2 (b) (smallest recorded time of 3 runs each).

The first set and BLAST both run with abstraction at every visited state. The timing
difference between them and second and third sets shows that performing abstraction at
every visited state is expensive. The third set shows further gain over the second when
we understand some intricacies of the system.
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Abstract. We consider the problem of computing the intersection
(meet) of heap abstractions.This problem is useful, among other appli-
cations, to relate abstract memory states computed by forward analysis
with abstract memory states computed by backward analysis. Since dy-
namically allocated heap objects have no static names, relating objects
computed by different analyses cannot be done directly. We show that
the problem of computing meet is computationally hard. We describe
a constructive formulation of meet based on certain relations between
abstract heap objects. The problem of enumerating those relations is re-
duced to finding constrained matchings in graphs. We implemented the
algorithm in the TVLA system and used it to prove temporal heap prop-
erties of several small Java programs, and obtained empirical evidence
showing the effectiveness of the meet algorithm.

1 Introduction

This research is motivated by the need to approximate temporal properties of
programs manipulating dynamically allocated data structures. For example, sta-
tically identifying a point in the program after which a list element will never
be accessed and thus can be deallocated. As it is undecidable, in general, to
prove interesting properties about programs with dynamic memory allocation
with pointers and destructive updates, the use of abstract interpretation [2] to
compute an over-approximation of a program’s operational semantics is a funda-
mental practice underlying this work. Thus, while proving some correct program
properties may fail, every proved property is assured to hold.

We are interested in inferring persistent [6] temporal properties of heaps.
These are properties that continuously hold from a given point in the trace.
Inferring persistent temporal properties is naturally done in two phases, where
the first phase over-approximates the shapes of the data structures using forward
analysis starting at the entry node, and the second phase computes heap liveness
using a backward analysis stating at the exit node. Notice that this generalizes
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the process of computing scalar liveness in compilers in which the first phase is
unnecessary in the absence of pointers and arrays. We call this approach Phased
Bidirectional Analysis.

The problem of integrating the forward phase with the backward phase is
challenging since the exact memory locations are lost by the abstraction. There-
fore, this paper addresses the problem of computing the intersection of heap
abstractions. When applied to a set of elements of some abstract domain (lat-
tice), this operator—commonly referred to as meet—yields the greatest lower
bound of the elements in the set. Specifically, for two heap abstractions, the
corresponding meet is the set of common stores that are represented by both of
its operands.

The main contributions of this paper are summarized as follows:

1. We prove that meet is computationally hard for the abstract domain of
bounded structures (Theorem 3), which is used by the TVLA system, by
showing a reduction from the problem of 3-colorability on graphs to decid-
ing whether the output of meet is empty. This result is a bit surprising since
structures in this domain have unique “canonical names”, which makes iso-
morphism checking and checking of embedding (subsumption) decidable in
polynomial time.

2. We present a new algorithm to compute the meet of 3-valued structures. We
define the concept of correspondence relations between abstract heap objects
and explain how to compute meet from these relations. We then develop a
strategy to find correspondence relations that manages to prune many of the
irrelevant relations thus making the algorithm efficient in practice.

3. We have implemented the meet algorithm in TVLA—a system for generating
program analysis from operational semantics [5]—and used it to implement
a new analysis for detecting program locations where heap objects and ref-
erence fields become unused in Java programs. The information discovered
by the analysis can be used to improve memory management. The analysis
combines forward and backward information and proves to be precise enough
for several small but interesting programs operating on list data structures.
The empirical results shows that our analysis is precise enough to reclaim
memory as soon as it becomes unneeded. Therefore, our algorithm can serve
as a reference algorithm for compile-time garbage collection. Our experi-
ments indicate that the heuristics used by the meet algorithm make it very
effective in combining shape analysis; the time and space performance of the
algorithm is typically related to the size of the input and output by a linear
factor. However, our current prototype implementation is slow and was only
applied to small programs.

Running Example. Fig. 1 shows a simple program in a Java-like language that
prints the elements of a singly-linked list. This program serves as the running
example in this paper. The goal of the analysis here is to discover the earliest
points where reference variables and reference fields are no longer used. Specifi-
cally, we would like to find that: (a) reference variable x is never used after line 7
(this is rather trivial, since x does not appear later), and (b) that the reference
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[1] x = null;
[2] while (...) {
[3] y = new SLL();
[4] y.val = ...;
[5] y.n = x;
[6] x = y;

}
[7] y = x; // can insert "x = null;" here
[8] while (y != null) {
[9] System.out.print(y.val);

[10] t = y.n; // can insert "free y;" or "y.n = null;" here
[11] y = t;

}

Fig. 1. A program that creates a singly-linked list and traverses its elements

field n of the object pointed-to by y is never used after line 10. The second fact
is more challenging to prove, as the object pointed-to by y is different on every
iteration of the loop.

Outline. The rest of the paper is organized as follows. Section 2 gives an
overview of program analysis of heap-manipulating programs using 3-valued
logic. In Section 3 we explain how approximate temporal properties of heaps
with meet. In Section 4, we present our algorithm for meet. Section 5 describes
our experiments with an analyzer that infers compile-time garbage collection
information in Java programs by using meet. Section 6 discusses related work.

All proofs, as well as detailed examples, appear in [1].

2 3-Valued Shape Analysis Overview

In this section we explain the representation of concrete program states and their
abstractions, based on the parametric analysis framework of [7].

2.1 Concrete Program States

We represent concrete program states by 2-valued logical structures.

Definition 1. A 2-valued logical structure over a vocabulary (set of predicates)
P is a pair S = 〈U, ι〉 where U is the universe of the 2-valued structure, and
ι is the interpretation function mapping predicates to their truth-value in the
structure: for every predicate p ∈ P of arity k, ι(p) : Uk → {0, 1}.

In this paper, we assume that the set of predicates includes the binary predicate
eq, and insist that it is interpreted as equality between individuals. Table 1 shows
the predicates used to record properties of individuals for the shape analysis of
the running example (forward phase).

We denote the set of all 2-valued logical structures over a set of predicates P
by 2-STRUCT[P ]. In the sequel, we assume that the vocabulary P is fixed, and
abbreviate 2-STRUCT[P ] to 2-STRUCT.

Concrete states (2-valued logical structures) are depicted as directed graphs.
Each individual of the universe is drawn as a node. A unary predicate p(u),
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Table 1. Predicates used for shape analysis of the running example, and their meaning.
The set PVar stands for the set of reference variables {x,y,t}.

Predicates Intended Meaning
eq(v1, v2) Is v1 equal to v2?
{x(v) : x ∈ PVar} Does reference variable x point to object v?
n(v1, v2) Does the n field of object v1 point to object v2?
{rx,n(v) : x ∈ PVar} Is v reachable from reference variable x along n fields?
is(v) Do two or more fields of heap elements point to v?
cn(v) Is v on a directed cycle of n fields?

which holds for an individual u, appears next to the corresponding node. If a
unary predicate represents a reference variable, it is shown by having an arrow
drawn from its name to the node referenced by the variable. The binary predicate
n(u1, u2), which holds for a pair of individuals u1 and u2, is drawn as a directed
edge from u1 to u2, and labeled n. The predicate eq is not drawn, since any two
nodes are different and every node is equal to itself.
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Fig. 2. (a) A concrete program state arising after the execution of the statement t =
y.n; (b) An abstract program state approximating the concrete state in (a)

Fig. 2(a) shows a concrete program state arising after the execution of the
statement t = y.n on line 10 of the running example in Fig. 1.

2.2 Abstract Program States

The abstract program states we use are based on 3-valued logic [7], which extends
boolean logic by introducing a third value 1/2, denoting values that may be
either 0 or 1. In particular, we utilize the partially ordered set {0, 1, 1/2} where
0 � 1/2 and 1 � 1/2, with the join operation �, defined by x � y = x if x = y,
and x � y = 1/2 otherwise.

Definition 2. A 3-valued logical structure over a set of predicates P is a pair
S = (U, ι) where U is the universe of the 3-valued structure, and ι is the inter-
pretation function mapping predicates to their truth-value in the structure: for
every predicate p ∈ P of arity k, ι(p) : Uk → {0, 1, 1/2}.
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An abstract state may include summary nodes, i.e., an individual which corre-
sponds to one or more individuals in a concrete state represented by that abstract
state. A summary node u has eq(u, u) = 1/2, indicating that it may represent
more than a single individual.

Abstract states (3-valued logical structures) are also depicted as directed graphs,
where unary predicates denoting reference variables, as well as binary predicates,
with 1/2 values are shown as dotted edges. Summary individuals appear as
double-circled nodes. A unary predicate that evaluates to 1/2 for a node is
depicted by having = 1/2 next to the name of the predicate.

We denote the set of all 3-valued logical structures over a set of predicates P
by 3-STRUCT[P ], and usually abbreviate it to 3-STRUCT.

We define a partial order on structures, denoted by �, based on the concept
of embedding.

Definition 3 (Embedding). Let S = (U, ι) and S′ = (U ′, ι′) be two structures
and let f : U → U ′ be a surjective function. We say that f embeds S in S′,
denoted S �f S′, if for every predicate p ∈ P(k) and k individuals u1, . . . , uk ∈ U ,

pS(u1, . . . , uk) � pS′
(f(u1), . . . , f(uk)) . (1)

We say that S is embedded in S′, denoted S � S′, if there exists a function f
such that S �f S′. We also say that S′ approximates S.

The embedding order is used to define a concretization function for a single
3-valued structure S by σ(S) = {S′ ∈ 2-STRUCT | S′ � S}. The concretization
of a set of 3-valued structures is defined by γ(XS) =

⋃
S∈XS σ(S).

The embedding order induces a Hoare preorder on sets of 3-valued structures.

Definition 4. For sets of structures XS1,XS2 ⊆ 3-STRUCT, XS1 � XS2 if and
only if ∀S1 ∈ XS1 : ∃S2 ∈ XS2 : S1 � S2.

In the following definition, we restrict sets of 3-valued structures by disallowing
non-maximal structures. This ensures that the Hoare ordering is a proper partial
ordering on the sets.

We are now ready to present the abstract domain which is considered for the
construction of the meet algorithm.

Definition 5 (Core Abstract Domain). The abstract domain D3-STRUCT

consists of all sets of 3-valued structures that do not contain non-maximal struc-
tures, {XS ⊂ 3-STRUCT | ∀S1, S2 ∈ XS : S1 � S2 =⇒ S1 = S2}, with the
same ordering as in Definition 4.

2.3 Bounded Program States

Note that the size of a 3-valued structure is potentially unbounded and that
3-STRUCT is infinite. The abstractions studied in [7], and also used for the
analysis in Section 5, rely on a fundamental abstraction function for converting
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a potentially unbounded structure—either 2-valued or 3-valued—into a bounded
3-valued structure.

A 3-valued structure is said to be bounded if for every two distinct individuals
in its universe there exists a unary predicate p such that either pS1(u1) = 0
and pS2(u2) = 1 or pS1(u1) = 1 and pS2(u2) = 0.1 We denote the set of all
bounded 3-valued structures over a set of predicates P by B-STRUCT[P ]. The
finite abstract domain DB-STRUCT is a sublattice of D3-STRUCT, containing all
sets of bounded structures that do not contain non-maximal structures.

The abstraction function βP
blur : 2-STRUCT[P ] → B-STRUCT[P ] converts

a (potentially unbounded) 2-valued structure into a bounded 3-valued struc-
ture, by merging all individuals with the same values for all unary predicates.
Namely, βP

blur((U, ι)) = (U ′, ι′), where U ′ is the set of equivalence classes in U
of nodes with same values for all unary predicates, and the interpretation ι′ of
each predicate p ∈ P(k) and k individuals c1, . . . , ck ∈ U ′ is given by

pS′
(c1, . . . , ck) =

⊔
ui∈ci

pS(u1, . . . , uk) .

Fig. 2(b) shows a bounded structure obtained from the structure in Fig. 2(a).
The abstraction function βblur, which is called canonical abstraction, serves as

the basis for abstract interpretation in TVLA [5]. In particular, it serves as the
basis for defining various different abstractions for the (potentially unbounded)
set of 2-valued logical structures that may arise at a program point, by defining
different sets of predicates. We also define the function α, which extends βblur

to sets of structures: α(XS) =
⊔
{βblur(S) | S ∈ XS}.2

3 Inferring Temporal Properties Via Staged Bidirectional
Analysis

Persistent temporal properties can be efficiently verified without explicitly rep-
resenting traces. An example of such a property is liveness of reference variables
and reference fields. A reference variable or reference field is said to be dead (i.e.,
not live) at a given program point if on every execution that goes through that
point it is not used before being redefined.

The (possibly infinite) set of temporal properties is defined as the least fixed
point of the following (not necessarily computable) system of equations:

−→CSentry = CSinit−→CSl2 =
{
Sout

∣∣ (l1, l2) ∈ E, Sin ∈
−→CSl1 , (l1, Sin)−→�(l2, Sout)

}
←−CSexit = CSfinal ∩

−→CSexit←−CSl1 =
{
Sin

∣∣ (l1, l2) ∈ E, Sout ∈
←−CSl2 , (l1, Sout)←−�(l2, Sin)

}
∩ −→CSl1 .

1 The notion of a bounded structure can be generalized by considering any subset of
the set of unary predicates, as done in TVLA.

2 The operator is the least upper bound operator in DB-STRUCT.
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Here, it is assumed that the concrete 2-valued structures also record informa-
tion on temporal properties that hold on program executions. The program is
represented as a control flow graph, with entry and exit nodes entry and exit,
respectively, and a set of control flow edges E. CSinit is the initial set of concrete
stores at the entry location including all possible values associated with temporal
properties. CSfinal represents the set of states in which all temporal properties
are set to their final values (that is, their values upon termination of the exe-
cution). We write (l1, Sin)−→�(l2, Sout) to denote the transformation induced by
the forward execution of the statement or condition at edge (l1, l2). Program
conditions are interpreted according to the standard semantics. Note that the
forward semantics sets values non-deterministically to the temporal properties
predicates. We write (l1, Sout)←−�(l2, Sin) to denote the transformation induced
by the backward execution of the statement or condition at edge (l1, l2). This
semantics sets the values of the changed temporal properties. Variables whose
values are changed are updated non-deterministically.

The above system of equations does not necessarily terminate for programs
with loops. Therefore, an upper approximation to this system is conservatively
computed by representing sets of states using 3-valued structures. Extra predi-
cates store values of tracked temporal properties. Moreover, the ability to define
unary predicates allows tracking of an unbounded number of temporal properties.
Both forward and backward executions are conservatively executed on 3-valued
structures. However, as backward reasoning uses results obtained by the forward
counterpart, it is considered a secondary stage taking place after the forward rea-
soning is complete. Finally, intersection (∩) is over-approximated using meet (�).

3.1 Compile-Time GC Analysis

We now explain how compile-time garbage collection information can be com-
puted using a phased bidirectional verification.

In particular, we are interested in identifying the first point in the trace where
an object is not further used, and therefore may be safely deallocated by a
free statement. Thus, the backward execution of a statement tracks the use of
objects. Our analysis maintains the predicate use(v) to track object future usage
information.

An object v is denoted used in a statement or a condition at edge (l1, l2),
if a reference expression e, that evaluates to v, is used for dereference at
that statement. In such a case, the backward execution of the statement
(l1, Sout)←−�(l2, Sin) records in Sin the fact that v is used by setting use(v) to
1. As mentioned, the forward execution of a statement non-deterministically
sets values to use(v).

Fig. 3(a) shows one of the structures that arise before the statement t = y.n
at line 10 of Fig. 1, and Fig. 3(b) shows one of the structures that arise after
that statement. The object referenced by y is still used before the statement,
as use(v) holds for the individual referenced by y. Nonetheless, the object refer-
enced by y is not (further) used after that statement, as use(v) does not hold for
the individual referenced by y. Having verified that use(v) does not hold for any
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Fig. 3. 3-valued structures representing sets of program configurations, including heap
object and reference field liveness, that arise (a) before the execution of the statement
t = y.n; and (b) after it is executed

individual v referenced by y, for all structures that may arise after the aforemen-
tioned statement, we conclude that free y may be inserted after the statement
t = y.n, to deallocate the object referenced by y, as it is no longer used in the
program. Moreover, since for all structures arising before that statement, the
object referenced by y is still used, placing a free y after that statement will
free the space referenced by y at the earliest possible time.

3.2 Assign-Null Analysis

Another application of phased bidirectional analysis is the computation of heap
reference liveness, providing for compile-time optimization of runtime garbage
collection effectiveness. For each object reference field, we identify whether it is
live at any point in the trace, meaning that it may be used, prior to being rede-
fined, after that point. We are interested in spotting points in the trace where
a reference field becomes dead, and therefore may be assigned a null value,
thus significantly reducing potential GC drag time [8]. Here, again, the back-
ward execution of the statement tracks the uses (dereference) and redefinitions
(assignment) of object fields. In particular, for each reference field f which is a
member of some object v, the predicate livef (v) is used to record future use and
re-definition information (in our example f is n).

A reference field f of an object v is denoted used in a statement or a condition
at edge (l1, l2) if an expression e—which is not an l-value—refers to the value of
f . In this case, the backward execution of the statement (l1, Sout)←−�(l2, Sin) sets
livef (v) to 1. Otherwise, f is denoted redefined if it is being assigned a new value,
namely, being referred to by an l-value expression e. In this case, the backward
execution of the statement sets livef (v) to 0. Here as well, forward execution
non-deterministically sets values to livef (v).

Section 5 includes experimental results for an implementation of both of the
analyses described in this section.
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4 Computing the Meet of Heap Abstractions

In this section, we develop a meet algorithm for a family of abstract domains and
discuss the complexity of the algorithm for two cases: (i) for arbitrary 3-valued
structures, and (ii) for bounded structures.

4.1 The Problem Setting

Our aim is to provide an algorithm applicable for a family of abstract domains
based on 3-valued structures, including the abstract domain of bounded struc-
tures, DB-STRUCT.

We design a meet algorithm for the domain D3-STRUCT, which we consider as
a basis for other abstract (sub-) domains. Given a sub-domain D ⊆ D3-STRUCT
and a set of abstract elements X ∈ D, the result of the algorithm is pos-
sibly not an element of D. However, when DX is defined, the inequality
DX � D3-STRUCT

X holds. Therefore, a domain specific operator RefineD :
D3-STRUCT → D can be used to refine the result to yield an element of D,
RefineD( D3-STRUCT

X) = DX .
For certain abstract domains, includingDB-STRUCT, no refinement is required.

We now explain this formally.

Definition 6. We say that an abstract domain D ⊆ D3-STRUCT, with the same
ordering between abstract elements as in D3-STRUCT (see Definition 4), is meet-
admissible when it satisfies the following conditions.

Sublattice of D3-STRUCT. D is a lattice, and DX = D3-STRUCT
X and⊔

DX =
⊔

D3-STRUCT
X for every finite subset X of D.

Closure of singletons. For every structure S ∈ 3-STRUCT, if S exists in
some set XS ∈ D then {S} ∈ D. This condition allows us to break the
problem of computing meet on sets of structures to a set of sub-problems
where meet is computed on pairs of structures.

Theorem 1. The (parametric) abstract domain of bounded structures,
DB-STRUCT, is meet-admissible.

The following proposition reduces the problem of computing the meet of two
sets of structures to the problem of computing the meet of two structures by
using the join operator, which we discuss at the end of this section.

Proposition 1. Let XS1,XS2 be two elements in a meet-admissible domain D.
Then,

XS1 � XS2 =
⊔

S1∈XS1
S2∈XS2

{S1} � {S2} . (2)

In the remainder of this section, we consider the following problem. Given two
structures S1, S2 ∈ 3-STRUCT, compute {S1} � {S2}.
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4.2 Computing the Meet of Two Structures

Fig. 4 shows two structures and their meet. (For now, ignore the edges between
the structures in Fig. 4(a) and Fig. 4(b).) The structure in Fig. 4(a) arises during
forward shape analysis, after the statement t = y.n at line 10 of the running
example; this is the structure from Fig. 2(b) with non-deterministic assignments
to the values of the predicates puse(v) and liven(v). The structure in Fig. 4(b) is
obtained from the structure in Fig. 3(b) by backward execution of the statement
y = t at line 11 of the running example. The meet of these two structures results
in the structure shown in Fig. 4(c).

We now establish a connection between the structures that comprise the result
of meet and certain relations that hold between their individuals. We first define
the meet of two Kleene values t1 and t2. If t1 � t2 then t1 � t2 = t1, if t2 � t1
then t1 � t2 = t2, and otherwise the result is undefined and we denote it by the
special symbol ⊥.

Definition 7 (Meet Correspondence). Given two structures S1 = (U1, ι1)
and S2 = (U2, ι2), a relation M ⊆ U1×U2 is a meet correspondence between S1
and S2 when it is: (a) Full, i.e.,

∀u1 ∈ U1 : ∃v2 ∈ U2 : u1M v2 and ∀v2 ∈ U2 : ∃u1 ∈ U1 : u1M v2 ;

and (b) Consistent, i.e., for every predicate p of arity k, and a pair of k-
tuples u1, . . . , uk ∈ U1

k and v1, . . . , vk ∈ U2
k, such that uiM vi for i = 1 . . . k,

pS1(u1, . . . , uk) � pS2(v1, . . . , vk) �= ⊥ .

x

rx,n

use=1/2

liven=1/2

rx,n

use=1/2

liven=1/2

y
rx,n ry,n

use=1/2

liven=1/2

t

rx,n ry,n

rt,n

use=1/2

liven=1/2

rx,n ry,n

rt,n

use=1/2

liven=1/2

n

n

n

n

n

n

x

ry,n=1/2

rx,n

ry,n=1/2

rx,n
y

ry,n=1/2

rx,n

rt,n

use
liven

t

ry,n=1/2

rx,n

rt,n

use
liven

n

n

n

n

n

x

rx,n

rx,n

y rx,n ry,n

t

rx,n ry,n

rt,n

use
liven

rx,n ry,n

rt,n

use
liven

n

n

n

n

n

n

(a) (b) (c)

Fig. 4. An example for computing meet for the running example. (a) A structure
that arises during the forward shape analysis; (b) A structure that arises during the
backward (object liveness) analysis. (c) The meet of (a) and (b).
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The structures in Fig. 4(a) and Fig. 4(b) have exactly one meet correspondence,
which is shown by the edges between their individuals.

We can use a meet correspondence to construct a common lower bound of
two structures in the following way.

Definition 8. Given a meet correspondence M between structures S1 = (U1, ι1)
and S2 = (U2, ι2), the operation S1 �M S2 yields the M -induced structure S =
(U, ι), where U = {〈u, v〉 ∈ M}, and the interpretation of every predicate p of
arity k and every k-tuple of nodes 〈u1, v1〉, . . . , 〈uk, vk〉 ∈ Uk is given by

pS(〈u1, v1〉, . . . , 〈uk, vk〉) = pS1(u1, . . . , uk) � pS2(v1, . . . , vk) .

We are now ready to characterize the result of the meet operator in terms of
meet correspondences.

Theorem 2. Let MS1,S2 ⊆ ℘(U1 × U2) denote the set of meet correspondences
between structures S1 and S2. Then,

{S1} � {S2} =
⊔

M∈MS1,S2

{S1 �M S2} .

Theorem 2 already gives us a naive way to compute meet by: (a) Enumerating all
relations M ∈ U1 × U2; (b) Checking each of them to see whether it constitutes
a meet correspondence; (c) For each meet correspondence, computing S1�M S2,
and (d) Combining the results via join. Although the meet of two structures is a
set of structures containing 2|U1×U2| structures in the worst case, the size of the
set is usually small, in practice. Notice that the above approach is intractable
even when the number of structures is small, since the majority of the relations
are not meet correspondences.

An immediate consequence of [10] is that deciding whether the meet of two
arbitrary 3-valued structures is empty is NP-complete. The next theorem states
that meet is computationally hard even for two bounded structures.

Theorem 3. Given two bounded structures S1 and S2, the problem of deciding
whether {S1} � {S2} �= ∅ is NP-complete.

Since the problem of computing meet with polynomial worst-case complexity is
hard, we aim to achieve good efficiency in practice. We develop an algorithm
based on a strategy. The strategy exploits certain properties of the abstract
domain to prune the set of relations and find the meet correspondences. In
Section 5, we supply empirical evidence showing that the algorithm successfully
prunes most irrelevant relations when used in an abstract interpreter for inferring
temporal heap properties on several benchmark programs.

4.3 Enumerating Meet Correspondences

We now present a strategy for exploring the (exponential) space of relations
between two structures, searching for meet correspondences. The strategy, shown
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in pseudo-code in [1], attempts to prune relations that do not constitute a meet
correspondence as much as possible, and relies on another procedure for solving
a graph-matching problem on graphs (explained below).

The strategy consists of 4 stages that are run consecutively:

1. Consistency of nullary predicates. If there exists a nullary predicate p
such that pS1() = 1 and pS2() = 0 or pS1() = 0 and pS2() = 1, then the
result of meet is the empty set.

2. Removing infeasible node pairs. We remove from the set U1 × U2 node
pairs 〈u, v〉 such that there exists a predicate p of arity k and pS1(uk) �
pS2(vk) = ⊥, where uk denotes a k-tuple containing the node u in all k
positions. By Definition 7 these pairs are not contained in any meet corre-
spondence.

3. Finding full relations. To satisfy the fullness requirement of Definition 7,
we solve the following graph matching problem. Given a graph G = 〈V,E〉
and a subset W of V , find all subsets M ⊆ E such that in the graph 〈V,M〉
the degree of every vertex is at least 1, and for vertices in W the degree is
at most 1. In our case, V = U1 ∪ U2, E is the set of pairs from the previous
stage, and W is the set of non-summary nodes. An (worst-case exponential
time) algorithm for this problem that uses several heuristics to solve this
problem efficiently is discussed in [1].

4. Consistency test. The full relations from the previous stage are tested for
consistency according to Definition 7 (in polynomial time). The relations that
pass the test are meet correspondences and are used to create M -induced
structures which are combined via join to yield the result.

The intuition behind the second stage is that two structures, possible produced
by different analyses, may share a common set of unary predicates that are
assigned only definite values, i.e., 0 or 1. Usually, these are the predicates that
represent reference variables. In such cases, these predicates help prune many
of the infeasible edges and determine a subset of edges with degree 1, which
must participate in every meet correspondence. Our algorithm uses these edges
to reduce the amount of searching that has to be done.

In Fig. 4, the first stage of the algorithm is degenerate, as there are no nullary
predicates. The second stage prunes the set of all node pairs, which consists of
20 pairs, to 5. This reduction occurs since the predicates x, t, rx,n, and rt,n have
definite values in both structures. In this example, there is only one full relation,
which is returned by the third stage of the algorithm. This relation is indeed
consistent, and thus the structure in the output is produced.

4.4 Computing Join

The join of sets of 3-valued structures is set union, followed by removal of non-
maximal structures. To remove non-maximal structures, we need an algorithm
to check for whether a structure S1 = (U1, ι1) is embedded in a structure S2 =
(U2, ι2).

We observe that an embedding relation (see Definition 3) is actually a meet
correspondence that satisfies a stricter version of the consistency condition. It
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is: (i) Full; and (ii) for every predicate p of arity k, and a pair of k-tuples
u1, . . . , uk ∈ U1

k and v1, . . . , vk ∈ U2
k, such that uiM vi for i = 1 . . . k,

pS1(u1, . . . , uk) � pS2(v1, . . . , vk) .
Since checking the second condition for two structures can be done in poly-

nomial time, we can reuse the techniques for finding meet correspondences. In
the first stage we check that for every nullary predicate p, pS1() � pS2(). In
the second state we remove from the set U1 × U2 all node pairs 〈u, v〉 such that
there exists a predicate p of arity k and pS1(uk)

/
� pS2(vk). We then proceed by

enumerating full relations over the remaining node pairs to find one that fulfills
the second condition of the embedding relation.

For arbitrary 3-valued structures, checking embedding is NP-complete. How-
ever, for bounded structures our algorithm decides the problem in polynomial
time. This is because, for two bounded structures, an embedding relation, if one
exists, is unique and completely determined by the unary predicates.

5 Inferring Temporal Properties for Compile-Time
Memory Management

Compile-time GC is most desirable for lightweight Java-based platforms, such as
JavaCard, where the penalty induced by a runtime GC is sometimes intolerable
due to the limited space and processing power. Such platforms normally provide
a mechanism for explicit memory deallocation, e.g., through a free directive.

We have implemented the phased bidirectional analysis described in Section 3
in the TVLA system to infer compile-time GC information. Our analysis infers
information for producing a set of free statements that can be safely added to the
program to free unused objects. Moreover, our analysis ensures that an object
is deallocated at the earliest possible time, i.e., immediately after the object is
last used.

5.1 Experimental Results

Table 2 shows our benchmark programs, which were used in [9].3 The first four
programs involve manipulations of singly-linked lists. DLoop and DPairs involve
manipulations of doubly-linked lists. The small-javac example was used in [8],
where it has been shown that a significant potential for compile-time GC exists
by manually rewriting the code to include null assignments. Our assign-null
analysis is able to yield the manual rewriting automatically.

On all benchmark programs, both our compile-time GC and assign-null analy-
ses were able to detect all opportunities for object deallocation and safe assign-
ment of null to reference fields, respectively. This information allows the recla-
mation of unused space at the earliest possible time. For example, considering
the program in Fig. 1, the compile-time GC analysis was able to determine the
safe deallocation of the object pointed by y right after line 10, thus deallocating
list elements as soon as they are being traversed. Our assign-null analysis was
3 The programs are available from www.cs.tau.ac.il/∼rumster/ctgc benchmarks.zip.
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Table 2. Benchmarks and analysis costs (in seconds and Mb.)

Program Description Forward Backward
Time Space Time Space

Loop Running example (Fig. 1) 0.9 1.0 1.6 1.8
CReverse Constructive list reversal 3.0 2.0 5.7 4.2
Delete Deletion of a list element 12.4 3.2 41.1 12.9
DLoop Doubly-linked list variant of Loop 1.4 1.3 2.3 2.5
DPairs Doubly-linked list traversal in pairs 3.0 2.0 5.5 4.0
small-javac Emulation of JavaC’s parser facility 528.9 32.1 334.4 77.6

able to verify that a y.n=null assignment could be inserted after line 10. The
analyses proved similar properties for the other benchmark programs.

Table 2 shows the costs of the analysis on the benchmark programs. As both
analyses have very similar costs, we only show the results of the compile-time
GC analysis.

The experiments were conducted on a 1.6 GHz laptop with 512 Mb. of mem-
ory, running Windows XP.

In addition to analysis time and space, we measured two redundancy factors
related to our meet algorithm. We evaluated the efficiency of the graph matching
algorithm in stage 3. The results show that for all benchmark programs, at
most 0.5% of the expanded search space did not lead to valid matchings. We
also measured the percentage of full relations computed during stage 3 of the
algorithm that did not constitute meet correspondences (eliminated in stage 4).
In all benchmarks the average number of relations that were eliminated did not
exceed 0.3%, and in most benchmarks no eliminations occurred.

We believe that our meet algorithm is efficient for the the following reason.
The forward shape analysis produces very precise information, which means
that the values of the unary shape predicates (in Table 1) are almost always
definite. When the backward phase computes the backward effect of a statement,
it accepts a structure where all unary predicates are definite and assigns non-
deterministic values to only a fixed number of unary predicates—y and rn,y in the
structure shown in Fig. 4(b). Then, the meet is applied to structures where most
unary shape predicates predicates have definite values. Our algorithm is geared
to exploit these situations by focusing the search for meet correspondences.

6 Related Work

Computing Meet of Heap Abstractions. In [3], a meet is used for inter-
procedural shape analysis. Two algorithms are presented for computing meet on
bounded structures. The first algorithm uses a “canonicalization”4 operation to
transform the structures to sets of structures in the image of canonical abstrac-
tion with the same concretization. Computing meet for the resulting structures
is then straightforward. However, canonicalization can unnecessarily increase the
number of structures by an exponential factor in the worst case. In our exam-
ples the worst case would indeed manifest itself, since we set the values of the
4 Canonicalization is a semantic reduction akin to substituting abstract elements by

their respective set of join-irreducibles.
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temporal heap properties to non-deterministic values. Our algorithm avoids this
problem by operating directly on the given structures. The second algorithm
approximates meet by transforming one of the structures into a dynamic set
of constraints and using a constraint solver. While usually more efficient than
the first algorithm, it computes an over-approximation of meet. We believe that
our algorithm can be used to improve the running times of the interprocedural
analysis reported in [3].

In [4], it is shown how to compute meet for a class of formulas that precisely
characterize bounded structures. The computation is essentially achieved in the
same way as the first algorithm in [3].

In [11], a symbolic semi-algorithm for meet is presented. The algorithm con-
verts bounded structures to formulas, and then uses logical conjunction to com-
pute the result in the domain of formulas. Converting the resulting formula back
to bounded structures is done via a theorem prover. The algorithm operates
with respect to a finer concretization function than the one defined in Section 2.
Specifically, this concretization function is parameterized by a set of integrity
constraints C, and is defined by

γC(S) =
{
S′ ∈ 2-STRUCT | S′ � S, S′ |= C

}
.

The advantage of this algorithm is that it provides the most precise result with
respect to γC . However, its performance can be quite low, due to the use of
canonicalization and a potentially large number of calls to a theorem prover.

A distinct advantage of the algorithm presented in this paper is that it is not
restricted to bounded structures and works for any set of 3-valued structures.

Compile-Time Memory Management. Most of the work on compile-time
GC analysis has been done for functional languages. This paper demonstrates a
compile-time GC analysis that applies to an imperative language with destruc-
tive updates, and is capable of reclaiming an object that is still reachable, but
not used further in the run.

In [9], a user-specification-driven compile-time GC and assign-null analysis
are described. The user specifies a free query of the form (pt, x), where pt is a
program location and x is a program variable. A positive answer to the query
means that a free x statement may be issued after program point pt. In con-
trast, the algorithms in this paper do not require nor rely on a user-specified
queries, but rather perform an analysis on an exhaustive set of queries gener-
ated automatically using a simple heuristic. We believe our approach may be
significantly more efficient compared to the analysis of [9] with our exhaustive
set of queries.
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Abstract. We present an abstract interpretation based approach to
solve the coverability problem of well-structured transition systems. Our
approach distinguishes from other attempts in that (1) we solve this
problem for the whole class of well-structured transition systems using
a forward algorithm. So, our algorithm has to deal with possibly infinite
downward closed sets. (2) Whereas other approaches have a non generic
representation for downward closed sets of states, which turns out to be
hard to devise in practice, we introduce a generic representation requiring
no additional effort of implementation.

1 Introduction

Model-checking is nowadays widely accepted as a powerful technique for the
automatic verification of reactive systems that have natural finite state abstrac-
tions. However, many reactive systems are only naturally modeled as infinite-
state systems. This is why a large research effort was done in the recent years
to allow the direct application of model-checking techniques to infinite-state
models. This research line has shown successes for several interesting classes
of infinite-state systems, for example: timed automata [1], hybrid automata [2],
fifo channel systems [3, 4], extended Petri nets [5, 6], broadcast protocols [7], etc.

General decidability results hold for a large class of infinite-state systems
called the well-structured transition systems, WSTS for short. WSTS are tran-
sition systems whose sets of states are well-quasi ordered and whose transition
relations enjoy a monotonicity property with respect to the well-quasi order.
Examples of WSTS are Petri nets [8], monotonic extensions of Petri nets (Petri
nets with transfer arcs [9], Petri nets with reset arcs [10], and Petri nets with
non-blocking arcs [11]), broadcast protocols [12], lossy channel systems [3]. For
all those classes of infinite-state systems, we know that an interesting and large
class of safety properties are decidable by reduction to the coverability problem.
The coverability problem is defined as follows: “given a WSTS for the well-quasi
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order ", and two states c1 and c2, does there exist a state c3 which is reachable
from c1 and such that c3 " c2 ?” (in that context, we say that c3 covers c2).

Broadly speaking, there are two ways to solve the coverability problem for
WSTS. The first way to solve the coverability problem is to explore backwardly
the transition system by iterating the pre operator1 starting from the set of
states that are greater or equal to c2. This simple procedure is effective when
very mild assumptions are met. In fact, for any well-quasi ordered set (X,"),
the following nice property holds: every "-upward closed2 set can be finitely
represented using its finite set of minimal elements3. This generic representation
of "-upward closed set is adequate as union and inclusion are effective. The
only further property that is needed for the procedure to be effective is that
given a finite set of minimal elements M defining an "-upward closed set U , it
must be possible to compute the finite set of minimal elements M ′ representing
pre(U). Higman’s lemma [13] on well-quasi orders ensure the termination of this
procedure.

The second way is to explore forwardly the transition system from the initial
state c1. Here, the situation is more complicated. A saturation method that iter-
ates the post operator4 from c0 can not lead to an algorithm as the reachability
problem is undecidable for WSTS. Recently, we have shown that the coverabil-
ity problem can be decided in a forward way by constructing two sequences of
abstractions of the reachable states of the system, one from below and one from
above [14]. The sequence of abstractions from below allows us to detect posi-
tive instances of the coverability problem and it is simply the bounded iteration
of post from the initial state. The abstraction from above is the iteration of an
overapproximation of post over downward closed set of states that becomes more
and more precise. This sequence allows us to decide negative instances of the
problem. This schema of algorithm is general but to be applicable to a given
class of WSTS, the user has to provide a, so called, adequate domain of limits.
This set is in fact a (usually infinite) set of abstract values that allows to repre-
sent any downward closed set. The situation is less satisfactory than for upward
closed set where there exists, as we have seen above, a simple and generic way
to represent upward closed set by sets of minimal elements. Such a generic way
of representing downward closed sets was missing and this problem is solved
here.

The contributions of this paper are as follows. First, we show that for any well-
quasi ordered set, there exists a generic and effective representation of downward
closed sets. To the best of our knowledge, this is the first time that such a generic
representation is proposed. An attempt in that direction was taken in [15] but the
result is a theory for designing symbolic representation of downward closed sets

1 A function that returns all the states that have a one-step successor in a given set
of states.

2 A set S is upward (resp. downward) closed if for any c such that c 	 s (resp. c 
 s)
for some s ∈ S we have c ∈ S.

3 Or a finite set of its minimal elements if 	 is not a partial order.
4 A function that returns all the one-step successors states of a given set of states.
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and not a generic symbolic representation of such sets. As a consequence, their
theory has to be instantiated for the particular class of WSTS that is targeted
and this is not a trivial task. Second, as downward closed sets are abstractions
for sets of reachable states in the forward algorithm, we formalize our generic
representation of downward closed set as a generic abstract domain. This allow
us to rephrase in a simpler way the forward algorithm, first proposed in [14],
in the context of abstract interpretation. Third, we show how to automatically
refine the abstract domain in order to obtain, in an efficient way, overapproxi-
mations that are guaranteed to be sufficiently precise to decide the coverability
problem.

Our paper is organized as follows. Section 2 presents some preliminaries.
Section 3 introduces the generic representation of downward closed sets. In Sec-
tion 4 we will be concerned with the abstract interpretation of WSTS. Section 5
is devoted to the refinement of the abstract domain. Section 6 shows on an ex-
ample how these techniques work. A version of the paper containing all proofs
is available at [16].

2 Preliminaries

2.1 Well-Quasi Ordered Sets

A preorder " is a binary relation over a set X which is reflexive, and transitive.
The preorder " is a well-quasi order (wqo for short) if there is no infinite se-
quence x0, x1, . . . , such that xi � xj for all i > j ≥ 0. A set M ⊆ X is said to
be canonical if for any distinct x, y ∈M we have x � y. We say that M ⊆ S is
a minor set of S ⊆ X , if for all x ∈ S there exists y ∈ M such that x " y, and
M is canonical.

Lemma 1 (From [17]). Let (X,") be a well-quasi ordered set (wqo-set for
short). For any set S ⊆ X, S has at least one finite minor set M .

We use min to denote a function which, given a set S ⊆ X , returns a minor set
of S. Let (X,") be a wqo-set, we call x↓= {x′ ∈ X | x " x′} and x↑= {x′ ∈ X |
x′ " x} the "-downward closure and "-upward closure of x ∈ X , respectively.
This definition is naturally extended to sets in X . We define a set S ⊆ X to be
a "-downward closed set ("-dc-set for short), respectively "-upward closed set
("-uc-set for short), iff S↓= S, respectively S↑= S. Examples of such sets are
given in Fig. 1. For any wqo-set (X,"), we define DCS(X) (UCS (X)) to be the
set of all "-dc-sets ("-uc-sets) in X . For any x ∈ X we define the "-equivalence
class of x, denoted [x], to be the set x↑ ∩x↓, i.e. the set of elements that are
"-equivalent to x. For A and B subsets of X , we say that A ≡ B if A↑= B↑.
Observe that A ≡ B iff for all a ∈ A there is a b ∈ B such that a " b, and vice
versa. We now recall a well-known lemma on "-uc-sets and "-dc-sets.

Lemma 2 (From [17]). Let (X,") a wqo-set and an infinite sequence of "-
uc-set U0U1 . . . such that ∀i ≥ 0: Ui ⊆ Ui+1. There exists j ≥ 0: ∀j′ ≥ j : Uj =
Uj′ . Symmetrically, given an infinite sequence of "-dc-sets D0D1 . . . such that
∀i ≥ 0: Di ⊇ Di+1, there exists j ≥ 0: ∀j′ ≥ j : Dj = Dj′ .
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The wqo 	 is defined as follows
(a1, a2) 	 (b1, b2) if and only if
a1 ≥ b1 and a2 ≥ b2. The 	-dc-
sets A and B are infinite 	-dc-set
: A = {(x, y) ∈ N2 | y ≤ 1},
B = {(x, y) ∈ N2 | x ≤ 1}. On
the contrary, the 	-dc-set C =
{(x, y) ∈ N2 | x ≤ 2 ∧ y ≤ 2} is
finite. The 	-uc-set D is given by
{(x, y) ∈ N2 | x ≥ 3 ∧ y ≥ 2}. Note
that D has exactly one minor set
since 	 is a partial order.

Fig. 1. 	-dc-sets and 	-uc-sets in N2

We now introduce a lemma stating several facts about sets and their closure.
These facts are merely of technical interest and will be used subsequently.

Lemma 3.

1. For any S, S′ ⊆ X, S↓ ∩S′↑�= ∅ ⇔ S↓ ∩S′ �= ∅ ⇔ S ∩ S′↑�= ∅.
2. For any S, S′ ⊆ X, S↑⊆ S′↑⇔ ∀s ∈ S ∃s′ ∈ S′ : s " s′.
3. ∀s ∈ X,S ∈ UCS (X) : s ∈ S ⇔ ∃s′ ∈ min(S) : s " s′.

Lemma 3.2 and 3.3 suggest an effective representation of "-uc-sets: every "-
uc-set U can be finitely represented by min(U). For decidable well-quasi order
", this readily gives us an effective procedure to check inclusion between two
"-uc-sets, to check membership and to compute union [18].

Notations. Sometimes we write s instead of the set {s}. Unless otherwise stated
the transitive and reflexive closure f∗ of a function f such that its domain and co-
domain coincide is given by

⋃
i≥0 f

i where f0 is the identity and f i+1 = f i ◦ f .
Finally, let us recall the following property on sets that we will use without
mention in our proofs: A ⊆ B iff A ∩ (X \B) = ∅.

2.2 Well-Structured Transitions Systems

In this paper we follow [19] in the definition of well-structured transition systems.

Definition 1. A well-structured transition system (WSTS) S is a tuple (X, δ,")
where X is a (possibly) infinite set of states, δ ⊆ X ×X is a transition relation
between states — we use the notation x → x′ if (x, x′) ∈ δ —, and "⊆ X ×X
is a preorder between states such that the two following conditions hold: (i) " is
a wqo; and (ii) ∀x1, x2, x3 ∃x4 : (x3 " x1 ∧ x1 → x2) ⇒ (x3 →∗ x4 ∧ x4 " x2),
where→∗ is the reflexive and transitive closure of the transition relation (upward
compatibility)5. Moreover, we define an initialized WSTS (IWSTS) to be a pair
(S, x0) where S = (X, δ,") is a WSTS and x0 ∈ X is the initial state. We
adhere to the convention that if S0 is an IWSTS then S is its WSTS.
5 Upward compatibility is more general than the compatibility used in [17].
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Let S = (X, δ,") be a WSTS and T ⊆ X , post [S](T ) def= {x′ | ∃x ∈ T : x →
x′}. Analogously, we define pre[S](T ) as {x | ∃x′ ∈ T : x → x′}. We define
minpre[S](T ) def= min((pre [S](T↑))↑). To shorten notation, we write pre,minpre
and post if the WSTS is clear from the context. The following definition
follows [17].

Definition 2. An effective WSTS is a WSTS S = (X, δ,") where both " and
→ are decidable and for all x ∈ X : minpre[S](x) is computable.

2.3 The Coverability Problem

The verification of safety properties on IWSTS reduces to the so called cover-
ability problem.

Problem 1. The coverability problem for IWSTS is defined as follows: “Given an
IWSTS ((X, δ,"), x0) and bad ∈ UCS (X), post∗(x0) ∩ bad = ∅? ”

In general, bad is an upward closed set of states where errors occur.
Two solutions to the coverability problem can be found in the literature.

The first one (see [17, 19]) is a backward approach based on the following two
lemmas:

Lemma 4 (From [19]). Given a WSTS S = (X, δ,") and U ∈ UCS(X), (a)
pre∗(U) ∈ UCS (X), and (b) minpre∗(min(U))↑= pre∗(U).

Lemma 4, together with Lemma 1 and 2, show how to (symbolically) compute the
(possibly) infinite set pre∗(U) using the minor sets of "-uc-sets. Once pre∗(U)
is computed, or rather a finite representation using one of its minor set, one can
decide the coverability problem by testing if the initial state is in pre∗(U) by
using Lemma 3.3.

The second approach is a forward approach based on the notion of covering
set [20, 12]. The covering set Cover (S0) of an IWSTS S0 = (S, x0) is given by
Cover (S0)

def= post∗(x0)↓. The following lemma shows the usefulness of covering
sets to solve the coverability problem:

Lemma 5. Given an IWSTS S0 =((X, δ,"), x0) and bad ∈ UCS (X), Cover (S0)
∩ bad = ∅ if and only if post∗(x0) ∩ bad = ∅.

As already mentioned in the introduction, there are two difficulties to overcome
when trying to design a forward algorithm for the coverability problem:

1. Currently, there are no generic way to effectively represent and manipulate
"-dc-sets (as the one shown above for "-uc-sets). So, for every wqo-set
(X,") one has to design a symbolic representation for the sets in DCS (X).

2. The set Cover (S0) is in general not effectively constructible, see [10] for de-
tails. As a consequence, all the algorithms based on its construction (except
the well-known Karp-Miller algorithm on Petri nets) may fail to terminate.
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To overcome those two difficulties:

1. In [15], the authors propose a methodology to design a symbolic representa-
tion of dc-sets. However the design of such a symbolic data-structure is far
from being trivial.

2. The authors of this paper proposed, in [14], an algorithmic schema called
expand, enlarge and check which can be instantiated for any class of WSTS
as long as a symbolic representation of dc-sets is provided (called there an
adequate set of limits).

In this paper, we provide, in our opinion, a much more satisfactory answer to
those two difficulties by providing, in the form of a generic abstract domain and a
generic abstract analysis, a completely generic algorithm to solve the coverability
problem for WSTS.

3 A Generic Abstract Domain

In this section, we present a parametrized abstract domain that allows us to
represent any "-dc-set in a wqo-set (X,"). The parameter D is a finite subset
of X and it defines the precision of the abstract domain. We also show that this
parametrized abstract domain enjoys the following properties: (i) our parame-
trized abstract domain defines a complete lattice, (ii) we define an abstraction
and a concretisation function that is shown to be a Galois insertion, (iii) any
"-dc-set can be exactly represented by our parametrized abstract domain pro-
vided an adequate value for the parameter D is used, and (iv) each "-dc-set has
a finite representation.

Recall that the powerset lattice PL(A) associated to a set A is the complete
lattice having the powerset of A as carrier, and union and intersection as least
upper bound and greatest lower bound, respectively. In our setting the concrete
lattice is the powerset lattice PL(X) of the set of states X .

Fix a finite set D ⊆ X which is called the finite domain, the abstract lattice
DPL(D) has DCS (D) as a carrier, �D as the least upper bound operator, �D

as the greatest lower bound operator, and D and ∅ are the �D-maximal and
�D-minimal element, respectively. We define the relation �D over DCS (D) ×
DCS (D) such that for all P1, P2 ∈ DCS (D) : P1 �D P2 if and only if P1 ⊆ P2,
P1 �D P2

def= P1 ∪ P2, P1 �D P2
def= P1 ∩ P2. Notice that DPL(D) is complete

because the union and the intersection operations are closed in DPL(D). Given
an abstract lattice DPL(D), the abstraction and concretisation mappings are
given as follows:

∀E ∈ PL(X) : α[D](E) def= E↓ ∩D

∀P ∈ DPL(D) : γ[D](P ) def= {x ∈ X | x↓ ∩D ⊆ P} .

The set between brackets defines the parameter of the function and the set
between parentheses is its argument. For simplicity of notation, we also write
γ(P ), α(E), �, � and � if the parameter is clear from the context.



A Complete Abstract Interpretation Framework 55

We next show through an example that the finite domain D actually
parametrizes the precision of the abstract domain with respect to the concrete
domain.

Example 1. Let us consider the "-dc-sets of Fig. 1 and consider the following
finite domain D = {(0, 0), (3, 0), (0, 2), (0, 3)} depicted by the grey dots. Ap-
plying α on the "-dc-sets A, B and C give, respectively, the (abstract) sets
α(A) = {(0, 0), (3, 0)}, α(B) = {(0, 0), (0, 2), (0, 3)}, α(C) = {(0, 0), (0, 2)}. A
and C are exactly represented, i.e. γ(α(A)) = A and γ(α(C)) = C, but B is not:
γ(α(B)) = {(x, y) ∈ N2 | x ≤ 2}. But, if we add (2, 0) to D then B becomes
representable.

This generic abstract domain is a generalization of the ideas exposed in [21] for
finite states systems.

Fix a finite domainD, the concrete PL(X) and abstract DPL(D) domains and
the abstraction α : PL(X) �→ DPL(D) and concretisation γ : DPL(D) �→ PL(X)
maps form a Galois insertion, denoted by PL(X)

α�
γ

DPL(D).

Proposition 1. For every finite domain D, PL(X)
α�
γ

DPL(D).

Proof. Fix a finite domain D. It follows immediately from the definitions that
α is monotonic (i.e., C ⊆ C′ implies α(C) � α(C′)) and γ as well. Indeed,
γ(P1) ⊆ γ(P2)⇔ {c | c↓ ∩D ⊆ P1} ⊆ {c | c↓ ∩D ⊆ P2} ⇔ P1 ⊆ P2 ⇔ P1 � P2.
So, it suffices to prove (a) and (b) below:

(a) C ⊆ (γ ◦ α)(C) for every C ∈ PL(X).

(γ ◦ α)(C) = {c ∈ X | c↓ ∩D ⊆ C↓ ∩D}
⊇ {c ∈ C | c↓ ∩D ⊆ C↓ ∩D}
= C

(b) (α ◦ γ)(P ) = P for every P ∈ DPL(D).

(α ◦ γ)(P ) = {c | c↓ ∩D ⊆ P}↓ ∩D
= {c | c↓ ∩D ⊆ P} ∩D γ(P )↓= γ(P )
= {c ∈ D | c↓ ∩D ⊆ P}
= P P ⊆ D and P ∈ DCS (D)

��
We now prove some properties on the precision of our abstract domain. The next
lemma states that any "-dc-set of X can be represented exactly using a finite
domain D and a set P ∈ DCS (D).

Lemma 6 (Completeness of the abstract domain). For each E ∈ DCS (X)
there exists a finite domain D such that (γ ◦ α)(E) = E.

Proof. Given E, we define the finite domain D to be D = min(X \E). We prove
(γ ◦ α)(E) = E.

Let us show that (γ ◦ α)(E) ⊆ E. For that, suppose by contradiction that
there exists p ∈ (γ ◦ α)(E) ∧ p /∈ E.
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p /∈ E
⇔ p↓� E E ∈ DCS(X)
⇔ p↓ ∩(X \ E) �= ∅
⇔ p↓ ∩min(X \ E) �= ∅ Lem. 3.1
⇔ ∃p′ : p′ ∈ p↓ ∧p′ ∈ min(X \ E)
⇒ ∃p′ : p′ ∈ p↓ ∧p′ ∈ min(X \ E) ∧ ∃p′′ ∈ [p′] : p′′ ∈ D def. of D
⇔ ∃p′′ : p′′ ∈ p↓ ∧p′′ ∈ D ∧ p′′ /∈ E p, p′ " p′′; p′↓ ∩E = ∅

(1)

p ∈ (γ ◦ α)(E)
⇔ p↓ ∩D ⊆ α(E) def. of γ
⇔ p↓ ∩D ⊆ E↓ ∩D def. of α
⇔ p↓ ∩D ⊆ E ∩D E ∈ DCS(X)
⇔ p↓ ∩D ⊆ E
⇔ ∀p′ : p′ ∈ p↓ ∧p′ ∈ D ⇒ p′ ∈ E
⇔ ¬¬ (∀p′ : p′ ∈ p↓ ∧p′ ∈ D ⇒ p′ ∈ E)
⇔ ¬ (∃p′ : p′ ∈ p↓ ∧p′ ∈ D ∧ p′ /∈ E) (2)

From (1) and (2) follows a contradiction.
E ⊆ (γ ◦ α)(E) is immediate by property of Galois insertion. So, we have

proved that (γ ◦ α)(E) = E. ��

Remark 1. While previous lemma states that any "-dc-set can be represented
using an adequate finite domain D, there is usually no finite domain D which
is able to represent all the "-dc-sets. It should be pointed out that "-dc-sets
can be easily represented through their ("-uc-set) complement, i.e. by using a
finite set of minimal elements of their complement. However with this approach
the manipulation of "-dc-sets is not obvious. In particular, there is no generic
way to compute the post operation applied on a "-dc-set by manipulating its
complement. Also, as Cover (S0) is not constructible, it is, in some sense, useless
to try to represent exactly the "-dc-sets encountered during the forward explo-
ration. On the other hand, we will see in Section 4 that our abstract domain
allow us to define an effective and generic abstract post operator.

Hereunder, Proposition 3 shows that the more elements you put into the finite do-
mainD, themore"-dc-sets the abstract domain is able to represent exactly.Propo-
sition 2,which is used inmanyproofs, provides an equivalent definition forγ[D](P ).

Proposition 2. Fix a finite domain D, for every P ∈ DPL(D) we have γ(P ) =
X \ (D \ P )↑.
Proposition 3. Fix two finite domains D and D′ such that D ⊂ D′. For every
P ∈ DPL(D), there exists a P ′ ∈ DPL(D′) such that γ[D](P ) = γ[D′](P ′).

Effectiveness. It is worth pointing that since we impose finiteness of D then �D,
�D are effective and �D is decidable. So, given a finite domain D, the complete
lattice DPL(D) represents an effective way to manipulate (infinite) "-dc-sets.
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Even if D is finite, it can be very large and so the abstract domain may be com-
putationally expensive to manipulate. Compact data structures like Binary Deci-
sion Diagrams [22] and Sharing Trees [23, 18] may be necessary to use in practice.

In Sect. 5 we need to decide the intersection emptiness between an "-uc-set
and a "-dc-set. In input of this problem we are given an effective representation
of these two sets. Then we solve the problem using the result of Lemma 3.1
together with the following proposition.

Proposition 4. Fix a finite domain D, for all P ∈ DPL(D) there exists an
effective procedure to answer the membership test, i.e. “given c ∈ X, does c
belong to γ(P ) ?”.

4 Abstract Interpretation

In this section, we define the forward abstract interpretation of a WSTS using
an abstract domain parametrized by D as defined in the previous section.

Let S be a WSTS andD be a finite domain, post#[S, D] : DPL(D) �→ DPL(D)
is the function defined as follows: post#[S, D] def= λP.(α[D] ◦ post [S] ◦ γ[D])(P ).
The function post#[S, D]∗ : DPL(D) �→ DPL(D) is defined as follows:
post#[S, D]∗ def= λP.�i≥0 post#[S, D]i(P ). We shorten post#[S, D] to post# and
post#[S, D]∗ to (post#)∗ if the WSTS and the finite domain are clear from the
context.

The following lemma establishes the soundness of our abstract interpretation
of WSTS which follows by property of Galois connection:

Lemma 7. Given a WSTS (X, δ,") with I ⊆ X and a finite domain D, (i)
post(I) ⊆ (γ ◦ post# ◦ α)(I) and (ii) post∗(I) ⊆ (γ ◦ (post#)∗ ◦ α)(I).

The next proposition shows that we can improve the precision of the analysis by
improving the precision of the abstract domain.

Proposition 5 (post# Monotonicity). Given a WSTS S= (X, δ,"), two fi-
nite domains D,D′ with D ⊆ D′, and two sets C,C′ ⊆ X with C ⊆ C′, we have,
(1) (γ[D′] ◦ post#[S, D′] ◦ α[D′])(C) ⊆ (γ[D] ◦ post#[S, D] ◦ α[D])(C′); and (2)
(γ[D′] ◦ post#[S, D′]∗ ◦ α[D′])(C) ⊆ (γ[D] ◦ post#[S, D]∗ ◦ α[D])(C′).

Let us now show that if we fix a finite domain D, then post# is computable for
any effective WSTS but first we need the following lemma:

Lemma 8. Given a WSTS S=(X, δ,"), ∀x, x′∈X : x∈pre(x′↑)⇔ x′∈post(x)↓.
Proof. x ∈ pre(x′↑)⇔ ∃x′′ : x′′ " x′ ∧ x→ x′′ ⇔ x′ ∈ post(x)↓. ��
We have the following characterization of post#.

Proposition 6. Fix a finite domain D, and an effective WSTS S = (X, δ,").
For every x ∈ D and P ∈ DPL(D):

x ∈ post#(P )⇔ (x ∈ D ∧ ¬(pre(x↑) ⊆ (D \ P )↑)) .

The sets pre(x↑)↑ and (D \ P )↑ are "-uc-sets which have as finite minor set
minpre(x) and (D\P ) respectively. Lemma 3.2 shows that if both minpre(x) and
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(D \ P ) are finite sets and " is decidable then we have an effective procedure
to decide if pre(x↑)↑⊆ (D \ P )↑ which is equivalent to pre(x↑) ⊆ (D \ P )↑.
Furthermore, since the complete lattice DPL(D) is finite, it follows that:

Corollary 1. For any effective IWSTS S0 = (S, x0), and any finite domain D,
((post#[S, D])∗ ◦ α)(x0) can be effectively computed.

5 Domain Refinements

In this section, we show that the abstract interpretation that we have defined
previously can be made sufficiently precise to decide the coverability problem
of (effective) IWSTS. We present two ways of achieving completeness of the
abstract interpretation. Both are based on abstract domain refinement. The
first (and näıve) way is through enumeration of finite domains. The enumerating
algorithm shows that completeness is achievable by systematically enlarging the
finite domain D. The second algorithm, which is more sophisticated, enlarges
the finite domain D using abstract counter-examples.

5.1 Enumerate Finite Domains

In Sect. 3, we showed that any "-dc-set can be represented using a well chosen
domain (Lemma 6). In particular, the covering set can be represented using a
finite domain D.

Hereunder, Theorem 1 asserts that the abstract interpretation of an IWSTS
S0 using a finite domain D that allows to represent exactly the covering set of
S0 leads to the construction of that set.

Theorem 1. Given Cover (S0), the covering set of an IWSTS S0, and some
finite domain D such that there is Θ ∈ DPL(D) : γ(Θ) = Cover (S0). For any
P ∈ DPL(D) such that P � Θ we have (γ ◦ (post#)∗)(P ) ⊆ Cover (S0).

Proof.

γ(Θ) = Cover (S0) by hypothesis
⇒ (post ◦ γ)(Θ) = post(Cover (S0)) monotonicity of post
⇒ (post ◦ γ)(Θ) ⊆ Cover (S0) post(Cover (S0)) ⊆ Cover (S0)
⇒ (α ◦ post ◦ γ)(Θ) � α(Cover (S0)) by monotonicity of α

⇔ post#(Θ) � α(Cover (S0)) def. of post#

⇔ post#(Θ) � Θ γ(Θ) = Cover (S0),Θ = (α ◦ γ)(Θ) (3)

Since post# is a monotone function on a complete lattice, (3) shows that for any
P � Θ we have

((post#)∗)(P ) � Θ
⇒ (γ ◦ (post#)∗)(P ) ⊆ γ(Θ) monotonicity of γ

⇔ (γ ◦ (post#)∗)(P ) ⊆ Cover (S0) by hypothesis ��
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Thanks to this proposition and the results of [14] Algorithm 1 decides the cover-
ability problem for an effective IWSTS S0 = (S, x0) and a"-uc-set bad. The main
idea underlying the algorithm is to iteratively analyze an underapproximation of
the reachable states (line 1) followed by an overapproximation (line 2). Positive
instances of the coverability problem are decided by underapproximations and
negative instances are decided by overapproximations. By enumeration of finite
domains Di and Theorem 1, it is ensured that our abstract interpretation will
eventually become precise enough for the negative instances. For this algorithm

Algorithm 1. Enumeration
Input: An IWSTS S0 = ((X, δ, 	), x0) and a set bad ∈ UCS(X)
for Di = D0, D1, . . . an enumeration of the finite subsets of X do

if ∃x0, . . . , xk ∈ Di : x0 → . . . → xk ∧ xk ∈ bad then1

return reachable
else if (γ[Di] ◦ (post#[S ,Di])∗ ◦ α[Di])(x0) ∩ bad = ∅ then2

return unreachable
end

to be effective, we only need the (mild) additional assumption that elements of
X are enumerable.

In the next subsection, we show that this assumption can be dropped and
propose a more sophisticated way to obtain a finite domain D which is precise
enough to solve the coverability problem. Our refinement technique is based on
the analysis of the states leading to bad.

5.2 Eliminate Overapproximations Leading to bad

Let us first consider the following lemma that is a first step towards completeness.

Lemma 9. Given a WSTS (X, δ,") and a set bad ∈ UCS (X) fix a finite do-
main D and a set P ′ ∈ DPL(D) such that post#(P ′) � P ′ and min(pre∗(bad))∩
γ(P ′) ⊆ D. For every P ∈ DPL(D) such that P � P ′ we obtain γ(P ) ∩
pre∗(bad) = ∅ ⇒ γ(post#(P )) ∩ pre∗(bad) = ∅.

Proof.

γ(P ) ∩ pre∗(bad) = ∅
⇔ (↓ ◦post ◦ γ)(P ) ∩ pre∗(bad) = ∅ Lem. 8 and pre(pre∗(bad)) = pre∗(bad)
⇒ (α ◦ post ◦ γ)(P ) ∩ pre∗(bad) = ∅ (α ◦ post ◦ γ)(P ) ⊆ (↓ ◦post ◦ γ)(P )

⇔ post#(P ) ∩ pre∗(bad) = ∅ def. of post#

⇔ pre∗(bad) ⊆ (X \ post#(P ))

So we have established

γ(P ) ∩ pre∗(bad) = ∅ ⇒ pre∗(bad) ⊆ (X \ post#(P )) . (4)
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Moreover, we conclude from P � P ′ that post#(P ) � post#(P ′) (by monotonic-
ity of post#), hence that post#(P ) � P ′ (post#(P ′) � P ′) and finally that
γ(post#(P )) ⊆ γ(P ′) (by monotonicity of γ).

Now, let us consider γ(post#(P )):

γ(post#(P ))

={c | c↓∩D ⊆ post#(P )} definition of γ

={c∈γ(P ′) | c↓ ∩D ⊆ post#(P )} γ(post#(P ))⊆γ(P ′)

⊆ {c∈γ(P ′) | c↓ ∩min(pre∗(bad)) ∩ γ(P ′) ⊆ post#(P )} def. of D

={c∈γ(P ′) | c↓ ∩min(pre∗(bad))⊆post#(P )} c ∈ γ(P ′) implies c↓⊆ γ(P ′)

={c∈γ(P ′) | c↓ ∩min(pre∗(bad)) ∩ (X \ post#(P )) = ∅}
⊆ {c ∈ γ(P ′) | c↓ ∩min(pre∗(bad)) ∩ pre∗(bad) = ∅} By (4)

={c∈γ(P ′) | c↓ ∩min(pre∗(bad)) = ∅} min(A)⊆A if A∈UCS(X)

={c∈γ(P ′) | {c} ∩ pre∗(bad) = ∅} Lem. 3.1

={c∈γ(P ′) | c /∈ pre∗(bad)}

Hence, γ(post#(P )) ∩ pre∗(bad) = ∅. ��

Using the previous lemma and induction we can establish the following theorem.

Theorem 2. Given a WSTS (X, δ,") and a set bad ∈ UCS(X) fix a finite do-
main D and a set P ′ ∈ DPL(D) such that post#(P ′) � P ′ and min(pre∗(bad))∩
γ(P ′) ⊆ D. For every I ⊆ X such that α(I) � P ′, we have I ∩ pre∗(bad) = ∅ ⇔
(γ ◦ (post#)∗ ◦ α)(I) ∩ bad = ∅.

We are nearly in position to define our refinement-based algorithm. We first
define the following operator parametrized by O ⊆ X which is applied to a finite
subset of states T ⊆ X : minpre[S,O](T ) def= minpre[S](T ) ∩ O.We also write
minpre[O](T ) instead of minpre[S,O](T ) if the WSTS is clear from the context.

In the remainder of this section we adopt the following convention: a set A
acting as the argument of minpre should be read as min(A). A direct consequence
of the definition of minpre is the following, for any O ⊆ O′ ⊆ X and A ⊆ X we
have:

minpre[O]∗(A) ⊆ minpre[O′]∗(A) . (5)

The main ideas underlying our refinement-based algorithm (Algorithm 2) are as
follows. In a first approximation, we consider a finite domain D0 that contains
a minor set of bad. With this set, we compute a first overapproximation of the
reachable states of S0, noted O0. If this overapproximation is fine enough to
prove that we are in presence of a negative instance of the problem then we
conclude at line 2. If it is not the case, we compute R′

0 that represents all the
states within O0 that can reach bad in one step. If this set contains x0 then
we conclude that bad is reachable. Otherwise, we refine the finite domain D0
into D1 to ensure at the next iteration that our overapproximation will be more
precise (Prop. 5.2) and that (γ[D1]◦post#[S, D1]◦α[D1])(x0)) will not intersect
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with bad. So, we have excluded all spurious counter-examples of length one. We
then proceed with this enlarged finite domain.

Since min(pre∗(bad)) is computable, Theorem 2 intuitively shows that our
algorithm terminates. We formally establish the correctness of our technique as
stated in the next lemmas which prove soundness, completeness, and termination
of Algorithm 2.

Algorithm 2. Refinement loop
Input: An IWSTS S0 and a set bad ∈ UCS(X)
Let D0 ⊇ (min(bad))
for i = 0, 1, 2, . . . do

Compute Ri defined to be ((post#[S ,Di])∗ ◦ α[Di])(x0)1

Let Oi denote γ[Di](Ri)
if Oi ∩ bad = ∅ then return unreachable2

else
Compute R′

i defined to be min i+1
k=0 minpre[S ,Oi]k(bad)3

if {x0} ∩ R′
i↑= ∅ then4

choose Di+1 ⊇ Di ∪ R′
i5

else return reachable
end

end

Lemma 10 (Soundness). If Algorithm 2 says “reachable” then we have
post∗(x0) ∩ bad �= ∅.

Proof. Let c be the value of variable i when the algorithm says “reachable”.
minpre[Oc]∗(bad)↑⊆ minpre[X ]∗(bad)↑= pre∗(bad), the inclusion follows from
Oc ⊆ X , (5) and ↑ is monotonic, and the equality follows from Lemma 4.b. Since
{x0}∩pre∗(bad) �= ∅ iff post∗(x0)∩bad �= ∅, minpre[Oc]c(bad)↑⊆ pre∗(bad) shows
that post∗(x0) ∩ bad �= ∅, by {x0} ∩minpre[Oc]c(bad)↑�= ∅ (line 4). ��

Lemma 11 (Completeness). If Algorithm 2 says “unreachable” then we
have post∗(x0) ∩ bad = ∅.

Proof. Fix a finite domain D, by Lemma 7 we have that post∗(x0) ⊆ (γ ◦
(post#)∗ ◦ α)(x0). Let c be the value of variable i when the algorithm says
“unreachable” at line 2. We conclude from (γ[Dc] ◦ (post#[S, Dc])∗ ◦ α[Dc])
(x0) ∩ bad = ∅ that post∗(x0) ∩ bad = ∅ which is the desired conclusion. ��

Lemma 12 (Termination). Given an effective IWSTS S0 and bad ∈ UCS(X),
Algorithm 2 always terminates.

Proof. It is routine to check that each domain Di is finite. Hence, since �Di is
computable because the Di’s are finite and post#[S, Di] is computable following
Proposition 6 (notice that α[Di](x0) is computable since " is assumed to be de-
cidable), the fixpoint computation of line 1 finishes after a finite amount of time.

Suppose, contrary to our claim, that the algorithm does not terminate. Since
each line is evaluated in a finite amount of time, it follows that the algorithm
executes the main loop infinitely many times. From line 5, we conclude that the
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algorithm considers an infinite sequence of finite domains D0 ⊆ D1 ⊆ · · · From
Proposition 5.2, we know that O0 ⊇ O1 ⊇ · · · From Lemma 2, we conclude that
there exists i ≥ 0 such that Oi = Oi+1 = · · ·

Let us consider the iteration i of the algorithm such that Oi = Oi+1 = · · ·
We have the infinite sequence R′

i↑⊆ R′
i+1↑⊆ · · · . From Lemma 2, we conclude

that there exists j ≥ i such that R′
j↑= R′

j+1↑= · · · . Hence, following line 5 of the
algorithm, D contains min(minpre[Oi]∗(bad)) (or rather D contains equivalent
states to those of min(minpre[Oi]∗(bad))) after the jth iteration.

Let us now prove that (a) min(minpre[Oj+1]∗(bad))≡min(minpre[X ]∗(bad))∩
Oj+1. Indeed, if it is not the case there exist l ≥ 0, c, c′ ∈ X such that c ∈
minpre[X ]l(bad), c′ ∈ minpre[X ](c), c �∈ Oj+1 and c′ ∈ Oj+1. Hence, post(c′) �⊆
Oj+1 since post(c′) ∩ c↑�= ∅ and Oj+1 is a "-dc-set. But, ∀c ∈ Oj+1 : post(c) ⊆
Oj+1. From this follows a contradiction.

Moreover, (b) min((minpre[X ]∗(bad))↑)≡min(pre∗(bad)) holds by Lemma 4.b
and by definition of ≡. We conclude, following line 5 of the algorithm, that Dj+1
contains equivalent states to those of min(pre∗(bad)) ∩ Oj+1.

By applying Theorem 2, we have {x0} ∩ pre∗(bad) = ∅ iff Oj+1 ∩ bad = ∅.
We consider two cases: (i) {x0} ∩ pre∗(bad) = ∅, then we have Oj+1 ∩ bad = ∅
and the algorithm terminates since the test of line 2 is evaluated to true; (ii)
{x0}∩pre∗(bad) �= ∅, then Oj+1∩bad �= ∅. Following (a) and (b) at line 3 of the
algorithmR′

j+1 ≡ min(pre∗(bad))∩Oj+1. Since {x0}∩pre∗(bad) �= ∅, there exists,
on account of Lemma 3.3, x ∈ min(pre∗(bad)) : x0 " x. x0 ∈ Oj+1 and Oj+1 ∈
DCS (X) shows that x ∈ Oj+1. We conclude from R′

j+1 ≡ min(pre∗(bad))∩Oj+1
that [x]∩R′

j+1 �= ∅, hence that {x0}∩R′
j+1↑�= ∅, and finally that the test of line

4 is evaluated to false which yields the algorithm to terminate. ��

Remark 2. Let us notice that the practical efficiency of Algorithm 2 depends on
(i) the preciseness of the overapproximations Oi and (ii) the time (and space)
needed to build those overapproximations. Point (i) is crucial since rough ap-
proximations will lead to the computation of min(pre∗(bad)), which is time and
space consuming in practice [23]. Point (ii) is important because an inefficient
computation of overapproximations leads to an inefficient algorithm. Hence, a
trade-off between (i) and (ii) must be chosen. This problem exceeds the scope
of this paper and will be addressed in future works.

To ensure termination we require, at line 5, that the finite domain is enlarged
by, at least, the states ofR′

i. The algorithm remains correct if we add more states.

6 Illustrations

We have produced a prototype that implements Algorithm 2. We describe in
this section the execution of that prototype when applied on a toy example. The
example of IWSTS S0 is represented through a Petri net (see [8] for details),
depicted in Fig. 2, which models a very simple mutual exclusion protocol. We
want to check for safety of the protocol, that is check that there is never more
than one process in the critical sections. The markings that violates the property,
denoted bad, are given by {〈0, 0, 0, 1, 1〉, 〈0, 0, 0, 0, 2〉, 〈0, 0, 0, 2, 0〉}↑. It is worth
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p1

t2

t3

t1

p2

t4 (cs2)
p5

p3

p4
(cs1)

(wait)

t0
The processes (the tokens in place p1) can
access some critical section (place p4 or p5)
provided they acquired some lock (the to-
kens in places p2 and p3). The initial mark-
ing is given by 〈0, 1, 1, 0, 0〉. Transition t0
spawns processes.

Fig. 2. A simple mutual exclusion protocol

pointing that we want to establish the safety for any number of processes taking
part in the protocol (recall that t0 spawns processes).

Execution of the prototype. We describe the execution of the prototype iteration
by iteration. On account of remark 2, we do not take min(bad) as initial finite
domain but its downward closure instead and we do not add the set R′

i to Di

at the ith iteration but its downward closure instead. Taking the "-downward
closure of the sets allows us to efficiently prove the safeness of the protocol.

Initialisation. As mentioned before, the initial value of the finite domain, which
is referred as D0, is given by {〈0, 0, 0, 1, 1〉, 〈0, 0, 0, 0, 2〉, 〈0, 0, 0, 2, 0〉}↓.
Iteration 1 (i=0). After the fixpoint computation of line 1, we have R0 = D0,
and so O0 = X . Hence the test of line 2 fails and we compute R′

0 = min(bad) ∪
{〈1, 1, 1, 0, 1〉, 〈1, 1, 1, 1, 0〉} which corresponds to min(bad ∪ pre(bad)). Because
the test of line 4 fails, we execute line 5 and we set D1 to R′

0↓.
Iteration 2 (i=1). The fixpoint computation of line 1 ends up with R1 =
D1, hence O1 = X . Again we perform a refinement step by (i) computing
R′

1 = min(bad)∪{〈0, 1, 1, 0, 1〉, 〈0, 1, 1, 1, 0〉, 〈2, 2, 1, 0, 0〉, 〈2, 1, 2, 0, 0〉} (which cor-
responds to min(bad∪ pre(bad)∪ pre2(bad))) and (ii) adding tuples of R′

1↓ with
the ones of D1 to obtain D2.

Iteration 3 (i=2). The fixpoint computation of line 1 finishes with a set R2
such that the test of line 2 (O2 ∩ bad = ∅) succeeds and the system is proved to
be safe.

Indeed O2 = {(p1, p2, p3, p4, p5) ∈ N5 | (
∧5

i=2 pi ≤ 1)∧ p4 + p5 ≤ 1∧ p3 + p4 ≤
1 ∧ p2 + p5 ≤ 1} which is equal to Cover (S0). Since Cover (S0) is, in general,
not computable ([10]), the equality does always not hold. Notice that pre∗(bad)
is computed in five iterations with the classical algorithm of [17]. Hence, the
forward analysis allows to drastically cut the backward search. We hope this
gain will appear also on many practical examples.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126
(1994) 183–236

2. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of LICS, IEEE
Computer Society Press (1996) 278–292



64 P. Ganty, J.-F. Raskin, and L. Van Begin

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf.
Comput. 127 (1996) 91–101

4. Abdulla, P., Annichini, A., Bouajjani, A.: Symbolic verification of lossy channel
systems: Application to the bounded retransmission protocol. In: Proceedings of
TACAS. Volume 1579 of LNCS., Springer (1999) 208–222

5. Delzanno, G., Raskin, J.F., Van Begin, L.: Towards the automated verification of
multithreaded java programs. In: Proceedings of TACAS. Volume 2280 of LNCS.,
Springer (2002) 173–187

6. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: Fast acceleration of symbolic
transition systems. In: Proceedings of CAV. Volume 2725 of LNCS., Springer
(2003) 118–121

7. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
Proceedings of LICS, IEEE Computer Society Press (1999) 352–359

8. Reisig, W.: Petri Nets. An introduction. Springer (1986)
9. Ciardo, G.: Petri nets with marking-dependent arc multiplicity: properties and

analysis. In: Proc. of ATPN. Volume 815 of LNCS., Springer (1994) 179–198
10. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and

undecidability. In: Proceedings of ICALP. Volume 1443 of LNCS., Springer (1998)
103–115

11. Raskin, J.F., Van Begin, L.: Petri nets with non-blocking arcs are difficult to
analyse. In: Proceedings of INFINITY. Volume 96 of ENTCS., Elsevier (2003)

12. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-
state systems. In: Proc. of LICS, IEEE Computer Society Press (1998) 70–80

13. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. (3) 2 (1952) 326–336

14. Geeraerts, G., Raskin, J.F., Van Begin, L.: Expand, Enlarge and Check: new
algorithms for the coverability problem of WSTS. In: Proceedings of FSTTCS.
Volume 3328 of LNCS., Springer (2004) 287–298

15. Abdulla, P., Deneux, J., Mahata, P., Nylen, A.: Forward reachability analysis of
timed petri nets. In: Proceedings of Formats-FTRTFT. Volume 3253 of LNCS.,
Springer (2004) 343–362

16. Ganty, P., Raskin, J.F., Van Begin, L.: A complete abstract interpretation frame-
work for coverability properties of WSTS. Technical Report 2005.57, Centre Fédéré
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Abstract. The model checking problem of pushdown systems (PMC
problem, for short) against standard branching temporal logics has been
intensively studied in the literature. In particular, for the modal μ-
calculus, the most powerful branching temporal logic used for verifica-
tion, the problem is known to be Exptime-complete (even for a fixed for-
mula). The problem remains Exptime-complete also for the logic CTL,
which corresponds to a fragment of the alternation-free modal μ-calculus.
However, the exact complexity in the size of the pushdown system (for
a fixed CTL formula) is an open question: it lies somewhere between
Pspace and Exptime. To the best of our knowledge, the PMC problem
for CTL∗ has not been investigated so far. In this paper, we show that
this problem is 2Exptime-complete. Moreover, we prove that the pro-
gram complexity of the PMC problem against CTL (i.e., the complexity
of the problem in terms of the size of the system) is Exptime-complete.

1 Introduction

Model checking is a useful method to verify automatically the correctness of a
system with respect to a desired behavior, by checking whether a mathemat-
ical model of the system satisfies a formal specification of this behavior given
by a formula in a suitable propositional temporal logic. There are two types of
temporal logics: linear and branching. In linear temporal logics, each moment in
time has a unique possible future (formulas are interpreted over linear sequences
corresponding to single computations of the system), while in branching tempo-
ral logics, each moment in time may split into several possible futures (formulas
are interpreted over infinite trees, which describe all the possible computations
of the system). The size of an instance of a model checking problem depends on
two parameters: the size of the finite formal description of the given system and
the size of the formula. In practice, the formula in normally very small, while the
description of the system is often very large. Therefore, the complexity of the
problem in terms of the size of the system (called program complexity) is very
important in practice. Traditionally, model checking is applied to finite-state
systems, typically modelled by labelled state-transition graphs.

Recently, the investigation of model-checking techniques has been extended
to infinite-state systems. An active field of research is model-checking of infinite-
state sequential systems. These are systems in which each state carries a finite,
but unbounded, amount of information e.g. a pushdown store. The origin of this
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research is the result of Muller and Schupp concerning the decidability of the
monadic second-order theory of context-free systems [MS85]. This result can be
extended to pushdown systems [Cau96], and it implies decidability of the model
checking problem for all those logics (modal μ-calculus, CTL∗, CTL, etc.) which
have effective translations to the monadic second-order logic. As this general de-
cidability result gives a non-elementary upper bound for the complexity of model
checking, researchers sought decidability results of elementary complexity. Con-
cerning pushdown systems, model checking with branching-time logics is quite
hard. In particular, Walukiewicz [Wal96] has shown that model checking these
systems with respect to modal μ-calculus, the most powerful branching tempo-
ral logic used for verification, is Exptime-complete. Even for a fixed formula
in the alternation-free modal μ-calculus, the problem is Exptime-hard in the
size of the pushdown system. The problem remains Exptime-complete also for
the logic CTL [Wal00], which corresponds to a fragment of the alternation-free
modal μ-calculus. However, the exact complexity in the size of the system (for a
fixed CTL formula) is an open problem: it lies somewhere between Pspace and
Exptime [BEM97]. In [Wal00], Walukiewicz has shown that even for the simple
branching-time logic EF (a fragment of CTL) the problem is quite hard since it is
Pspace-complete (even for a fixed formula). For other branching-time temporal
logics such as EG, UB (which are fragments of CTL) and CTL∗ (which subsumes
both CTL and LTL) the problem is still open. To the best of our knowledge, the
pushdown model checking problem for CTL∗ has not been investigated so far.

For standard linear temporal logics, model-checking pushdown systems with
LTL and the linear-time μ-calculus is Exptime-complete [BEM97]. However, the
problem is polynomial in the size of the pushdown system. It follows that the
problem is only slightly harder than for finite-state systems, where it is Pspace-
complete but polynomial for any fixed formula [SC85, Var88]. For optimal push-
down model–checking algorithms, see also [EHRS00, EKS03, PV04, AEM04].

In this paper we study the pushdown model checking problem (PMC prob-
lem, for short) against CTL∗ and the program complexity of the PMC problem
against CTL. In particular, we state the following two results:

– The PMC problem against CTL∗ is 2Exptime-complete (and Exptime-
complete in the size of the system).

– The program complexity of the PMC problem w.r.t. CTL is Exptime-
complete.

In order to solve the PMC problem for CTL∗ we exploit an automata-theoretic
approach. In particular, we propose an exponential time reduction (in the size of
the formula) to the emptiness problem of alphabet-free alternating parity push-
down automata. The emptiness problem for this class of automata can be solved
by a construction similar to that given in [KPV02] to solve the emptiness problem
for nondeterministic parity pushdown tree automata (the algorithm in [KPV02]
is based on a polynomial reduction to the emptiness of two-way alternating parity
finite–state tree automata, which is known to be decidable in exponential time
[Var98]). 2Exptime-hardness is shown by a technically non-trivial reduction
from the word problem for Expspace–bounded alternating Turing Machines.
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Exptime-hardness of the pushdown model checking problem against CTL
was shown by Walukiewicz [Wal00] using a reduction from the word problem
for Pspace-bounded alternating Turing Machines. We use the basic ideas of the
construction in [Wal00] in order to prove that the program complexity of the
problem (i.e., assuming the CTL formula is fixed) is still Exptime-hard.

2 Preliminaries

In this section we recall syntax and semantics of CTL∗ and CTL [EH86, CE81].
Also, we define pushdown systems and the model checking problem.

CTL∗ and CTL logics. The logic CTL∗ is a branching–time temporal logic
[EH86], where a path quantifier, E (“for some path”) or A (“for all paths”), can
be followed by an arbitrary linear-time formula, allowing boolean combinations
and nesting, over the usual linear temporal operators X (“next”), U (“until”),
F (“eventually”), and G (“always”). There are two types of formulas in CTL∗:
state formulas, whose satisfaction is related to a specific state, and path formulas,
whose satisfaction is related to a specific path. Formally, for a finite set AP of
proposition names, the class of state formulas ϕ and the class of path formulas
θ are defined by the following syntax:

ϕ := prop | ¬ϕ | ϕ ∧ ϕ | A θ | E θ
θ := ϕ | ¬ θ | θ ∧ θ | Xθ | θ U θ

where prop ∈ AP . The set of state formulas ϕ forms the language CTL∗. The
other operators can be introduced as abbreviations in the usual way: for instance,
Fθ abbreviates true U θ and Gθ abbreviates ¬F¬θ.

The Computation Tree Logic CTL [CE81] is a restricted subset of CTL∗,
obtained restricting the syntax of path formulas θ as follows: θ := Xϕ |ϕ U ϕ.
This means that X and U must be immediately preceded by a path quantifier.

The models for the logic CTL∗ are labelled graphs 〈W,R, μ〉 where W is a
countable set of vertices, R ⊆ W ×W is the edge relation, and μ : W → 2AP

maps each vertex w ∈W to the set of atomic propositions that hold in w. Such
labelled graphs are called transition systems (TS, for short) here. In this context
vertices are also called (global) states. For (w,w′) ∈ R, we say that w′ is a
successor of w. A path is a (finite or infinite) sequence of vertices π = w0, w1, . . .
such that (wi, wi+1) ∈ R for any i ≥ 0. We denote the suffix wi, wi+1, . . . of π by
πi, and the i-th vertex of π by π(i). A maximal path is either an infinite path
or a finite path leading to a vertex without successors.

Let G = 〈W,R, μ〉 be an TS, w ∈ W , and π be a maximal path of G. For
a state (resp., path) formula ϕ (resp. θ), the satisfaction relation (G,w) |= ϕ
(resp., (G, π) |= θ), meaning that ϕ (resp., θ) holds at state w (resp., holds along
π) in G, is defined by induction. The clauses for proposition letters, negation,
and conjunction are standard. For the other constructs we have:

– (G,w) |= A θ iff for each maximal path π in G from w, (G, π) |= θ;
– (G,w) |= E θ iff there exists a maximal path π from w such that (G, π) |= θ;
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– (G, π) |= ϕ iff (G, π(0)) |= ϕ;
– (G, π) |= Xθ iff π(1) is defined and (G, π1) |= θ;
– (G, π) |= θ1 U θ2 iff there exists i ≥ 0 such that (G, πi) |= θ2 and for all

0 ≤ j < i, we have (G, πj) |= θ1.

Pushdown systems. A pushdown system (PDS, for short) is a tuple S =
〈AP, Γ, P,Δ,L〉, where AP is a finite set of proposition names, Γ is a finite stack
alphabet, P is a finite set of (control) states, Δ ⊆ (P × (Γ ∪ {γ0}))× (P × Γ ∗)
is a finite set of transition rules (where γ0 �∈ Γ is the stack bottom symbol),
and L : P × (Γ ∪ {γ0})→ 2AP is a labelling function. A configuration is a pair
(p, α) where p ∈ P is a control state and α ∈ Γ ∗ · γ0 is a stack content. For each
(p,B) ∈ P ×(Γ ∪{γ0}), we denote by nextS(p,B) the finite set (possibly empty)
of the pairs (p′, β) such that ((p,B), (p′, β)) ∈ Δ. The size |S| of S is |P |+ |Δ|,
with |Δ| =

∑
((p,B),(p′,β))∈Δ |β|.

The semantics of an PDS S = 〈AP, Γ, P,Δ,L〉 is described by an TS GS =
〈W,R, μ〉, where W is the set of pushdown configurations, for all (p,B · α) ∈ W
with B ∈ Γ ∪ {γ0}, μ(p,B · α) = L(p,B), and R is defined as follows:

– ((p,B · α), (p′, β)) ∈ R iff there is ((p,B), (p′, β′)) ∈ Δ such that either
B ∈ Γ and β = β′ ·α, or B = γ0 (note that α = ε) and β = β′ ·γ0 (note that
every transition that removes the bottom symbol γ0 also pushes it back).

For each configuration w ∈W , we denote by bdS(w) the number of successors
of w (note that bdS(w) is finite).

The pushdown model checking problem (PMC problem, for short) against
CTL (resp., CTL∗) is to decide, for a given PDS S, an initial configuration w0
of S, and a CTL (resp., CTL∗) formula ϕ, whether (GS , w0) |= ϕ.

3 Tree Automata

In order to solve the PMC problem for CTL∗, we use an automata theoretic
approach; in particular, we exploit the formalisms of Alternating Parity (finite–
state) Tree automata (APT, for short) [MS87, EJ91] and Alphabet-free alternat-
ing parity pushdown automata (PD-APA, for short).

Let N be the set of positive integers. A tree T is a subset of N∗ such that if
i · x ∈ T for some i ∈ N and x ∈ N∗, then also x ∈ T and for all 1 ≤ j < i,
j ·x ∈ T . The elements of T are called nodes and the empty word ε is the root of
T . For x ∈ T , the set of children (or successors) of x (in T ) is children(T, x) =
{i · x ∈ T | i ∈ N}. For x ∈ T , a (full) path π of T from x is a minimal set
π ⊆ T such that x ∈ π and for each y ∈ π such that children(T, y) �= ∅, there
is exactly one node in children(T, y) belonging to π. For k ≥ 1, the (complete)
k-ary tree is the tree {1, . . . , k}∗. For an alphabet Σ, a Σ-labelled tree is a pair
〈T, V 〉 where T is a tree and V : T → Σ maps each node of T to a symbol in
Σ. Note that 〈T, V 〉 corresponds to the labelled graph GT = 〈T,R, V 〉 where
(x, y) ∈ R iff y ∈ children(T, x). If Σ = 2AP , then for a given CTL∗ formula ϕ
over AP , we say that 〈T, V 〉 satisfies ϕ if (GT , ε) |= ϕ.
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For a set X , let B+(X) be the set of positive boolean formulas over X . Ele-
ments of X are called atoms. For Y ⊆ X and ψ ∈ B+(X), we say that Y satisfies
ψ iff assigning true to all elements of Y and assigning false to all elements of
X \ Y , makes ψ true. For k ≥ 1, we denote by [k] the set {1, . . . , k}.
Alternating Parity (finite–state) Tree automata (APT). We describe
APT over (complete) k-ary trees for a given k ≥ 1. Formally, an APT is a tuple
A = 〈Σ,Q, q0, δ, F 〉, where Σ is a finite input alphabet, Q is a finite set of states,
q0 ∈ Q is an initial state, δ : Q×Σ → B+([k]×Q) is a transition function, and
F is a parity acceptance condition [EJ91], i.e., F = {F1, . . . , Fm} is a sequence
of subsets of Q, where F1 ⊆ F2 ⊆ . . . ⊆ Fm = Q (m is called the index of A).

A run of A on a Σ-labelled k-ary tree 〈T, V 〉 (where T = [k]∗) is a labelled
tree 〈Tr, r〉 in which each node is labelled by an element of T ×Q. A node in Tr

labelled by (x, q) describes a copy of the automaton that is in the state q and
reads the node x of T . Note that many nodes of Tr can correspond to the same
node of T . The labels of a node and its children (successors) have to satisfy the
transition function. Formally, a run over 〈T, V 〉 is a T × Q-labelled tree 〈Tr, r〉
such that r(ε) = (ε, q0) and for all y ∈ Tr with r(y) = (x, q), the following holds:

– there is a (possibly empty) set {(h1, q1), . . . , (hn, qn)} ⊆ [k] × Q satisfying
δ(q, V (x)) such that for each 1 ≤ j ≤ n, j · y ∈ Tr and r(j · y) = (hj · x, qj).

Note that several copies of the automaton may go to the same direction
and that the automaton is not required to send copies to all the directions.
The automaton A is symmetric if for each (q, σ) ∈ Q × Σ, δ(q, σ) is a posi-
tive boolean combination of sub-formulas (called generators) either of the form∨i=k

i=1(i, q′) or of the form
∧i=k

i=1(i, q′) (note that q′ is independent from the spe-
cific direction i). The size |A| of a symmetric APT A is |Q| + |δ| + |F | where
|δ| =

∑
(q,σ)∈Q×Σ |δ(q, σ)| and |δ(q, σ)| is the length of the formula obtained from

δ(q, σ) considering each generator occurring in δ(q, σ) as an atomic proposition.
For a run 〈Tr, r〉 over 〈T, V 〉 and an infinite path π ⊆ Tr, let infr(π) ⊆ Q

be the set such that q ∈ infr(π) iff there are infinitely many y ∈ π such that
r(y) ∈ T × {q}. For the parity acceptance condition F = {F1, . . . , Fm}, π is
accepting if there is an even 1 ≤ i ≤ m such that infr(π) ∩ Fi �= ∅ and for all
j < i, infr(π) ∩ Fj = ∅. A run 〈Tr, r〉 is accepting if all its infinite paths are
accepting. The automatonA accepts an input tree 〈T, V 〉 iff there is an accepting
run of A over 〈T, V 〉. The language of A, denoted L(A), is the set of Σ-labelled
(complete) k-ary trees accepted by A.

It is well-known that formulas of CTL∗ can be translated to tree automata.
In particular, we are interested in optimal translations to symmetric APT.

Lemma 1 ([KVW00]). Given a CTL∗ formula ϕ over AP and k ≥ 1, we can
construct a symmetric APT of size O(2|ϕ|) and index O(|ϕ|) that accepts exactly
the set of 2AP -labelled complete k-ary trees satisfying ϕ.1

1 [KVW00] gives a translation from CTL∗ to Hesitant alternating tree automata which
are a special case of parity alternating tree automata.
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Alphabet-free alternating parity pushdown automata (PD-APA). An
PD-APA is a tuple P = 〈Γ, P, p0, α0, ρ, F 〉, where Γ is a finite stack alphabet, P
is a finite set of (control) states, p0 ∈ P is an initial state, α0 ∈ Γ ∗ ·γ0 is an initial
stack content, ρ : P × (Γ ∪ {γ0}) → B+(P × Γ ∗) is a transition function, and
F = {F1, . . . , Fm} is a parity acceptance condition over P . Intuitively, when the
automaton P is in state p and the stack contains a word B · α ∈ Γ ∗.γ0, then P
chooses a (possibly empty) finite set {(p1, β1), . . . , (pn, βn)} ⊆ P ×Γ ∗ satisfying
ρ(p,B) and splits in n copies such that for each 1 ≤ j ≤ n, the j-th copy moves
to state pj and updates the stack content by removing B and pushing βj .

Formally, a run of P is a P × Γ ∗.γ0-labelled tree 〈Tr, r〉 such that r(ε) =
(p0, α0) and for all y ∈ Tr with r(y) = (p,B ·α) and B ∈ Γ ∪{γ0}, the following
holds:

– there is a (possibly empty) finite set {(p1, β1), . . . , (pn, βn)} ⊆ P × Γ ∗ satis-
fying ρ(p,B) such that for each 1 ≤ j ≤ n, j ·y ∈ Tr and r(j ·y) = (pj , βj ·α)
if B �= γ0, and r(j · y) = (pj , βj · γ0) otherwise (note that in this case α = ε).

The notion of accepting path π ⊆ Tr is defined as for APT with infr(π)
defined as follows: infr(π) ⊆ P is the set such that p ∈ infr(π) iff there are
infinitely many y ∈ π for which r(y) ∈ {p} × Γ ∗ · γ0. A run 〈Tr, r〉 is accepting
if every infinite path π ⊆ Tr is accepting. The emptiness problem for PD-APA
is to decide, for a given PD-APA, the existence of an accepting run.

For (p, α) ∈ P × Γ ∗, the size of (p, α) is |α|. The size |ρ| of the transition
function is given by

∑
(p,B)∈P×(Γ∪{γ0}) |ρ(p,B)| where |ρ(p,B)| is the sum of

the sizes of the occurrences of atoms in ρ(p,B).
In the following we are interested in the emptiness problem for PD-APA.

In [KPV02], an optimal algorithm is given to solve the emptiness problem for
nondeterministic parity pushdown tree automata. This algorithm is based on
a polynomial reduction to the emptiness of two-way alternating parity tree au-
tomata, which is known to be decidable in exponential time [Var98]. By a similar
reduction we obtain the following.

Proposition 1. The emptiness problem for PD-APA with index m and transi-
tion function ρ is solvable in time exponential in m · |ρ|.

4 Upper Bound for CTL∗

We solve the PMC problem for CTL∗ using an automata theoretic approach. We
fix an PDS S = 〈AP, Γ, P,Δ,L〉, an initial configurationw0 = (p0, α0) of S, and a
CTL∗ formula ϕ. The unwinding of the TS GS = 〈W,R, μ〉 from w0 induces aW -
labelled tree 〈TS , VS〉: the root of TS is associated with the initial configuration
w0, and each node x ∈ TS labelled by w ∈ W has bdS(w) successors, each
associated with a successor w′ of w.2 In the following, we sometime view 〈TS , VS〉
2 Assuming that W is ordered, there is indeed only a single such tree. Since CTL∗

formulas cannot distinguish between trees obtained by different orders, we do not
lose generality by considering a particular order.
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as a 2AP -labelled tree, taking the label of a node x to be μ(VS(x)) instead of
VS(x). Which interpretation is intended will be clear from the context.

Evidently, (GS , w0) |= ϕ iff 〈TS , VS〉 satisfies ϕ. Therefore, the model checking
problem of S against ϕ can be reduced to check whether 〈TS , VS〉 belongs to the
language of the APT (whose existence is guaranteed by Lemma 1) accepting
the tree-models of ϕ. However, note that the branching degree of TS is not
uniform and, in particular, some nodes of TS may not have successors. We solve
this problem as follows. Let k = max{bdS(w) | w ∈ W} (note that k is finite
and can be trivially computed from the transition relation Δ of S). We can
encode the computation tree 〈TS , VS〉 as a 2AP∪{t} ∪ {⊥}-labelled complete k-
ary tree (where ⊥ and t are fresh proposition names not belonging to AP ) in
the following way: first, we add the proposition t to the label of all leaf nodes
(corresponding to configurations without successors) of the tree TS ; second, for
each node x ∈ TS with d children 1 · x, . . . , d · x (note that 0 ≤ d ≤ k), we
add the children (d + 1) · x, . . . , k · x and label these new nodes with ⊥; finally,
for each node x labelled by ⊥ we add recursively k children labelled by ⊥. Let
〈[k]∗, ṼS〉 be the tree thus obtained. Since a node labelled by ⊥ stands for a node
that actually does not exist, we have to take this into account when we interpret
CTL∗ formulas over the tree 〈[k]∗, ṼS〉. This means that we have to consider
only the paths in this tree (called “legal” paths) that either never visit a node
labelled by ⊥ or contain a terminal node (i.e. a node labelled by t). Note that
a path is not “legal” iff it satisfies the formula ¬t U ⊥. In order to achieve this,
we define inductively a function f : CTL∗ formulas→ CTL∗ formulas such that
f(ϕ) restricts path quantification to only “legal” paths:

• f(prop) = prop for any proposition prop ∈ AP ;
• f(¬ϕ) = ¬f(ϕ); • f(ϕ1 ∧ ϕ2) = f(ϕ1) ∧ f(ϕ2);
• f(Eϕ) = E((G¬⊥) ∧ f(ϕ)) ∨ E((F t) ∧ f(ϕ));
• f(Aϕ) = A((¬t U ⊥) ∨ f(ϕ));
• f(Xϕ) = X(f(ϕ)∧¬⊥); • f(ϕ1 U ϕ2) = (f(ϕ1)∧¬⊥) U (f(ϕ2)∧¬⊥).

Note that |f(ϕ)| = O(|ϕ|). By definition of f , it follows that 〈TS , VS〉 satisfies
ϕ (i.e., (GS , w0) |= ϕ) iff 〈[k]∗, ṼS〉 satisfies f(ϕ).

Let Af(ϕ) = 〈2AP∪{t}∪{⊥}, Q, q0, δ, F 〉, with F = {F1, . . . , Fm}, be the sym-
metric APT (whose existence is guaranteed by Lemma 1) accepting exactly the
2AP∪{t} ∪{⊥}-labelled complete k-ary trees that satisfy f(ϕ). We have to check
whether 〈[k]∗, ṼS〉 belongs to the language L(Af(ϕ)). We reduce this problem to
the emptiness of an PD-APA P = 〈Γ, (P ∪{⊥})×Q, (p0, q0), α0, ρ, F

′〉, which is
defined as follows. The states of P consist either of pairs of states of S and states
of Af(ϕ), or pairs of the form (⊥, q) where q is a state of Af(ϕ). Intuitively, when
the automaton P is in state (p, q) ∈ P × Q with stack content α, and (p, α) is
a configuration associated with some node x of 〈TS , VS〉, then P simulates the
behaviour of A starting from state q on the input tree given by the subtree of
〈[k]∗, ṼS〉 rooted at node x. Moreover, in state (⊥, q), P simulates the behaviour
of A from state q on the input tree in which all nodes are labelled by ⊥.

The parity acceptance condition F ′ is given by {(P ∪ {⊥}) × F1, . . . , (P ∪
{⊥})× Fm}. Finally, the transition function ρ is defined as follows:
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– for each (p, q) ∈ P ×Q and B ∈ Γ ∪ {γ0}, ρ((p, q), B) is defined as follows.
Let nextS(p,B) = {(p1, α1), . . . , (pd, αd)} (note that 0 ≤ d ≤ k). If d > 0
(resp., d = 0), then ρ((p, q), B) is obtained from formula δ(q, L(p,B)) (resp.,
δ(q, L(p,B) ∪ {t})) by replacing each generator occurring in it of the form∨i=k

i=1(i, q′) with
∨i=d

i=1((pi, q
′), αi) ∨

∨i=k
i=d+1((⊥, q′), ε), and each generator

of the form
∧i=k

i=1(i, q′) with
∧i=d

i=1((pi, q
′), αi) ∧

∧i=k
i=d+1((⊥, q′), ε);

– for each q ∈ Q and B ∈ Γ ∪ {γ0}, ρ((⊥, q), B) is obtained from formula
δ(q,⊥) by replacing each generator occurring in it of the form Ci=k

i=1 (i, q′),
where C ∈ {

∨
,
∧
}, with Ci=k

i=1 ((⊥, q′), ε).

It is not hard to see that P has an accepting run iff 〈[k]∗, ṼS〉 ∈ L(Af(ϕ)).
Note that the size |ρ| of the transition function ofP is bounded by k·|δ|·|Δ|. By

Lemma 1, it follows that P has index O(|ϕ|) and |ρ| is bounded by O(k ·2|ϕ| ·Δ).
Then, by Proposition 1 we obtain the main result of this section.

Theorem 1. Given an PDS S = 〈AP, Γ, P,Δ,L〉, a configuration w0 of S, and
a CTL∗ formula ϕ, the model checking problem of S with respect to ϕ is solvable
in time exponential in k · |Δ| · 2|ϕ| with k = max{bdS(w) | w ∈ P × Γ ∗ · γ0}.

5 Lower Bounds

In this section we give lower bounds for the PMC problem against CTL∗ and for
the program complexity of the PMC problem against CTL. The lower bound for
CTL (resp., CTL∗) is shown by a reduction from the word problem for Pspace–
bounded (resp., Expspace–bounded) alternating Turing Machines. Without
loss of generality, we consider a model of alternation with a binary branch-
ing degree. Formally, an alternating Turing Machine (TM, for short) is a tuple
M = 〈Σ,Q,Q∀, Q∃, q0, δ, F 〉, where Σ is the input alphabet, which contains
the blank symbol #, Q is the finite set of states, which is partitioned into
Q = Q∀ ∪ Q∃, Q∃ (resp., Q∀) is the set of existential (resp., universal) states,
q0 is the initial state, F ⊆ Q is the set of accepting states, and the transition
function δ is a mapping δ : Q×Σ → (Q×Σ × {L,R})2.

Configurations ofM are words in Σ∗ ·(Q×Σ)·Σ∗. A configuration η ·(q, σ)·η′
denotes that the tape content is ηση′, the current state is q, and the reading
head is at position |η| + 1. When M is in state q and reads an input σ ∈ Σ
in the current tape cell, then it nondeterministically chooses a triple (q′, σ′, dir)
in δ(q, σ) = 〈(ql, σl, dirl), (qr, σr , dirr)〉, and then moves to state q′, writes σ′ in
the current tape cell, and its reading head moves one cell to the left or to the
right, according to dir. For a configuration c, we denote by succl(c) and succr(c)
the successors of c obtained choosing respectively the left and the right triple
in 〈(ql, σl, dirl), (qr , σr, dirr)〉. The configuration c is accepting if the associated
state q belongs to F . Given an input x ∈ Σ∗, a computation tree of M on x is
a tree in which each node corresponds to a configuration. The root of the tree
corresponds to the initial configuration associated with x.3 A node that corre-
sponds to a universal configuration (i.e., the associated state is in Q∀) has two
3 We assume that initially M’s reading head is scanning the first cell of the tape.
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successors, corresponding to succl(c) and succr(c), while a node that corresponds
to an existential configuration (i.e., the associated state is in Q∃) has a single
successor, corresponding to either succl(c) or succr(c). The tree is accepting if
all its paths (from the root) visit an accepting configuration. An input x ∈ Σ∗

is accepted byM if there exists an accepting computation tree ofM on x.
If M is Pspace–bounded (resp., Expspace–bounded), then there is a con-

stant k ≥ 1 such that for each x ∈ Σ∗, the space needed by M on input
x is bounded by k · |x| (resp., 2k·|x|). It is well-known [CKS81] that Exptime
(resp., 2Exptime) coincides with the class of all languages accepted by Pspace–
bounded (resp., Expspace–bounded) alternating Turing Machines.

Exptime-hardness of the pushdown model checking problem against CTL
was shown by Walukiewicz [Wal00] using a reduction from the word problem
for Pspace-bounded alternating Turing Machines. We use the basic ideas of the
construction in [Wal00] in order to prove that the program complexity of the
problem (i.e., assuming the CTL formula is fixed) is still Exptime-hard.

Theorem 2. The program complexity of the PMC problem for CTL is Exptime-
hard.

Proof. We show that there is a CTL formula ϕ such that given a Pspace–
bounded alternating Turing MachineM = 〈Σ,Q,Q∀, Q∃, q0, δ, F 〉 and an input
x, it is possible to define an PDS S and a configuration w of S, whose sizes are
polynomial in n = k · |x| and in |M|,4 such thatM accepts x iff (GS , w) |= ϕ.

Note that any reachable configuration ofM over x can be seen as a word in
Σ∗ · (Q×Σ) ·Σ∗ of length exactly n. If x = σ1 . . . σr (where r = |x|), then the
initial configuration is given by (q0, σ1)σ2 . . . σr ## . . .#︸ ︷︷ ︸

n−r

.

S guesses accepting computation trees ofM starting from TM configurations
of length n. The internal nodes of these trees are non-accepting configurations
and the leaves are accepting configurations. The trees are traversed as follows.
If the current non-accepting configuration c is universal, then S, first, will ex-
amine the subtrees associated with the left successor of c, and successively the
subtrees associated with the right successor. If instead c is existential, then S
will guess one of the two successors of c and, consequently, it will examine only
the subtrees associated with this successor. In order to guess an accepting tree
(if any) from a given configuration, S keeps track on the stack of the path from
the root to the actual TM configuration by pushing the new guessed configu-
rations and popping when backtracking along the accepting subtree guessed so
far. Therefore, S accepts by empty stack. The stack alphabet of S is given by
Σ∪(Q×Σ)∪{∃l, ∃r, ∀l, ∀r} where ∃l and ∃r (resp., ∀l and ∀r) are used to delimi-
tate the left and right successors of an existential (resp., universal) configuration.
The behaviour of S can be subdivided in three steps.

1. Generation of a TM configuration (operative phase) - S generates nondeter-
ministically by push transitions a TM configuration c followed by a symbol

4 Where k ≥ 1 is a constant such that for each input y ∈ Σ∗, the space needed by M
on input y is bounded by k · |y|.
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in {∀l, ∃l, ∃r} on the stack, with the constraint that ∀l is chosen iff c is a uni-
versal configuration (i.e., the TM state q associated with c belongs to Q∀). In
this phase, a (control) state of S has the form (gen, q, i, f lag), where q ∈ Q
keeps track of the TM state associated with c, gen is a label identifying the
current operation of S, i ∈ {0, . . . , n+1} is used to ensure that c has exactly
length n, and flag ∈ {0, 1} is used to ensure that c ∈ Σ∗ · (Q × Σ) · Σ∗.

When S finishes to generate a TM configuration c followed by a sym-
bol m ∈ {∀l, ∃l, ∃r}, i.e. S is in a state of the form (gen, q, n + 1, 1), then
it chooses nondeterministically between two possible options. Choosing the
first option, S goes to state cont, pops m from the stack, and performs Step
3 (see below). Choosing the second option, the behaviour of S depends on
whether c is accepting. If c is not accepting (i.e., q /∈ F ), then S guesses
a successor of c going to a state of the form (gen, q′, 0, 0) for some q′ ∈ Q
without changing the stack content. Therefore, Step 1 is newly performed.
If instead c is accepting (i.e., q ∈ F ), then S goes to state rem, pops m from
the stack, and performs Step 2 (see below).

2. Removing a TM configuration (operative phase) - When S is in state rem,
it removes deterministically by pop transitions the TM configuration c on
the top of the stack (if any). After having removed c, if the symbol on the
top of the stack, say B, belongs to {∀r, ∃l, ∃r} (this means intuitively that
S has already generated a “pseudo” accepting computation tree for the TM
configuration currently on the top of the stack), then S pops B from the
stack and goes to state rem (i.e., Step 2.2 is newly performed). If instead
B = ∀l, then S goes to a state of the form (gen, q′, 0, 0) for some q′ ∈ Q and
replaces ∀l with the symbol ∀r on the top of the stack. Therefore, Step 1 is
newly performed. Finally, if B = γ0 (i.e., the stack is empty), then S goes
to state fin and terminates its computation.

3. Checking δ-consistency (control phase)- When S is in state cont, it checks
that one of the following holds:
– the stack contains exactly one TM configuration.
– the stack content has the form c′ · m · c · α where c and c′ are TM

configurations and m ∈ {∃l, ∃r, ∀l, ∀r}.
In the first case, S signals success by generating (by its finite control) the
symbol good. In the second case, S signals success if and only if c′ is a
TM successor of c in accordance with m, i.e.: c′ = succs(c) where s = l
iff m ∈ {∃l, ∀l}. In order to understand how this can be done by using a
number of states polynomial in n and |M|, let c = a1 . . . an. For each 1 ≤
i ≤ n, the value a′i of the i-th cell of succl(c) (resp., succr(c)) is completely
determined by the values ai−1, ai and ai+1 (taking an+1 for i = n and a0
for i = 1 to be some special symbol, say “−”). As in [KTMV00], we denote
by nextl(ai−1, ai, ai+1) (resp., nextr(ai−1, ai, ai+1)) our expectation for a′i
(these functions can be trivially obtained from the transition function of
M). Then, in state cont, S chooses nondeterministically between n states,
cont1, . . . , contn without changing the stack content. For each 1 ≤ i ≤ n,
if S is in state conti, then first, it deterministically removes c′ ·m from the
stack, keeping track by its finite control of m and the i-th symbol a′i of
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c′. Successively, S deterministically removes c from the stack, keeping also
track of the symbols ai−1, ai, and ai+1. Finally, S checks whether a′i =
nexts(ai−1, ai, ai+1) with s = l iff m ∈ {∃l, ∀l}. If this condition is satisfied
(and only in this case), then S generates the symbol good and terminates
the computation.

Formally, S = 〈AP, Γ, P,Δ,L〉 is defined as follows:

– AP = {op, cont, good, fin} and Γ = Σ ∪ (Q×Σ) ∪ {∀l, ∀r, ∃l, ∃r};
– P = {good, fin, rem}∪PG∪Pδ where PG = {(gen, q, i, f lag) | q ∈ Q, 0 ≤ i ≤
n+1, f lag ∈ {0, 1}, f lag = 0 if i = 0 and flag = 1 if i = n, n+1} is the set
of (control) states used in Step 1, and Pδ, which is used in Step 3, is given by
{cont, cont1, . . . , contn} ∪ {(conti, j, a) | 1 ≤ i, j ≤ n and a ∈ Σ ∪ (Q×Σ)}
∪{(conti, j, a,m, a1, a2, a3) | 1 ≤ i ≤ n, 0 ≤ j ≤ n, m ∈ {∀l, ∀r, ∃l, ∃r},

a, a1, a2, a3 ∈ Σ ∪ (Q×Σ) ∪ {−}, and a �= −}
– ((p,B), (p′, β)) ∈ Δ iff one of the following holds:
• Step 1 (generation of a TM configuration) - If p ∈ PG, then:
∗ if p = (gen, q, i, f lag) and i < n, then β = B′B with B′ ∈ Σ∪({q}×
Σ) and p′ = (gen, q, i+1, f lag′). Moreover, if flag = 1, then B′ ∈ Σ
and flag′ = 1; otherwise, flag′ = 0 iff B′ ∈ Σ.
∗ if p = (gen, q, n, 1), then p′ = (gen, q, n + 1, 1) and β = B′B with
B′ = ∀l if q ∈ Q∀, and B′ ∈ {∃l, ∃r} otherwise.
∗ if p = (gen, q, n+1, 1), then or (1) β = ε and p′ = cont, or (2) q /∈ F ,
β = B ∈ Γ , and p′ = (gen, q′, 0, 0) for some q′ ∈ Q, or (3) q ∈ F ,
β = ε, and p′ = rem.

• Step 2 (Removing a TM configuration). If p = rem, then:
∗ if B ∈ Σ ∪ (Q×Σ) ∪ {∀r, ∃l, ∃r}, then β = ε and p′ = rem;
∗ if B = ∀l, then β = ∀r and p′ = (gen, q′, 0, 0) for some q′ ∈ Q;
∗ if B = γ0, then β = ε, and p′ = fin.

• Step 3 (Checking δ-consistency). If p ∈ Pδ, then:
∗ if p = cont, then β = B and p′ = conti for some 1 ≤ i ≤ n.
∗ if p = conti, then B ∈ Σ ∪ (Q×Σ), β = ε, and p′ = (conti, 1, B);
∗ if p = (conti, j, a) and j < n, then B ∈ Σ ∪ (Q × Σ), β = ε, and
p′ = (conti, j+1, a′) where a′ = B if j = i−1, and a′ = a otherwise;
∗ if p = (conti, n, a), then either B = γ0, β = ε, and p′ = good, or
B ∈ {∃l, ∀l, ∃r, ∀r}, β = ε, and p′ = (conti, 0, a, B,−,−,−);
∗ if p = (conti, j, a,m, a1, a2, a3) and j < n, then B ∈ Σ ∪ (Q × Σ),
β = ε, and p′ = (conti, j + 1, a,m, a′1, a

′
2, a

′
3) where for each 1 ≤ h ≤

3, a′h = B if j = i+ h− 3, and a′h = ah otherwise;
∗ if p = (conti, n, a,m, a1, a2, a3), then a = nexts(a1, a2, a3) where
s = l if and only if m ∈ {∃l, ∀l}. Moreover, β = ε and p′ = good.

– For all B ∈ Γ ∪{γ0}, L(good,B) = {good}, L(fin,B) = {fin}, L(rem,B) =
op, for all p ∈ PG, L(p,B) = {op}, and for all p ∈ Pδ, L(p,B) = {cont}.

LetGS = 〈W,R, μ〉. The correctness of the construction is stated by the following
claim:
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Claim. Given a TM configuration c with TM state q, there is an accepting
computation tree of M over c iff there is a path of GS of the form π =
w0w1 . . . wn such that w0 = ((gen, q, n, 1), c · γ0), μ(wn) = fin, and for each
0 ≤ i ≤ n−1, μ(wi) = op and if wi has a successor w′

i such that μ(w′
i) = cont,

then each path from w′
i visits a state of the form (good, β).

The condition in the claim above can be encoded by the following CTL formula

ϕ := E
([
op ∧AX(cont→ AFgood)

]
U fin

)
(1)

Let c0 be the initial TM configuration (associated with the input x). Then, by
Claim 1 it follows thatM accepts x iff (GS , w) |= ϕ where w = ((gen, q0, n, 1),
c0 ·γ0). Since ϕ is independent fromM and n, and the sizes of |S| and w are poly-
nomial in n and |M|, the assertion holds. �

Theorem 3. Pushdown model checking against CTL∗ is 2Exptime-hard.

Proof. Let M = 〈Σ,Q,Q∀, Q∃, q0, δ, F 〉 be an Expspace–bounded alternating
Turing Machine, and let k be a constant such that for each x ∈ Σ∗, the space
needed byM on input x is bounded by 2k·|x|. Given an input x ∈ Σ∗, we define
an PDS S, a configuration w0 = (p0, γ0) of S, and a CTL∗ formula ϕ, whose sizes
are polynomial in n = k ·|x| and in |M|, such thatM accepts x iff (GS , w0) |= ϕ.
Some ideas in the proposed reduction are taken from [KTMV00], where there
are given lower bounds for the satisfiability of extensions of CTL and CTL∗.

Note that any reachable configuration ofM over x can be seen as a word in
Σ∗ · (Q×Σ) ·Σ∗ of length exactly 2n. If x = σ1 . . . σr (where r = |x|), then the
initial configuration is given by (q0, σ1)σ2 . . . σr ## . . .#︸ ︷︷ ︸

2n−r

.

Each cell of a TM configuration is coded using a block of n symbols of the
stack alphabet of S. The whole block is used to encode both the content of the
cell and the location (the number of cell) on the TM tape (note that the number
of cell is in the range [0, 2n − 1] and can be encoded using n bits). The stack
alphabet is given by {∀l, ∀r, ∃l, ∃r}

⋃
(Σ∪(Q×Σ))×2{b,e,f,cn,l} where b is used

to mark the first element of a TM block, e (resp., f) to mark the first (resp.,
the last) block of a TM configuration, cn to encode the number of cell, and l to
mark a left TM successor.

The behaviour of S is similar to that of the pushdown system defined in the
proof of Theorem 2. The main differences can be summarized as follows:

– Generation of a TM configuration (Step 1) When S generates nondeter-
ministically a TM configuration c on the stack, it ensures that each block
of c has length n and the symbols b, f , and e are used properly. Moreover,
if c is generated as a successor of an other TM configuration, i.e. the stack
content before generating c has the form m ·α with m ∈ {∃l, ∃r, ∀l, ∀r}, then
S ensures that the label l is used properly, i.e. any element of c is marked
by l iff m ∈ {∃l, ∀l}. However, S does not ensure the the cell numbers of c
are encoded properly (indeed, this would require a number of control states
exponential in n).
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– Generation of the initial TM configuration - Starting from the global state
w0 = (p0, γ0), S, first, generates the encoding of the initial TM configuration
c0 (associated with the input x) on the stack. Note that S ensures that c0
has the form (q0, σ1)σ2 . . . σr## . . .. However, S does not ensure that the
number of blanks to the right of σr is exactly 2n − r.

– Checking δ-consistency - As for the pushdown system defined in the proof
of Theorem 2, after having generated a TM configuration on the stack, S
can choose nondeterministically to go to the (control) state cont. When S is
in state cont, it chooses nondeterministically between two options cont1 and
cont2 (without changing the stack content). Assume that the stack content
has the form c · α where c is a “pseudo” TM configuration generated in
Step 1, and either α is empty or it has the form m · c′ · α′ where m ∈
{∃l, ∃r, ∀l, ∀r} and c′ is a “pseudo” TM configuration. Then, choosing option
cont1, S removes deterministically (by pop transitions) c from the stack and
terminates its computation. The computation tree 〈T, V 〉 of GS rooted at the
global state associated with cont1 reduces to a finite path π (corresponding
to the configuration c). We use a CTL∗ formula ϕ1 on this tree 〈T, V 〉 in
order to require that the cell numbers of c are encoded correctly (this also
implies that the number of blocks of c is exactly 2n). For each node u ∈ π,
let cn(u) be the truth value (1 for true and 0 for false) of the proposition cn
in u. Let us consider two consecutive TM blocks u1 . . . unu

′
1 . . . u

′
n along π,

and let k (resp., k′) be the number of cell of the first block (resp., the second
block), i.e., the integer whose binary code is given by cn(u1) . . . cn(un) (resp.,
cn(u′1) . . . cn(u′n)). We have to require that k′ = (k + 1) mod 2n, and k = 0
(resp., k′ = 2n − 1) if u1 . . . un corresponds to the first block of c, i.e. u1 is
labelled by proposition e (resp., u′1 . . . u

′
n corresponds to the last block of c,

i.e. u′1 is labelled by proposition f). Therefore, ϕ1 is defined as follows:

AG
( (

(b ∧ e)→
∧n−1

j=0 (AX)j ¬cn
) ∧ (

(b ∧ f)→
∧n−1

j=0 (AX)j cn
) ∧[

(b ∧ ¬f) −→
∨n−1

j=0 [(AX)j(¬cn ∧ (AX)ncn) ∧∧
i>j(AX)i(cn ∧ (AX)n¬cn) ∧

∧
i<j(AX)i(cn ↔ (AX)ncn)]

] )
Choosing the second option cont2, S, first, removes deterministically c from
the stack with the additional ability to generate (by its finite control) the
symbol check1. Successively, assuming that α has the formm·c′·α′, S removes
m · c′ from the stack (by pop transitions) and simultaneously generates (by
its finite control) at most at one block of c′ the symbol check2. After this
operation, S terminates its computation. Let 〈T, V 〉 be the computation tree
of GS rooted at the global state associated with cont2. If α is empty, then by
construction, T reduces to a finite path labelled by proposition check1 and
corresponding to configuration c. If instead α has the form m · c′ · α′, then
each path (from the root) of T consists of a sequence of nodes corresponding
to c labelled by check1 followed by a sequence of nodes corresponding to c′

with at most one block labelled by check2. This allows us to define a CTL∗

formula ϕ2, asserted on the tree 〈T, V 〉, (whose size is polynomial in n and
|M|) in order to require that in the case α is not empty (i.e., α has the form
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m · c′ · α′), c is a TM successor of c′ in accordance with m, i.e. c = succs(c′)
where s = l iff m ∈ {∃l, ∀l} (note that by Step 1, m ∈ {∃l, ∀l} iff c is marked
by symbol l). Formula ϕ2 is defined as follows:

AG(¬check2) ∨ AG((check1 ∧ b)→ E(θ1 ∧ θ2))

where the path formulas θ1 and θ2 are defined below. Note that the subfor-
mula AG(¬check2) manages the case in which α is empty. In the other case,
we require that for each node u ∈ T labelled by check1 and b, i.e. associated
with the first element of a block bl of c, there is a path π from u satisfying
the following two properties:
1. π visits a node labelled by check2 and b, i.e. associated with the first

element of a block bl′ of c′, such that bl and bl′ have the same number
of cell. This requirement is specified by the path formula θ1:

θ1 := ψ1 ∧ X(ψ2 ∧ X(ψ3 ∧ . . .X(ψn) . . .))
where for each 1 ≤ j ≤ n, ψj is defined as follows(
cn → F (check2∧ b ∧Xj−1 cn)

)
∧
(
¬cn → F (check2∧ b ∧Xj−1 ¬ cn)

)
2. Let Σ′ := Σ ∪ (Q × Σ) and let us denote by σ(b̂l) the Σ′-value of a

TM block b̂l. By construction and Property 1 above, there is exactly
one node of π that is labelled by check2 and b. Moreover, by Prop-
erty 1 this node is associated with a TM block bl′ of c′ having the
same number of cell of bl. Therefore, we have to require that σ(bl) =
nexts(σ(blprec), σ(bl′), σ(blsucc)) where blprec and blsucc represent the
blocks soon before and soon after bl′ along π, and s = l iff the TM
configuration c is a left TM successor (i.e. all nodes of bl are labelled by
proposition l). This requirement is expressed by the path formula θ2. We
distinguish three cases depending on whether bl corresponds to the first
block, to the last block or to a non-extremal block of the associated TM
configuration c. For simplicity, we consider only the case in which bl is a
non-extremal block. The other cases can be handled similarly.

θ2 := (¬f ∧ ¬e) −→∨
σ1,σ2,σ3∈Σ′

(
F (σ1 ∧ (X)n(σ2 ∧ b ∧ check2 ∧ (X)nσ3))

∧
(l → nextl(σ1, σ2, σ3))

∧
(¬l → nextr(σ1, σ2, σ3))

)
Finally, formula ϕ is obtained from formula (1) in the proof of Theorem

2 by replacing the subformula AX(cont → AFgood) in (1) with the formula
AX

[
cont→

(
EX(cont1∧ϕ1)∧EX(cont2∧ϕ2)

)]
. �

Now, we can prove the main result of this paper.

Theorem 4.
(1) The program complexity of the PMC problem for CTL is Exptime-complete.
(2) The PMC problem for CTL∗ is 2Exptime-complete. The program complex-

ity of the problem is Exptime-complete.

Proof. Claims 1 follows from Theorem 2 and the fact that model-checking push-
down systems against CTL is known to be Exptime-complete [Wal00], while
Claim 2 directly follows from Theorems 1 and 3, and Claim 1. �
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Abstract. We present a program logic, Lc, which modularly reasons
about unstructured control flow in machine-language programs. Unlike
previous program logics, the basic reasoning units in Lc are multiple-
entry and multiple-exit program fragments. Lc provides fine-grained
composition rules to compose program fragments. It is not only use-
ful for reasoning about unstructured control flow in machine languages,
but also useful for deriving rules for common control-flow structures such
as while-loops, repeat-until-loops, and many others. We also present a
semantics for Lc and prove that the logic is both sound and complete
with respect to the semantics. As an application, Lc and its semantics
have been implemented on top of the SPARC machine language, and are
embedded in the Foundational Proof-Carrying Code project to produce
memory-safety proofs for machine-language programs.

1 Introduction

Hoare Logic [1] has long been used to verify properties of programs written in
high-level programming languages. In Hoare Logic, a triple {p}s{q} describes
the relationship between exactly two states—the normal entry and exit states—
associated with a program execution. That is, if the state before execution of s
satisfies the assertion p, then the state after execution satisfies q. For a high-level
programming language with structured control flow, a program logic based on
Hoare triples works fine.

However, programs in high-level languages are compiled into machine code to
execute. Since it is hard to prove that a compiler with complex optimizations
produces correct machine code from verified high-level-language programs, sub-
stantial research effort [2, 3, 4] during recent years has been devoted to verifying
properties directly at the machine-language level.

Machine-language programs contain goto statements with unrestricted des-
tinations. Therefore, a program fragment or a collection of statements possibly
contains multiple exits and multiple entries to which goto statements might
jump. In Hoare Logic, since a triple {p}s{q} is tailored to describe the relation-
ship between the normal entry and the normal exit states, it is not surprising that
trouble arises in considering program fragments with more than one entry/exit.

To address the problem of reasoning about control flow in machine-language
programs, this paper makes two main contributions:

E.A. Emerson and K.S. Namjoshi (Eds.): VMCAI 2006, LNCS 3855, pp. 80–94, 2006.
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– We propose a program logic, Lc, which modularly reasons about machine-
language program fragments. Its basic reasoning units are multiple-entry and
multiple-exit program fragments. The logic composes program fragments in
a set of fine-grained composition rules. As a result, Lc is more modular than
previous program logics for control flow.

– We also develop for Lc a semantics. We will show that a naive semantics does
not work. We need to use a semantics based on approximations of counting
computation steps. Based on this semantics, soundness and (relative) com-
pleteness of Lc are proved.

Before a full technical development, we present an overview of Lc and its related
work.

Overview of Lc. Two design features give Lc its modularity: its judgment (form
of specification) and its composition rules. The judgment in Lc is directly on
multiple-entry and multiple-exit program fragments. For example, Lc treats a
conditional-branch statement “if b goto l” as a one-entry and two-exit fragment.
Lc then provides for “if b goto l” a rule, which associates the entries and exits
with appropriate invariants, depicted as follows:

p

gotob l

∧p b∧p b¬
l

if

The above graph associates the invariant p with the entry, and associates p∧¬b
and p ∧ b with two exits, respectively. As a note to our convention, we put
invariants on the right of edges; we put labels, when they exist, on the left.
Lc also provides a set of inference rules to compose judgments on program

fragments. These inference rules reason about control flow in smaller steps than
Hoare Logic. For example, to reason about while loops, Hoare Logic provides a
while rule:

{p ∧ b}s{p}
{p}while b do s{p ∧ ¬b} while

l : if ¬b goto l′;
l1 : s;
l2 : goto l
l′ :

(1)

A while loop, however, is a high-level language construct. When mapped to
machine code, it is implemented by a sequence of more primitive statements.
One implementation is shown on the right of the previous figure. Since the
implementation contains unstructured control flow, Hoare logic cannot reason
about it. In contrast, our logic can treat each statement in the implementation
as a multiple-entry and multiple-exit fragment. Using its composition rules, the
logic can combine fragments and eliminate intermediate entries and exits. In
the end, from its composition rules, the logic can derive the Hoare-logic rule
for while loops. Furthermore, it can derive the rules for sequential composition,
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repeat-until loops, if-then-else statements, and many other structured control-
flow constructs. Therefore, our logic can recover structured control flow, when
present, in machine-language programs.

Related work on program logics for goto statements. Many researchers have also
realized the difficulty of verifying properties of programs with goto statements in
Hoare Logic [5, 6, 7, 8, 9]. Some of them have proposed improvements over Hoare
Logic. Almost all of these works are at the level of high-level languages. They
treat while loops as a separate syntactic construct and have a rule for it. In
comparison, Lc derives rules for control-flow structures.

These previous works also differ from Lc in terms of the form of specification.
The work by de Bruin [8] is a typical example. In his system, the judgment for
a statement s is:

〈L1 : p1, . . . , Ln : pn|{p}s{q}〉, (2)

where L1, . . . , Ln are labels in a program P ; the assertion pi is the invari-
ant associated with the label Li; the statement s is a part of the program
P . Judgment (2) judges a triple {p}s{q}, but under all label invariants in
a program. By explicitly supplying invariants for labels in the judgment, de
Bruin’s system can handle goto statements, and its rule for goto statements is
〈L1 : p1, . . . , Ln : pn|{pi}goto Li{false}〉.

Judgment (2) is sufficient for verifying properties of programs with goto state-
ments. Typed Assembly Language (TAL [3]) by Morrisett et al. uses a similar
judgment to verify type safety of assembly-language programs. However, judg-
ment (2) assumes the availability of global information, because it judges a
statement s under all label invariants of a program— L1 : p1, . . . , Ln : pn. Con-
sequently, it is impossible for de Bruin’s system or TAL to compose fragments
with different sets of global label invariants. We believe that a better form of
specification should judge s under only those label invariants associated with
exits in s. This new form of specification makes fewer assumptions (fewer label
invariants) about the rest of the program and is more modular.

Floyd’s work [10] on program verification associates a predicate for each arc
in the flowchart representation of a program. The program is correct if each
statement in the program has been verified correct with respect to the predicates
associates with the entry and exit arcs of the statement. In Floyd’s system,
however, the composition of statements is based on flowcharts and is informal,
and it has no principles for eliminating intermediate arcs. Our Lc provides formal
rules for composing statements. When verifying properties of goto statements
and labels, Floyd’s system also assumes the availability of the complete program.

Cardelli proposed a linking logic [11] to formalize program linking. Glew and
Morrisett [12] defined a modular assembly language to perform type-safe linking.
Our logic is related to these works because exit labels can be thought as imported
labels in a module, and entry labels as exported labels. In some sense, we apply
the idea of modular linking to verification of machine code. But since we are
more concerned with program verification, we also provide a semantics for our
logic, and prove it is both sound and complete.
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Recent works by Benton [13], Ni and Shao [14], and Saabas and Usstalu [15]
define compositional program logics for low-level machines; their systems also
reason modularly about program fragments and linking. To deal with procedure
calls and returns, Benton uses Hoare-style pre- and postconditions. Since our
compiler uses continuation-passing style, so can our calculus; therefore our labels
need only preconditons.

The rest of this paper is organized as follows. Section 2 presents the logic
Lc on a simple imperative language that has unstructured control flow. In Sec-
tion 3, we develop a semantics for the logic. The soundness and completeness
theorems are then presented. In Section 4, we briefly discuss the implementation
and the role of Lc in the Foundational Proof-Carrying Code project [4]. In Sec-
tion 5, we conclude and discuss future work. A more detailed treatment of the
logic, its semantics, and its applications can be found in the first author’s PhD
thesis [16].

2 Program Logic Lc

We present Lc on a simple imperative language. Figure 1 presents the syntax of
the language. Most of the syntax is self-explanatory, and we only stress a few
points. First, since the particular set of primitive operators and relations does
not affect the presentation, the language assumes a class of operator symbols,
OPSym, and a class of relation symbols, RSym. For concreteness, OPSym could
be {+,×, 0, 1} and RSym could be {=, <}. Second, boolean operators do not
include standard constructors such as false, ∧ and ⇒; they can be defined by
true, ∨ and ¬.

The language in Fig. 1 is tailored to imitate a machine language. The des-
tination of a goto statement is unrestricted and may be a label in the middle
of a loop. Furthermore, the language does not have control structures such as
if b then s, and while b do s. These control structures are implemented by a
sequence of primitive statements.

To simplify the presentation, the language in Fig. 1 differs from machine
languages in several aspects. It uses abstract labels while machine languages
use concrete addresses. This difference does not affect the results of Lc. The
language also lacks indirect jumps (jump through a variable), pc-relative jumps,
and procedure calls. We will discuss in Section 4 how we deal with these features.

operator symbols OPSym op
relation symbols RSym re
variables Var x, y, z
labels Label l
primitive statements PrimStmt t ::= x := e | goto l | if b goto l
statements Stmt s ::= t | l : s | (s1; s2)
expressions Exp e ::= x | op(e1, . . . , ear(op))
boolean expressions BExp b ::= true | b1 ∨ b2 | ¬b | re(e1, . . . , ear(re))

Fig. 1. Language syntax, where ar(op) is the arity of the symbol op



84 G. Tan and A.W. Appel

2.1 Syntax and Rules of Lc

The syntax of Lc is in Fig. 2.

Program fragments. A program fragment, l : (t) : l′, is a primitive statement
t with a start label l and an end label l′. The label l identifies the left side
of t, the normal entry, and l′ identifies the right side of t, the normal exit.
We also use l1 : (s1; s2) : l3 as an abbreviation for two fragments: l1 : (s1) : l2
and l2 : (s2) : l3, where l2 is a new label. We use the symbol F for a set of
fragments.

fragments Fragment f ::= l : (t) : l′

fragment sets FragSet F ::= {l1 : (t1) : l′1, . . . , ln : (tn) : l′n}
assertions Assertion p ::= true | p1∨p2 | ¬p | re(e1, . . . , ear(re)) | ∃x.p
label-continuation sets LContSet Ψ ::= {l1 
 p1, . . . , ln 
 pn}

Fig. 2. Lc: Syntax

Assertions and label continuations. Assertions are meant to describe predicates
on states. Lc can use any assertion language. We use first-order classical logic
in this presentation (see Fig. 2). This assertion language is a superset of the
language of boolean expressions. We omit conjunction and universal quantifiers
since they can be defined by other constructors classically.
Lc is parametrized over a deduction system, D, which derives true formulas

in the assertion language. We leave the rules of D unspecified, and assume that
its judgment is 'D p, which is read as that p is a true formula.

A label identifies a point in a program. To associate assertions with labels, Lc

uses the notation, l�p, pronounced “l with p”. In Hoare Logic, when an assertion
p is associated with a label l in a verified program, then whenever the control
of the program reaches l, the assertion p is true on the current state. In Lc, we
interpret l � p in a different way: If l � p is true in a program, then whenever p
is satisfied, it is safe to continue from l (or, jump to l). Therefore, we call p a
precondition of the label l, and call l � p a label continuation. We use the symbol
Ψ for a set of label continuations.

Form of specification. In Lc, the judgment to specify properties of multiple-entry
and multiple-exit program fragments has the syntax:

F ; Ψ ′ ' Ψ,

where F is a set of program fragments; Ψ ′ and Ψ are sets of label continuations.
We next explain this judgment. Suppose

Ψ ′ = {l′1 � p′1, . . . , l′m � p′m}, and Ψ = {l1 � p1, . . . , ln � pn}.

Labels l′1, . . . , l′m in Ψ ′ are exits of F , and l1, . . . , ln in Ψ are entries of F . The
following graph depicts the relationship between F , Ψ , and Ψ ′:
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ψ′
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l ′1

p1 pnln

p′1 m′p

F

ψ

m

With this relationship in mind, an informal interpretation of the judgment
F ; Ψ ′ ' Ψ is as follows: for a set of fragments F , if it is safe to continue
from any of the exit labels, provided that the associated assertion is true, then
it is safe to continue from any of the entry labels, provided that the associ-
ated assertion is true. This interpretation draws conclusions on entry labels
based on assumptions on exit labels. Note, however, this interpretation is sim-
plified and the precise interpretation we will adopt for F ; Ψ ′ ' Ψ in Section 3
has an additional requirement: It takes at least one computation step from
an entry to reach an exit. We ignore this issue for now and will come back
to it.

Using this judgment, Lc provides rules for primitive statements. For example,
Fig. 3 provides a rule for the assignment statement. In the assignment rule, the
fragment, l : (x := e) : l′, has one entry, namely l, and one exit, namely l′. The
assignment rule states that if it is safe to continue from the exit l′, when p is
true, then it is safe to continue from the entry l, when p[e/x] is true. The reason
why it is safe to continue from l can be informally established as follows: Suppose
we start from l in an initial state where the next statement to execute is x := e
and p[e/x] is true; the new state after the execution of the statement reaches
the exit l′, and based on the semantics of x := e, the assertion p is true; since
we assume it is safe to continue from l′, when p is true, the new state is safe
to continue; hence, the initial state can safely continue from l, when p[e/x] is
true.

In Hoare Logic, the assignment rule is {p[e/x]} x := e {p}. This is essentially
the same as the assignment rule in Lc. In general, for any statement s that has
only the normal entry and the normal exit, a Hoare triple {p}s{q} has in Lc a
corresponding judgment: {l : (s) : l′} ; {l′ � q} ' {l � p}.

But unlike Hoare triples, F ; Ψ ′ ' Ψ is a more general judgment, which is on
multiple-entry and multiple-exit fragments. This capability is used in the rule
for conditional-branch statements, if b goto l1, in Fig. 3. A conditional-branch
statement has two possible exits. Therefore, the if rule assumes two exit label
continuations.

Composition rules. The strength of Lc is its composition rules. These rules can
compose judgments on individual statements to form properties of the combined
statement. By internalizing control flow of the combined statement, these com-
position rules allow modular reasoning.

Figure 3 shows Lc’s composition rules. We illustrate these rules using the
example in Fig. 4. The figure uses informal graphs, but they can be translated
into formal syntax of Lc without much effort.
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F ; Ψ1 � Ψ2

{l : (x := e) : l′} ; {l′ 
 p} � {l 
 p[e/x]} assignment

{l : (goto l1) : l′} ; {l1 
 p} � {l 
 p} goto

{l : (if b goto l1) : l′} ; {l1 
 p ∧ b, l′ 
 p ∧ ¬b} � {l 
 p} if

F1 ; Ψ ′
1 � Ψ1 F2 ; Ψ ′

2 � Ψ2

F1 ∪ F2 ; Ψ ′
1 ∪ Ψ ′

2 � Ψ1 ∪ Ψ2
combine

F ; Ψ ′ ∪ {l 
 p} � Ψ ∪ {l 
 p}
F ; Ψ ′ � Ψ ∪ {l 
 p} discharge

� Ψ ′
1 ⇒ Ψ ′

2 F ; Ψ ′
2 � Ψ2 � Ψ2 ⇒ Ψ1

F ; Ψ ′
1 � Ψ1

weaken

� Ψ1 ⇒ Ψ2 m ≥ n

� {l1 
 p1, . . . , lm 
 pm} ⇒ {l1 
 p1, . . . , ln 
 pn} s-width

�D p′ ⇒ p

� Ψ ∪ {l 
 p} ⇒ Ψ ∪ {l 
 p′} s-depth

Fig. 3. Lc: Rules

Assume we already have two individual statements, depicted in the first col-
umn of Fig. 4, The first statement is an increment-by-one operation. If x > 0
before the statement, then after its completion x > 0 still holds. The second
statement is if x < 10 goto l. It has one entry, but two exits. The entries and
exits are associated with the appropriate assertions that are shown in the fig-
ure. The goal is to combine these two statements to form a property of the
two-statement block. Notice that the block is effectively a repeat-until loop: it
repeats incrementing x until x reaches 10. For this loop, our goal is to prove that
if x > 0 before entering the block, then x ≥ 10 after the completion of the block.

Figure 4 also presents the steps to derive the goal from the assumptions using
Lc’s composition rules.

In step 1, we use a rule called combine in Fig. 3. When combining two fragment
sets, F1 and F2, the combine rule makes the union of the entries of F1 and F2 the
entries of the combined fragment; the same goes for the exits. For the example in
Fig. 4, since both statements have only one entry, we have two entries after the
combine rule. Since the first statement has one exit, and the second statement
has two exits, we have three exits after the combine rule.

After combining fragments, there may be some label that is both an entry
and an exit. For example, the label l after the step 1 in Fig. 4 is both an entry
and an exit. Furthermore, the entry and the exit for l carry the same assertion:
x > 0. In such a case, the discharge rule in Fig. 3 can eliminate the label l as an
exit. Formally, the discharge rule states that if some l �p appears on both the left
and the right of the ', then it can be removed from the left; Remember exits are
on the left, so this rule removes an exit. The label l1 is also both an entry and an
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Step 3: weaken.

2l1

l1

x 10≥

x:=x+1

l

l

goto l10x<if

x>0x>0

x>0
x>0

l2

l1

x 10≥

x:=x+1

l

goto l10x<if

x>0
x>0

l2

goto l10x<if

x 10≥

x:=x+1

l x>0

Step 1: combine.Assumptions

l

l1 l1

x := x + 1

l

l1 x>0

x>0

x ≥ 10

l1

l2

lgoto

x>0

l x>0

x<10if

and l

Step 2: discharge. Goal

Remove exits Remove entry

Fig. 4. An example to illustrate Lc’s composition rules

exit, and the entry and the exit carry the same assertion. The discharge rule can
remove l1 as an exit as well. Therefore, the step 2 in Fig. 4 applies the discharge
rule twice to remove both l and l1 as exits. After this step, only one exit is left.

In the last step, we remove l1 as an entry using the weaken rule. The weaken
rule uses a relation between two sets of label continuations: ' Ψ1 ⇒ Ψ2, which is
read as Ψ1 is a stronger set of label continuations than Ψ2.

The rule s-width in Fig. 3 states that a set of label continuations is stronger
than its subset. Therefore, ' {l1�(x > 0), l�(x > 0)} ⇒ {l�(x > 0)} is derivable.
Using this result and the weaken rule, the step 3 in Fig. 4 removes the label l1
as an entry.

After these steps, we have one entry and one exit left for the repeat-until loop,
and we have proved the desired property for the loop.

One natural question to ask is which labels the logic should keep as entries.
The example eliminates l1 as an entry, while l remains. The reason is that the
final goal tells what should be entries. In other scenarios, we may want to keep
l1 as an entry; for example, in cases when other fragments need to jump to l1.
This is possible in unstructured control flow even though l1 points to the middle
of a loop. In general, the logic Lc itself does not decide which entries to keep
and needs extra information.

The example in Fig. 4 has used almost all composition rules, except for the
s-depth rule. The s-depth rule states that a label continuation with a weaker
precondition is stronger than a continuation with a stronger precondition. The
rule is contravariant over the preconditions. An example of using this rule and
the weaken rule is to derive F ; Ψ ′ ' {l � p ∧ q} from F ; Ψ ′ ' {l � p}.

Deriving Hoare-logic rules. The composition rules in Lc can derive all Hoare-
logic rules for common control-flow structures. We next show the derivation of
the while rule. Assume that a while loop is implemented by the sequence in
Equation (1) on page 81, which will be abbreviated by “while b do s”. As we
have mentioned, a Hoare triple {p}s{q} corresponds to {l : (s) : l′} ; {l′ � q} '
{l � p} in Lc. With this correspondence, the derivation of the rule is:
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(1) {l1 : (s) : l2} ; {l2 � p} ' {l1 � p ∧ b} (2)
goto

{l : (while b do s) : l′} ; {l � p, l1 � p ∧ b, l2 � p, l′ � p ∧ ¬b}
' {l � p, l1 � p ∧ b, l2 � p}

combine

{l : (while b do s) : l′} ; {l′ � p ∧ ¬b} ' {l � p, l1 � p ∧ b, l2 � p}
discharge

{l : (while b do s) : l′} ; {l′ � p ∧ ¬b} ' {l � p} weaken

where (1) = {l : (if ¬b goto l′) : l1} ; {l′ � p ∧ ¬b, l1 � p ∧ b} ' {l � p}1.
and (2) = {l2 : (goto l) : l′} ; {l � p} ' {l2 � p}

In the same spirit, Lc can derive rules for many other control-flow struc-
tures, including sequential composition, repeat-until loops, if-then-else state-
ments. More examples are in the thesis [16–chapter 2].

3 Semantics of Lc

In this section, we develop a semantics for Lc. We will show that a semantics
based on pure continuations does not work. We adopt a semantics based on
continuations together with approximations of counting computation steps.

3.1 Operational Semantics for the Language

First, we present an operational semantics for the imperative language in Fig. 1.
The operational semantics assumes an interpretation

∮
of the primitive symbols

in OPSym and RSym in the following way: Val is a nonempty domain; for each
op in OPSym, its semantics, op, is a function in (Valar(op) → Val); for each re
in RSym, re is a relation ⊂ Valar(re), where ar(op) is the arity of the operator.

A machine state is a triple, (pc, π,m): a program counter pc, which is an
address; an instruction memory π, which maps addresses to primitive statements
or to an illegal statement; a data memory m, which maps variables to values.
Figure 5 lists the relevant semantic domains.

Before presenting the operational semantics, we introduce some notation. For
a state σ, the notation control(σ), i of(σ), and m of(σ) projects σ into its pro-
gram counter, instruction memory, and data memory, respectively. For a map-
ping m, the notation m[x �→ v] denotes a new mapping that maps x to v and
leaves other slots unchanged.

The operational semantics for the language is presented in Fig. 6 as a step
relation σ �→θ σ

′ that executes the statement pointed by the program counter.
The operational semantics is conventional, except that it is parametrized over a
label map θ ∈ LMap, which maps abstract labels to concrete addresses. When
the next statement to execute is goto l, the control is changed to θ(l).

1 The judgment is derived from the if rule and the weaken rule, assuming that �D

p ∧ ¬¬b ⇒ p ∧ b.
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Name Domain Construction
values, v Val is a nonempty domain
addresses, n Addr = N
instr. memories, π IM = Addr → PrimStmt ∪ {illegal}
data memories, m DM = Var → Val
states, σ Σ = Addr × IM × DM
label maps, θ LMap = Label → Addr
where N is the domain of natural numbers.

Fig. 5. Semantic domains

(pc, π, m) �→θ σ where
if π(pc) = then σ =
x := e (pc + 1, π, m[x �→ V [[e]] m])
goto l (θ(l), π, m)

if b goto l
(θ(l), π, m) if B [[b]] m = tt
(pc + 1, π,m) otherwise

where V : Exp → DM → Val , and B : BExp → DM → {tt, ff}.

Their definitions are

V [[x]] m � m [[x]] V [[op(e1, . . . , ear(op))]] m � op(V [[e1]] m, . . . , V [[ear(op)]] m).

B [[true]] m � tt B [[b1 ∨ b2]] m � tt if B [[b1]] m = tt or B [[b2]] m = tt
ff otherwise

B [[¬b]] m � tt if B [[b]] m = ff
ff otherwise

B [[re(e1, . . . , ear(re))]] m � tt if 〈V [[e1]] m, . . . , V [[ear(re)]] m〉 ∈ re
ff otherwise

Fig. 6. Operational semantics of the language in Fig. 1

In the operational semantics, if the current statement in a state σ is an illegal
statement, then σ has no next state to step to; such a state is called a stuck state.
If a state σ will not reach a stuck state within k steps, it is safe for k steps :

safe state(σ, k) � ∀σ′ ∈ Σ.∀j < k. σ �→j
θ σ

′ ⇒ ∃σ′′. σ′ �→θ σ
′′,

where �→j
θ denotes j steps being taken.

3.2 Semantics of Lc

The semantics of Lc is centered on an interpretation of the judgment F ; Ψ ′ ' Ψ .
We have discussed an informal interpretation: for the set of fragments F , if Ψ ′

is true, then Ψ is true; a label-continuation set Ψ being true means it is safe
to continue from any label in Ψ , provided that the associated assertion is true.
However, this interpretation is too naive, since it cannot justify the discharge
rule. When both Ψ ′ and Ψ in the discharge rule are empty sets, the rule becomes
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F ; {l � p} ' {l � p}
F ; ∅ ' {l � p}

According to the informal interpretation, the above rule is like stating “from
l � p⇒ l � p, derive l � p”, which is clearly unsound.

The problem is not that Lc is intrinsically unsound, but that the interpretation
is too weak to utilize invariants implicitly in Lc. The interpretation that we adopt
is a stronger one. The basic idea is based on a notion of label continuations being
approximately true. The judgment F ; Ψ ′ ' Ψ is interpreted as, by assuming the
truth of Ψ ′ at a lower approximation, Ψ is true at a higher approximation. In
this inductive interpretation, Ψ ′ and Ψ are treated differently, and it allows the
discharge rule to be justified by induction.

Appel and McAllester proposed the indexed model [17], where all predicates
are approximated by counting computation steps. Our own work [18] used the
indexed model to construct a semantic model for a typed assembly language.
Next, we will adopt the idea of approximation by counting computation steps
from the indexed model to develop a semantics for Lc.

Label continuations being approximately true. We first introduce a semantic func-
tion, A : Assertion → DM → {tt,ff}, which gives a meaning to assertions:

A [[∃x.p]]m �
{

tt if ∃d ∈ Val . A [[p[d/x]]]m = tt
ff otherwise.

The definition of “A [[p]]m” on other cases of p is the same as the definition of
B (in Fig. 6) except every occurrence of B is replaced by A.

Next, we present a notion, σ; θ |=k l � p, to mean that a label continuation
l � p is k-approximately true in state σ relative to a label map θ:

σ; θ |=k l � p �
∀σ′ ∈ Σ. σ �→∗

θ σ
′ ∧ control(σ′) = θ(l) ∧ A [[p]] (m of(σ′)) = tt

⇒ safe state(σ′, k)
(3)

where �→∗
θ denotes multiple steps being taken.

There are several points that need to be clarified about the definition. First,
by this definition, l � p being a true label continuation in σ to approximation k
means that the state is safe to execute for k steps. In other words, the state will
not get stuck within k steps.

Second, the definition is relative to a label map θ, which is used to translate
the abstract label l to its concrete address.

Last, the definition quantifies over all future states σ′ that σ can step to
(including σ itself). The reason is that if σ; θ |=k l�p, provided that p is satisfied,
it should be safe to continue from location l, not just now, but also in the future.
In other words, if l�p is true in the current state, it should also be true in all future
states. Therefore, the definition of σ; θ |=k l�p has to satisfy the following lemma:

Lemma 1. If σ �→∗
θ σ

′, and σ; θ |=k l � p, then σ′; θ |=k l � p.

By quantifying over all future states, the definition of σ; θ |=k l � p satisfies the
above lemma. On this aspect, the semantics of σ; θ |=k l � p is similar to the
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Kripke model [19–Ch 2.5] of intuitionistic logic: Knowledge is preserved from
current states to future states.

The semantics of a single label continuation is then extended to a set of label
continuations: σ; θ |=k Ψ � ∀(l � p) ∈ Ψ. σ; θ |=k l � p

Loading statements. The predicate loaded(F, π, θ) describes the loading of a
fragment set F into an instruction memory π with respect to a label mapping θ:

loaded(F, π, θ) � ∀(l : (t) : l′) ∈ F. π(θ(l)) = t ∧ θ(l′) = θ(l) + 1.

Note that some θ are not valid with respect to F . For example, if F = {l :
(x := 1) : l′}, and θ maps l to address 100, then to be consistent θ has to
map l′ to the address 101. This is the reason why the definition requires2 that
θ(l′) = θ(l) + 1.

Semantics of the judgment F ; Ψ ′ ' Ψ . We define a relation, F ; Ψ ′ |= Ψ , which
is the semantic modeling of F ; Ψ ′ ' Ψ .

F ; Ψ ′ |= Ψ �
∀σ ∈ Σ, θ ∈ LMap. loaded(F, i of(σ), θ)⇒
∀k ∈ N.

(
σ; θ |=k Ψ

′ ⇒ σ; θ |=k+1 Ψ
)
.

The definition quantifies over all label maps θ and all states σ such that F is
loaded in the state with respect to θ. It derives the truth of Ψ to approximation
k + 1, from the truth of Ψ ′ to approximation k. In other words, if it is safe to
continue from any of the labels in Ψ ′, provided that the associated assertion
is true, for some number k of computation steps, then it is safe to continue
from any of the labels in Ψ , provided that the associated assertion is true, for
k + 1 computation steps. This inductive definition allows the discharge rule to
be proved by induction over k.

We have given F ; Ψ ′ |= Ψ a strong definition. But the question is what about
rules other than the discharge rule. Do they support such a strong semantics?
The answer is yes for Lc, because of one implicit invariant—for any judgment
F ; Ψ ′ ' Ψ that is derivable, it takes at least one computation step from labels
in Ψ to reach labels in Ψ ′. Or, it takes at least one step from entries of F to reach
an exit of F . Because of this invariant, although it is safe to continue from exit
labels only for k steps, we can still show that it is safe to continue from entry
labels for k + 1 steps.

Finally, since Lc also contains rules for deriving ' Ψ ⇒ Ψ ′ and 'D p, we
define relations, |= Ψ ⇒ Ψ ′ and |= p, to model their meanings, respectively.

|= Ψ ⇒ Ψ ′ � ∀σ ∈ Σ, θ ∈ LMap, k ∈ N. (σ; θ |=k Ψ)⇒ (σ; θ |=k Ψ
′)

|= p � ∀m ∈ DM . A [[p]]m = tt

2 There is a simplification. The definition in the thesis [16] also requires that θ does
not map exit labels to addresses occupied by F ; otherwise, the exit label would not
be a “true” exit label.
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Soundness and completeness. Based on the semantics we have developed, we
next present soundness and completeness theorems for Lc. Due to space limit,
we only informally discuss related concepts and cannot present detailed proofs;
they can be found in the thesis [16].

As a start, since Lc is parametrized by a deduction system D, which derives
formulas in the assertion language, it is necessary to assume properties of D

before proving properties of Lc: If 'D p ⇒ |= p, for any p, then D is sound ; if
|= p ⇒ 'D p, for any p, then D is complete.

Next, we present the soundness and completeness theorems of Lc.

Theorem 1. (Soundness) Assume D is sound. If F ; Ψ ' Ψ ′, then F ; Ψ |= Ψ ′.

The proof is by induction over the derivation of F ; Ψ ' Ψ ′. The most interesting
case is the proof of the discharge rule, which is proved by induction over the
number of future computation steps k.

Theorem 2. (Completeness.)
Assume D is complete and Assertion is expressive relative to

∮
. Assume Assertion

is negatively testable by the statement language. Assume (F, Ψ ′, Ψ) is normal. If
F ; Ψ ′ |= Ψ , then F ; Ψ ′ ' Ψ .

We informally explain the meanings of expressiveness, Assertion being negatively
testable, and (F, Ψ ′, Ψ) being normal below; their precise definitions are in the
thesis [16]. As pointed out by Cook [20], a program logic can fail to be complete,
if the assertion language is not powerful enough to express invariants for loops
in a program. Therefore, the completeness theorem assumes that the assertion
language is expressive. Also, the theorem assumes that the assertion language is
negatively testable by the statement language. It means that for any assertion p,
there is a sequence of statements that terminates when p is false and diverges
when p is true. The triple (F, Ψ ′, Ψ) being normal means that any label is defined
in F at most once; it includes also other sanity requirements on Ψ ′ and Ψ .

4 Implementation in FPCC

This work is a part of the Foundational Proof-Carrying Code (FPCC) project [4]
at Princeton. FPCC verifies memory safety of machine code from the smallest
possible set of axioms—machine semantics plus logic. The safety proof is devel-
oped in two stages. First, we design a type system at the machine-code level.
Machine code is type checked in the type system and thus a typing derivation
is a safety witness. In the second stage, we prove the soundness theorem for
the type system: If machine code type checks, it is memory safe. This proof is
developed with respect to machine semantics plus logic, and is machine checked.
The typing derivation composed with the soundness proof is the safety proof
of the machine code. The major research problem of the FPCC project is to
prove the soundness of our type system—a low-level typed assembly language
(LTAL [21]). LTAL can check the memory-safety of SPARC machine code that
is generated from our ML compiler.
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When proving the soundness of LTAL, we found it is easier to have an inter-
mediate calculus to aid the proving process, because having a simple soundness
proof was not LTAL’s design goal. We first prove the intermediate calculus is
sound from logic plus machine semantics. Then we prove LTAL is sound based
on the lemmas provided by the intermediate calculus.

The intermediate calculus in the FPCC project is Lc, together with a type
theory [22] as the assertion language. By encoding on top of SPARC machine
the semantics of Lc, which we have presented, we have proved that Lc is sound
with machine-checked proofs in Twelf. Then, we prove that LTAL is sound from
the lemmas provided by Lc.

The first author’s thesis [16–chapter 3] covers the step from Lc to LTAL
in great detail. Here we only discuss a point about control-flow structures in
machine code. The simple language in Section 2 on which we presented Lc lacks
indirect jumps, pc-relative jumps, and procedure calls. Our implementation on
SPARC handles pc-relative jumps, and handles indirect jumps using first-class
continuation types in the assertion language. These features will not affect the
soundness result of Lc, as our implementation has shown. However, we have not
investigated the impact of indirect jumps to the completeness result, which is
unnecessary for the FPCC project. We have not modeled procedure call-and-
return—since our compiler uses continuation-passing style, continuation calls
and continuation-passing suffice. Procedure calls, if needed, could be handled by
following the work of Benton [13].

5 Conclusion and Future Work

Previous program logics for goto statements are too weak to modularly rea-
son about program fragments with multiple entries and multiple exits. We have
presented Lc, which needs only local information to reason about a program frag-
ment and compose program fragments in an elegant way. Lc is not only useful for
reasoning about unstructured control flow in machine languages, but also useful
for deriving rules for common control-flow structures. We have also presented for
Lc a semantics, based on which the soundness and completeness theorems are
formally proved. We have implemented Lc on top of SPARC machine language.
The implementation has been embedded into the Foundational Proof-Carrying
Code Project to produce memory-safety proofs for machine-language programs.

One possible future extension is to combine this work with modules, to pro-
duce a module system with simple composition rules, and with a semantics based
on counting computation steps.
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Abstract. Programming languages such as C, C++ and Java bind vari-
ables to dynamically-allocated data-structures held in memory. This lets
programs build cyclical data at run-time, which complicates termination
analysis and garbage collection. It is hence desirable to spot those vari-
ables which are only bound to non-cyclical data at run-time. We solve this
problem by using abstract interpretation to define the abstract domain
NC representing those variables. We relate NC through a Galois insertion
to the concrete domain of program states. Hence NC is not redundant.
We define a correct abstract denotational semantics over NC, which uses
preliminary sharing information between variables to get more precise
results. We apply it to a simple example of analysis. We use a Boolean
representation for the abstract denotations over NC, which leads to an
efficient implementation in terms of binary decision diagrams and to the
elegant and efficient use of abstract compilation.

1 Introduction

Programming languages such as C, C++ and Java allocate dynamic data-struct-
ures on the heap. These data-structures might contain cycles, which hinder ter-
mination analysis and complicate garbage collection.

Consider the classes in Figure 1, in the syntax of Section 4. We observe here
that with introduces local variables, and variable out holds the return value of
a method. These classes implement a list of subscriptions to a service, such as
cable television. Each subscription refers to a person. Some subscriptions come
from abroad, and have a higher monthly cost. The method foreign over a list
of subscriptions builds a new list, containing only the foreign ones.

If, in a call such as l1 :=l2 .foreign(), we know that l2 is bound to a non-
cyclical data-structure (from now on, if l2 is a non-cyclical variable), then

1. techniques for termination analysis, similar to those for logic programs [1],
based on decreasing norms, can prove that the call terminates; non-cyclicity
plays here the role of the occur-check in logic programming;

2. a (single pass) reference counting garbage collector can be applied to l1 and
l2 when they go out of scope, since they do not lead to cycles. This is faster
than a (two passes) mark and sweep collector and has smaller pause times.

E.A. Emerson and K.S. Namjoshi (Eds.): VMCAI 2006, LNCS 3855, pp. 95–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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class Object {}
class Person extends Object { int age; boolean sex; }
class Subs extends Object {
Person subscriber; int numOfChannels; Subs next;
int monthlyCost() { out := numOfChannels / 2 } // in euros
ForeignSubs foreign() with temp:Subs {

temp = this.next;
if (temp = null) then {} else out := temp.foreign() }

}
class ForeignSubs extends Subs {
int monthlyCost() { out := numOfChannels * 2 } // more expensive
ForeignSubs foreign() with temp:Subs, sub:Person {

sub := this.subscriber; out := new ForeignSubs; // program point *
temp := this.next;
if (temp = null) then {} else out.next := temp.foreign();
out.subscriber := sub; out.numOfChannels := this.numOfChannels }

}

Fig. 1. Our running example: a list of subscriptions to a service

Hence detecting the non-cyclical variables helps program verification and opti-
mise the run-time support. One might derive non-cyclicity by abstracting some
shape analyses [10] and some alias or sharing analyses which build a graph-
representation of the run-time heap of the system [9]. In this paper, we fol-
low a different approach. We use abstract interpretation [5] to define a domain
NC for non-cyclicity, more abstract than graphs. NC is the same property we
want to observe i.e., the set of non-cyclical variables. Because of the simplicity
of NC,

– a Galois insertion relates NC to the concrete domain of program states.
Hence NC is not redundant [5];

– ours is a denotational and hence completely relational analysis which denotes
each method with its interpretation i.e., its abstract input/output behaviour;

– we represent these behaviours through Boolean functions, which can be ef-
ficiently implemented through binary decision diagrams [4];

– we use abstract compilation [6] into Boolean functions, an elegant and effi-
cient implementation of abstract interpretation.

Our analysis is possibly less precise than abstractions of graph-based analy-
ses (as some shape, alias or sharing analyses), which keep explicit information
on the names of the fields of the objects in the heap. This information is ab-
stracted away in NC. But those analyses do not enjoy all the properties stated
above for NC, are much more concrete than NC and have never been actually
abstracted to non-cyclicity analysis. The precision of NC can be significantly
improved by using some preliminary sharing information between program vari-
ables [8].

The paper is organised as follows. Section 2 presents our analysis. Section 3
reports the preliminaries. Section 4 gives syntax and semantics of our simple
object-oriented language. Section 5 defines the domain NC. Section 6 gives a
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denotational semantics over NC. Section 7 represents denotations over NC as
Boolean functions. Section 8 concludes. Proofs are in [7].

2 Overview of the Analysis

We show here informally how abstract compilation over Boolean functions works
for our non-cyclicity analysis. This will be formalised in subsequent sections.

Consider the foreignmethod of class Subs in Figure 1. We want to prove that
its result is always non-cyclical. Our analysis starts by compiling all methods into
Boolean functions, by following the compilation rules in Figure 7. The result,
for the method Subs.foreign, is in Figure 2. Each program variable v is split
into its input and output version v̌ and v̂. For instance, the compilation of
s = (temp:=this .next) in Figure 1 is the formula φ1 in Figure 2, stating that
if this is non-cyclical before the execution of s then temp is non-cyclical after
the execution of s (i.e., ˇthis → ˆtemp) and that the non-cyclicity of this and
out is not affected by s (i.e., ( ˇthis → ˆthis) ∧ ( ˇout → ˆout)). The then and else
branches of the conditional are compiled into φ2 and φ3, respectively, and the
conditional itself into φ2 ∨ φ3. Formula φ2 states that temp is null and hence
non-cyclical at the beginning of the then branch (i.e., ˇtemp), which moreover
does not change the cyclicity of any variable (i.e., ( ˇthis → ˆthis)∧ ( ˇout → ˆout)∧
( ˇtemp → ˆtemp)). Formula φ3 is rather complex since it is the compilation of a
method call. We will discuss it in subsequent sections. Here, just note that it
refers to unknown formulas I(Subs.foreign) and I(ForeignSubs.foreign), the
current interpretation of those methods. They express what we already know
about the abstract behaviour of those methods. Variable res holds the value of
the method call expression. The operation ◦ on Boolean functions corresponds
to sequential composition of denotations and is defined in Section 7.

ForeignSubs foreign() with temp:Subs {

[( ˇthis → ˆtemp) ∧ ( ˇthis → ˆthis) ∧ ( ˇout → ˆout)] ◦ φ1

[ ˇtemp ∧ ( ˇthis → ˆthis)∧( ˇout → ˆout) ∧ ( ˇtemp → ˆtemp)]∨ φ2

( ˇtemp→ ˆthis) ◦ I(Subs.foreign)∨
I(ForeignSubs.foreign) ◦ ( ˇout→ ˆres) ∧( ˇout→ ˆout)

◦ ( ˇres → ˆout) ∧( ˇthis → ˆthis)∧( ˇtemp → ˆtemp)
φ3

}

Fig. 2. The Boolean compilation of the Subs.foreign method in Figure 1

After abstract compilation, our analysis builds a bottom interpretation I
which uses to evaluate the body (formula) of each method. This yields a new
interpretation. This process is iterated until the fixpoint, which is the result of
the analysis. It expresses a completely relational input/output behaviour for the
methods [5, 3]. In our case, the method in Figure 2 is interpreted by the formula
ˆout i.e., its return value is always non-cyclical (Example 16).
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3 Preliminaries

A total (partial) function f is denoted by �→ (→). The domain (codomain)
of f is dom(f) (rng(f)). We denote by [v1 �→ t1, . . . , vn �→ tn] the function f
where dom(f) = {v1, . . . , vn} and f(vi) = ti for i = 1, . . . , n. Its update is
f [w1 �→ d1, . . . , wm �→ dm], where the domain may be enlarged. By f |s (f |−s)
we denote the restriction of f to s ⊆ dom(f) (to dom(f) \ s). If f(x) = x
then x is a fixpoint of f . The composition f ◦ g of functions f and g is such
that (f ◦ g)(x) = g(f(x)) so that we often denote it as gf . The components of
a pair are separated by �. A definition of S such as S = a � b, with a and b
meta-variables, silently defines the pair selectors s.a and s.b for s ∈ S.

A poset S �≤ is a set S with a reflexive, transitive and antisymmetric relation
≤. Given s ∈ S, we define ↓s = {s′ ∈ S | s′ ≤ s}. If C �≤ and A �( are posets
(the concrete and the abstract domain), a Galois connection [5] is a pair of
monotonic maps α : C �→ A and γ : A �→ C (i.e., α(c1) ( α(c2) if c1 ≤ c2,
similarly for γ) such that γα is extensive (c ≤ γα(c) for any c ∈ C ) and αγ
is reductive (αγ(a) ≤ a for any a ∈ A). It is a Galois insertion if αγ is the
identity map i.e., if A contains no redundancy i.e., if γ is one-to-one. An abstract
operator f̂ : An → A is correct w.r.t. a concrete f : Cn → C if αfγ ( f̂ .

4 Our Simple Object-Oriented Language

Syntax. Variables are typed and bound to values. We do not consider primitive
types since they cannot be used to build cycles.

Definition 1. A program has a set of variables V (including res, out , this) and
a finite set of classes (or types) K ordered by a subclass relation ≤. A type
environment specifies the types of a finite set of variables. It is any element of
the set TypEnv = {τ : V → K | dom(τ) is finite}. Later on, τ will stand for a
type environment. Type environments describe both the variables in scope at a
given program point and the fields of a given class κ ∈ K, written as F (κ).

Example 1. In Figure 1 we have K = {Object, Person, Subs, ForeignSubs},
where Object is the top of the hierarchy and ForeignSubs ≤ Subs. Since we
are not interested in primitive types, we have F (Object) = F (Person) = [] and
F (Subs) = F (ForeignSubs) = [subscriber �→ Person, next �→ Subs].

Expressions and commands are normalised versions of Java’s. Only distinct vari-
ables can be actual parameters of a method call; leftvalues are only a vari-
able or the field of a variable; conditionals only check equality or nullness of
variables; loops are implemented through recursion. We can relax these sim-
plifying assumptions without affecting subsequent results. It is significant that
we allow downwards casts, since reachability (Definition 6) depends from their
presence.



Detecting Non-cyclicity by Abstract Compilation into Boolean Functions 99

Definition 2. Expressions1 and commands are

exp ::= null κ | new κ | v | v .f | (κ)v | v .m(v1, . . . , vn)
com ::= v := exp | v.f := exp | {com ; · · · ;com}

| if v = w then com else com | if v = null then com else com

where κ ∈ K and v, w, v1, . . . , vn ∈ V are distinct.
Each method κ.m is defined in class κ as κ0 m(w1 : κ1, . . . , wn : κn) with wn+1 :

κn+1, . . . , wn+m : κn+m is com, where w1, . . . , wn, wn+1, . . . , wn+m ∈ V are dis-
tinct, not in {out, res , this} and have static type κ1, . . . , κn, κn+1, . . . , κn+m∈K,
respectively. Variables w1, . . . , wn are the formal parameters of the method,
wn+1, . . . , wn+m are its local variables. The method also uses a variable out of
type κ0 to store its return value. We let body(κ.m) = com, returnType(κ.m) = κ0,
input(κ.m) = [this �→ κ,w1 �→ κ1, . . . , wn �→ κn], output(κ.m) = [out �→ κ0],
locals(κ.m) = [wn+1 �→ κn+1, . . . , wn+m �→ wn+m] and scope(κ.m) = input(κ.m) ∪
output(κ.m) ∪ locals(κ.m).

Example 2. For ForeignSubs.foreign in Figure 1 (just foreign below) we
have input(foreign) = [this �→ ForeignSubs], output(foreign) = [out �→
ForeignSubs], locals(foreign) = [sub �→ Person, temp �→ Subs].

Our language is strongly typed i.e., expressions exp have a static (compile-time)
type typeτ (exp) in τ , consistent with their run-time values (see [7]).

Semantics. We use a denotational semantics, hence compositional, in the style
of [11]. However, we use more complex states, which include a heap. By using
a denotational semantics, our states contain only a single frame, rather than
an activation stack of frames. A method call is hence resolved by plugging the
interpretation of the method (Definition 5) in its calling context. This is standard
in denotational semantics and has been used for years in logic programming [3].

A frame binds variables (identifiers) to locations or null . A memory binds such
locations to objects, which contain a class tag and the frame for their fields.

Definition 3. Let Loc be an infinite set of locations. We define frames, objects
and memories as Frameτ = {φ | φ ∈ dom(τ) �→ Loc ∪ {null}}, Obj = {κ �φ |
κ ∈ K, φ ∈ FrameF (κ)} and Memory = {μ ∈ Loc → Obj | dom(μ) is finite}. A
new object of class κ is new(κ) = κ �φ, with φ(f) = null for each f ∈ F (κ).

Example 3. Figure 3 shows a frame φ and a memory μ. Different occurrences of
the same location are linked. For instance, variable this is bound to location l1
and μ(l1) is a ForeignSubs object. Objects are shown as boxes in μ with a class
tag and a local frame mapping fields to locations or null . The state in Figure 3
might be the current state of an interpreter at program point ∗ in Figure 1.

1 The null constant is decorated with the class κ induced by its context, as in
v := null κ, where κ is the type of v. This way we do not need a distinguished
type for null. We assume that the compiler provides κ.
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this out

null

null

nextsubscriber

sub

ForeignSubscription Person

no fields

ForeignSubscription Subscription

subscriber subscriber nextnext
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no fields

μ

φ

l l l l l1 2 3 4 5

locations

l l4 5

l l l1 3 4

temp

nulll2 1l
objects

Fig. 3. A state (frame φ and memory μ) for the type environment τ = [temp �→
Subs, this �→ ForeignSubs, out �→ ForeignSubs, sub �→ Person]

The states of the computation are made of a frame φ and a memory μ. We
assume type correctness φ� μ : τ , which bans dangling pointers and insists that
variables and fields are bound to null or to locations containing objects allowed
by their type. This constraint is sensible for strongly-typed languages which use
a conservative garbage collector. For a formal definition, see [7].

Definition 4. Let τ be the type environment at a given program point p. The
set of possible states at p is Στ = {φ�μ | φ ∈ Frameτ , μ ∈ Memory , φ � μ : τ}.

Example 4. In Figure 3, the pair φ�μ does not contain dangling pointers and
respects the typing of variables and fields. Hence φ� μ : τ and φ�μ ∈ Στ .

Denotations are the input/output semantics of a piece of code. Interpretations
provide a denotation for each method.

Definition 5. An interpretation I maps methods to denotations such that, for
each method κ.m, we have I(κ.m) : Σinput(κ.m) → Σoutput(κ.m).

We describe here informally the denotations for our language. Their formal def-
inition is in [7].

Expressions have side-effects and return a value. Hence their denotations are
partial maps from an initial to a final state containing a distinguished variable
res holding the expression’s value: EI

τ [[ ]] : exp �→ (Στ → Στ+exp), where res �∈
dom(τ), τ+exp = τ [res �→ typeτ (exp)] and I is an interpretation. Namely, given
an input state φ� μ, the denotation of null κ binds res to null in φ. That of
new κ binds res to a new location holding a new object of class κ. That of v copies
v into res . That of v.f accesses the object o = μ(φ(v)) bound to v (provided
φ(v) �= null) and copies the field f of o (i.e., o.φ(f)) into res . That of (κ)v copies
v into res , but only if the cast is satisfied. That of method call uses the dynamic
class of the receiver to fetch the denotation of the method from I. It plugs it in
the calling context, by building a starting state σ† for the method, whose formal
parameters (including this) are bound to the actual parameters.

The denotation of a command is a partial map from an initial to a final state:
CI

τ [[ ]] : com �→ (Στ → Στ ) with res �∈ dom(τ). The denotation of v:=exp uses
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that of exp to get a state where res holds exp’s value. Then it copies res into
v and removes res . Similarly for v.f :=exp, but res is copied into the field f of
the object bound to v, if any. The denotation of the conditionals checks their
guard and then uses the denotation of then or that of else. The denotation of
a sequence of commands is the functional composition of their denotations.

We use CI
τ [[ ]] to define a transformer on interpretations. It evaluates the meth-

ods’ bodies in I, expanding the input state with local variables bound to null . It
restricts the final state to out , to respect Definition 5. This corresponds to the
immediate consequence operator used in logic programming [3]. Its least fixpoint
is the denotational semantics of the program (see [7]).

5 Non-cyclicity

A variable v is non-cyclical if there is no cycle in its reachable locations. Namely,
if a location l is bound, in a memory μ, to an object o = μ(l), then the locations
bound to o’s fields (i.e., rng(o.φ)∩Loc) are reachable from l. Reachability is the
transitive closure of this relation, passing through one or more objects.

Definition 6. Let μ ∈ Memory and l ∈ dom(μ). The set of locations reachable
in μ from l is L(μ)(l) = ∪{Li(μ)(l) | i ≥ 0}, where Li : Memory �→ Loc �→
℘(Loc), for i ≥ 0, is such that L0(μ)(l) = rng(μ(l).φ) ∩ Loc and Li+1(μ)(l) =
∪{rng(μ(j).φ) ∩ Loc | j ∈ Li(μ)(l)}.

We let all fields rng(μ(j).φ) of the object μ(j) to be reachable, since we allow
checked casts (Section 4). Then all fields of an object can be accessed.

Example 5. In Figure 3 we have L0(μ)(l1) = {l2, l4}, L1(μ)(l1) = {l1, l5} and
L2(μ)(l1) = {l2, l4} = L0(μ)(l1); L0(μ)(l3) = L0(μ)(l4) = ∅. Hence L(μ)(l1) =
{l1, l2, l4, l5} and L(μ)(l3) = L(μ)(l4) = ∅. Hence l1 is reachable from l1, while
no location is reachable from l3 nor from l4.

A location l is not necessarily reachable from itself, as Example 5 shows for l3
and l4. That is only true if there is a path starting at l and passing back through
l. This is the case of l1 in Figure 3, so that we say that l1 is cyclical there. But
l is cyclical also if a location l′ can be reached from l and l′ is cyclical.

Definition 7. Let μ ∈ Memory. A location l ∈ dom(μ) is cyclical in μ if there
is l′ ∈ L(μ)(l) such that l′ ∈ L(μ)(l′). A variable v ∈ dom(τ) is cyclical in
φ� μ ∈ Στ if φ(v) �= null and φ(v) is cyclical in μ. It is non-cyclical otherwise.

We can hence define the set of states where all variables in a set nc are non-
cyclical. Nothing is known about the others.

Definition 8. Let nc ⊆ dom(τ). The set of states in Στ where the variables nc
are non-cyclical is γτ (nc) = {φ�μ ∈ Στ | nc are non-cyclical in φ� μ}.

Example 6. Let φ�μ be as in Figure 3. By Example 5, φ�μ∈γτ ({temp, out , sub}),
φ� μ∈γτ ({temp, out}),φ�μ∈γτ ({sub}),φ�μ∈γτ (∅) butφ�μ �∈γτ ({this , out}),
since variable this is cyclical in φ� μ.
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Definition 8 might suggest that an abstract domain for definite non-cyclicity
is ℘(dom(τ)). However, this would result in a Galois connection rather than a
Galois insertion with ℘(Στ ). For instance, in Figure 3 we have τ(sub) = Person.
It is hence redundant to ask sub to be non-cyclical: no cycle can be reached from
a Person. As a consequence, γτ ({sub}) = γτ (∅) i.e., γτ is not one-to-one and,
hence, is not the concretisation map of a Galois insertion (Section 3).

To get a Galois insertion, we must consider only those variables whose static
type is cyclical so that they can be both cyclical and non-cyclical at run-time.
To define cyclicity for types (classes), we first need a notion of reachability for
types (classes). From a class κ, we can reach the classes C = rng(F (κ)) of its
fields F (κ) and those of every subclass κ′ ≤ κ. Moreover, we can reach every
subclass of C (because of the cast, see Section 4). We can also reach the classes
of the fields of C, and so on recursively.

Definition 9. The classes reachable from κ ∈ K are C(κ) = ∪{Ci(κ) | i ≥ 0}
where C0(κ)=↓{rng(F (κ′)) |κ′ ≤ κ} and Ci+1(κ) = ↓{rng(F (κ′)) | κ′ ∈ Ci(κ)}.

Example 7. In Figure 1, for every i ≥ 0 we have that Ci(Person) = ∅ and
Ci(Object) = Ci(Subs) = Ci(ForeignSubs) = {Person, Subs, ForeignSubs}.
ThusC(Person) = ∅andC(Object) = C(Subs) = C(ForeignSubs) = {Person,
Subs, ForeignSubs}.

We can now define cyclicity for classes.

Definition 10. Let κ ∈ K. Class κ is cyclical if and only if there exists κ′ ∈
C(κ) such that κ′ ∈ C(κ′). Given τ , the set of variables of non-cyclical static
type is NC τ = {v ∈ dom(τ) | τ(v) is non-cyclical}.

Example 8. From Example 7 we conclude that Object, Subs and ForeignSubs
in Figure 1 are cyclical, while Person is non-cyclical. Object is recognised
as cyclical since there is Subs ∈ C(Object) and Subs ∈ C(Subs). Similarly,
ForeignSubs is recognised as cyclical by taking κ′ = ForeignSubs.

We can now define the abstract domain for definite non-cyclicity. Its elements
are those subsets of ℘(dom(τ)) which contain all variables of non-cyclical type.

Definition 11. The abstract domain for definite non-cyclicity is NCτ = {nc ∈
℘(dom(τ)) | NC τ ⊆ nc}, ordered by inverse set-inclusion (dom(τ) is the least
element, NC τ is the top element). Its concretisation map is γτ in Definition 8,
restricted to NCτ .

Example 9. From Example 8, in Figure 3 NC τ = {sub} and {temp, out , sub} ∈
NCτ , {this , out , sub} ∈ NCτ , {sub} ∈ NCτ but ∅ �∈ NCτ and {this} �∈ NCτ .

We state now the main result of this section i.e., our abstract domain for non-
cyclicity actually induces a Galois insertion with the concrete domain.

Proposition 1. The map γτ of Definition 8 is the concretisation map of a Ga-
lois insertion between NCτ and ℘(Στ ). The induced abstraction map, for any
S ⊆ Στ , is ατ (S) = {v ∈ dom(τ) | v is non-cyclical in every φ� μ ∈ S}.
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6 Abstract Semantics for Non-cyclicity

We define here an abstract denotational semantics over NC. It builds a chain of
non-cyclicity interpretations until a fixpoint is reached [3].

Definition 12. A non-cyclicity interpretation I maps methods to abstract de-
notations, such that I(κ.m) : NCinput(κ.m) �→ NCoutput(κ.m) for each method κ.m.

Example 10. A non-ciclicity interpretation for Figure 1 might be such that
I(Subs.foreign)(nc) = I(ForeignSubs.foreign)(nc) = {out} for any nc. That
is, the output of such methods is non-cyclical, whatever is the input. This is sen-
sible since they return a new, non-cyclical ForeignSubs, if they do not diverge.
Interpretation I is the bottom interpretation which, for every method κ.m, maps
every input to the least element of NCoutput(κ.m).

Proposition 2. Figures 4 and 5 report abstract denotations for our language.
They are correct w.r.t. the concrete denotations described in Section 4.

Note that Figures 4 and 5 use preliminary information on the pairs of variables
which share i.e., are bound to overlapping data-structures [8].

We have used abstract interpretation to derive Figures 4 and 5. Namely, for
every concrete operation (denotation, since we deal with denotational semantics)
op and abstract input nc, those figures provide a correct approximation nc′ of
α(op(γ(nc))). This means that the variables in nc′ are definitely non-cyclical in
every concrete state σ′ obtained by applying op to any concrete state σ where
the variables in nc are definitely non-cyclical. Let us discuss those figures.

For expressions, we have NCEI
τ [[exp]] : NCτ �→ NCτ+exp, where res �∈ dom(τ)

and I is a non-cyclicity interpretation. Variable res , in the final state, refers to
the value of exp (Section 4). Hence, on NC, variable res belongs to nc′ if the
analysis is able to prove that the value of exp is definitely non-cyclical.

NCEI
τ [[null κ]](nc) = NCEI

τ [[new κ]](nc) = nc ∪ {res}

NCEI
τ [[v]](nc) = NCEI

τ [[(κ)v]](nc) =
nc ∪ {res} if v ∈ nc
nc otherwise

NCEI
τ [[v.f]](nc) =

nc ∪ {res} if v ∈ nc or F (τ (v))(f) is non-cyclical
nc otherwise

NCEI
τ [[v.m(v1, . . . vn)]](nc) =

(nc \ SE ) ∪ {res} if nc′′ = {out}
nc \ SE if nc′′ = ∅

where nc† = (nc ∩ {v, v1, . . . , vn})[v �→ this, v1 �→ w1, . . . , vn �→ wn]

nc′′ = ∩{I(κ.m)(nc†) | κ.m can be called here}
and SE ={w ∈ dom(τ ) | w shares with some {v, v1, . . . , vn}} \ NC τ .

Fig. 4. The abstract denotational semantics of the expressions
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NCCI
τ [[v:=exp]](nc) = NCEI

τ [[exp]](nc) ◦ setVar v
τ+exp

where setVar v
τ ′(nc) =

(
(nc \ {res}) ∪ {v} if res ∈ nc

nc \ {v} otherwise

NCCI
τ [[v.f :=exp]](nc) = NCEI

τ [[exp]](nc) ◦ setFieldv.f
τ+exp

where setFieldv.f
τ ′ (nc) =

8><
>:

nc \ {res} if F (τ ′(v))(f) is non-cyclical
or (res ∈ nc and res does not share with v)

(nc \ SE) \ {res} otherwise

where SE ={w ∈ dom(τ ′) | w shares with v} \ NC τ ′

NCCI
τ

hh if v = w then com1

else com2

ii
(nc) =

8>>><
>>>:
NCCI

τ [[com1]](nc ∪ {v, w}) ∩NCCI
τ [[com2]](nc)

if v ∈ nc or w ∈ nc

NCCI
τ [[com1]](nc) ∩NCCI

τ [[com2]](nc)
otherwise

NCCI
τ

hh if v = null then com1

else com2

ii
(nc) = NCCI

τ [[com1]](nc ∪ {v}) ∩NCCI
τ [[com2]](nc)

NCCI
τ [[{}]] = λnc ∈ NCτ .nc, NCCI

τ [[{com1; . . . ; comp}]] = NCCI
τ [[com1]] ◦ · · · ◦ NCCI

τ [[comp]].

Fig. 5. The abstract denotational semantics of the commands

The concrete denotations of the expressions null κ and new κ yield a final
state σ′ which coincides with σ except on res , which holds null or a new object,
respectively. In both cases, res is non-cyclical and we define nc′ = nc ∪ {res}.

The concrete denotation of v computes σ′ by copying the value of v into res ,
while the other variables are not affected. Hence res belongs to nc′ if and only
if v ∈ nc. The same is correct for the cast (κ)v, whose concrete denotation
coincides with that of v when it is defined (i.e., when the cast is legal).

The concrete denotation of v.f loads in res the value of the field f of the
object bound to v, if any. The other variables are not changed. Then if v is
non-cyclical in σ also res is non-cyclical in σ′, since you can reach res from a
field of v. If, instead, we do not know if v is non-cyclical in σ (i.e., if v �∈ nc),
we can still guarantee that res is non-cyclical in σ′ if we know that the class
F (τ(v))(f) of the field f is non-cyclical. In conclusion, we let nc′ = nc ∪ {res}
if v ∈ nc or F (τ(v))(f) is non-cyclical, while we conservatively assume nc′ = nc
otherwise.

The concrete denotation of the method call v.m(v1, . . . , vn) first computes
an input state σ† for the method. It consists of the input state σ restricted
to v, v1, . . . , vn and where v is renamed into this and each vi into the formal
parameter wi. We mimic this behaviour on the abstract domain and define nc†

accordingly. We then apply σ† to the interpretation for the method. In the
concrete semantics, late-binding is resolved by using the run-time class κ of v.
In the abstract semantics, we only know that κ ≤ τ(v). Hence we conservatively
select all possible targets κ.m of the method call. The final state of the call is
chosen to be consistent with all such targets, by using set intersection: nc′′ =
∩{I(κ.m)(nc†) | κ.m can be called here}. If out is non-cyclical in nc′′ then the
value of the method call expression is non-cyclical also, and we should define
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nc′ = nc ∪ {res}, otherwise we should let nc′ = nc. But you can see in Figure 4
that we remove from nc a set of variables SE which share. with at least one of
v, v1, . . . , vn, and have cyclical type. This is because a method can modify, as a
side effect, everything which is reachable from its formal parameters, and hence
introduce cyclicity. Without sharing information, we could only conservatively
assume that every pair of variables shares, when their types allow them to share.
This definition can also be made more precise by including shadow copies of
v, v1, . . . , vn in the method body. They hold the initial values of such parameters
and are never modified, so that at the end of the method call they provide
explicit information on the cyclicity of v, v1, . . . , vn.

For commands, we have NCCI
τ [[com ]] : NCτ �→ NCτ where I is a non-ciclicity

interpretation and res �∈ dom(τ).
The concrete denotation of v:=exp first evaluates exp and then composes

its denotation with a map setVarv which copies res into v. The initial value
of v is lost. This is mimicked on NC by an abstract map setVarv. If variable
res is non-cyclical, this map makes v non-cyclical also. Otherwise it removes
v from the set of non-cyclical variables, since we have no information on its
cyclicity.

The concrete denotation of v.f :=exp uses, similarly, a map setField which
updates σ by writing the value of exp, held in res, in the field f of v, thus yielding
σ′. Hence, if res is non-cyclical and does not share with v, this operation can
only remove cyclicity and we can safely assume nc′ = nc \ {res} (variable res is
removed after the assignment). Similarly when the field f has non-cyclical type,
so that we cannot reach a cycle from f. The non-sharing requirement is necessary
since otherwise v might be made cyclical by closing a loop, like in v.f := v. If
none of these cases applies, we might make cyclical the variables SE which share
with v and have cyclical type (often v ∈ SE ).

The concrete denotation of the conditionals can be conservatively approxi-
mated by the greatest lower bound (i.e., set intersection, see Definition 11) of
their two branches. We improve this approximation by taking the guard into
account. If v = w holds then v and w are aliases and hence both cyclical or
both non-cyclical. If v = null holds then v contains null and is hence non-
cyclical.

The concrete denotation of the sequential composition of commands is ap-
proximated by the functional composition of their abstract denotations.

Definition 13. The transformer on interpretations transforms a non-cyclicity
interpretation I in a new non-cyclicity interpretation I ′ such that I ′(κ.m)(nc) =
NCCI

scope(κ.m)[[body(κ.m)]](nc∪{out , wn+1, . . . , wn+m})∩{out}. The denotational
non-ciclicity semantics of a program is the least fixpoint of this transformer.

In Definition 13, local variables {wn+1, . . . , wn+m} are assumed to be non-
cyclical at the beginning of the methods, since they are bound to null there.

Proposition 3. The non-cyclicity semantics of Definition 13 is correct w.r.t.
the concrete semantics of Section 4.
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{out , sub, temp}
sub := this .subscriber

{out , sub, temp}
out := new ForeignSubs

{out , sub, temp}
temp := this .next

{out , sub}
if (temp = null) then {}

else out .next := temp.foreigners()
{out , sub}

out .subscriber := sub
{out , sub}

Fig. 6. The analysis of method
ForeignSubs.foreign

The least fixpoint of Definition 13 is
computed by repeated application of this
transformer from the bottom interpreta-
tion [5, 3]. In our case, the bottom inter-
pretation is given in Example 10. Exam-
ple 11 shows that one application of the
transformer reaches the fixpoint.

Example 11. Let us prove that the ab-
stract interpretation I of Example 10 is
a fixpoint of the transformer of Defi-
nition 13: NCCI

input(κ.m)[[body(κ.m)]](nc ∪
{out , temp}) = {out} for any nc ∈
NCinput(κ.m), where κ.m ranges over
Subs.foreign and ForeignSubs.foreign
(methods monthlyCost are irrelevant since they work on primitive types). We
can only have nc = ∅ or nc = {this}. By monotonicity of the denotations in
Figures 4 and 5, we can just prove this result for nc = ∅ > {this} i.e., assuming
that we do not know anything about the non-ciclicity of the variable this .

Consider Subs.foreign. Let τ=scope(Subs.foreign)=[this �→ Subs, temp �→
Subs, out �→ ForeignSubs]. ThenNCCI

τ [[temp :=this .next]]({out , temp}) is equal
to setVar temp

τ+this.next(NCE
I
τ [[this .next]]({out , temp})), which is setVar temp

τ+this.next
({out , temp}) = {out}. Hence

NCCI
τ

[[ temp := this .next;
if temp = null then {} else out := temp.foreign()

]]({ out ,
temp

})
=NCCI

τ

[[if temp= null then {}
else out :=temp.foreign()

]]
(NCCI

τ [[temp := this .next]]({out , temp}))

= NCCI
τ [[if temp = null then {} else out := temp.foreign()]]({out})

= NCCI
τ [[{}]]({temp, out}) ∩ NCCI

τ [[out := temp.foreign()]]({out})
= {temp, out} ∩ setVarout

τ+temp.foreign()(NCEI
τ [[temp.foreign()]]({out})).

In this call, nc† = ∅ and τ(temp) = Subs. Then nc′′ = I(Subs.foreign)(∅) ∩
I(ForeignSubs.foreign)(∅) = {out}∩ {out} = {out}. A sharing analysis, such
as that in [8], proves that temp shares with only this and temp itself here
(out holds null). So SE = {this , temp} and NCEI

τ [[temp.foreign()]]({out}) =
({out} \ SE ) ∪ {res} = {out , res} and the equation above is {temp, out} ∩(
setVarout

τ+temp.foreign()({out , res})
)

= {temp, out} ∩ {out} = {out}.
The result for ForeignSubs.foreign is shown in Figure 6. We report the

approximation before and after each statement. We do not consider the state-
ment out .numOfChannels := this .numOfChannels in Figure 1 since it deals with
primitive types, not relevant for us. The result is {out , sub} i.e., out and sub
are non-cyclical. Its restriction to out (Definition 13) is {out}, as expected. The
assignment out .next:= temp.foreign() maintains out ’s non-cyclicity since the
value of the right-hand side is non-cyclical (as we have computed above) and does
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not share with out , as it can be proved for instance through the analysis in [8].
So the first case of the definition of setField in Figure 5 applies. The assignment
out .subscriber := sub maintains out ’s non-cyclicity since field subscriber has
non-cyclical type Person. The first case of the definition of setField applies.

Example 11 shows that our analysis is able to prove non-cyclicity in a non-trivial
situation. Example 12 shows instead that, correctly, non-cyclicity is lost when a
variable is bound to a cyclic data-structure.

Example 12. Let only v be in scope. At the end of the piece of code v :=new Subs;
v .next :=v , variable v is cyclical. Our analysis reflects this since, if we start it for
instance from ∅ (no variable is definitely non-cyclical) then the approximation
{v} is computed after the first statement, and ∅ after the second. Here, we used
the rule for v.f :=exp in Figure 5 with SE = {res, v}, since res i.e., the value of
v , shares with v.

We conclude with Example 13, which shows a false alarm i.e., a situation where
our analysis is too conservative and is not able to prove non-cyclicity.

Example 13. Let only v be in scope. At the end of the piece of code v :=new Subs;
v .next := new Subs; v .next :=v .next, variable v is non-cyclical. If we start for
instance our analysis from ∅, we compute {v} after the first and second state-
ment. For the last one we apply the rule for v.f :=exp in Figure 5 with SE =
{res, v}, since res i.e., the value of v .next, shares with v. The result, as in Exam-
ple 12, is ∅ i.e., the analysis is too conservative to prove that v is non-cyclical.

7 Compilation into Boolean Functions

Figures 4 and 5 report maps over NC i.e., over sets of variables. They can be
represented through Boolean functions (or formulas) i.e., functions over Boolean
variables, which can then be efficiently implemented through binary decision
diagrams [4]. The idea is that two Boolean variables v̌ and v̂ represent the non-
cyclicity of program variable v in the input, respectively, output, of a denotation.

Definition 14. A non-cylicity denotation d : NCτ �→ NCτ ′ is represented by a
Boolean function φ over the variables {v̌ | v ∈ dom(τ)} ∪ {v̂ | v ∈ dom(τ ′)} iff
for every nc ∈ NCτ we have d(nc) = nc′ ⇔ {v | (∧{v̌ | v ∈ nc} ∧ φ) |= v̂} = nc′,
where |= is logical consequence or entailment.

Example 14. Let τ be as in Figure 3. The denotation d : NCτ �→ NCτ such
that d({this , sub}) = {out , sub} and d(nc) = {sub} for any nc �= {this, sub}, is
represented by φ =

(
( ˇthis ∧ ¬ ˇout ∧ ¬ ˇtemp ∧ ˇsub)→ ˆout

)
∧ ˆsub.

Composition d1 ◦ d2 of non-cyclicity denotations d1 and d2 is represented by the
Boolean function b1 ◦ b2 = ∃v′(b1[v̂ �→ v′]∧ b2[v̌ �→ v′]), where b1 is the Boolean
representation of d1, b2 is the representation of d2, b1[v̂ �→ v′] renames the output
variables of b1 into new temporary, primed variables, b2[v̌ �→ v′] renames the
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BEτ [[null κ]] = BEτ [[new κ]] = ˆres ∧ U(dom(τ ))

BEτ [[v]] = BEτ [[(κ)v]] = (v̌ → ˆres) ∧ U(dom(τ ))

BEτ [[v.f]] =

(
ˆres ∧ U(dom(τ )) if F (τ (v))(f) is non-cyclical

(v̌ → ˆres) ∧ U(dom(τ )) otherwise

BEτ [[v.m(v1, . . . , vn)]] = U(dom(τ ) \ SE) ∧ [(v̌ → ˆthis ∧ v̌1 → ŵ1 ∧ . . . ∧ v̌n → ŵn)◦

◦ ∨{I(κ.m) | κ.m can be called here} ◦ ( ˇout → ˆres)]

BCτ [[v:=exp]] = BEτ [[exp]] ◦ setVar v
τ+exp

with setVar v
τ ′ = ( ˇres → v̂) ∧ U(dom(τ ′) \ {res , v})

BCτ [[v.f :=exp]] = BEτ [[exp]] ◦ setFieldv.f
τ+exp

with setFieldv.f
τ ′ =

(
U((dom(τ ′)\SE )\{res}) if res and v share and F (τ (v))(f) is cycl.
(∧{( ˇres ∧ v̌) → v̂ | v ∈ SE}) ∧ U((dom(τ ′) \ SE) \ {res}) else

BCτ [[if v = w then com1 else com2]] = ((v̌ ↔ w̌) ∧ BCτ [[com1]]) ∨ BCτ [[com2]]

BCτ [[if v = null then com1 else com2]] = (v̌ ∧ BCτ [[com1]]) ∨ BCτ [[com2]]

BCτ [[{}]] = U(dom(τ )), BCτ [[{com1; . . . ; comp}]] = BCτ [[com1]] ◦ · · · ◦ BCτ [[comp]].

Fig. 7. Compilation rules from our language into Boolean functions

input variables of b2 into the same temporaries and ∃v′ removes such temporaries
through Schröder elimination [2]: ∃xφ = φ[x �→ true] ∨ φ[x �→ false].

Figure 7 reports Boolean functions for the non-cyclicity denotations of Fig-
ures 4 and 5. The frame condition U(vars) = ∧{v̌ → v̂ | v ∈ vars} states that
variables vars do not change. Interpretations I map now methods to Boolean
functions representing their non-cyclicity denotation. You can see Figure 7 as a
set of compilation rules from the language of Section 4 into Boolean functions.

Let us consider Figure 7. The representation for new κ and null κ is a Boolean
function stating that res is non-cyclical in the output. All other variables are
unchanged. That of v and (κ)v propagates the non-cyclicity of v into that of
res . The representation of v.f depends on the non-cyclicity of F (τ(v))(f), which
can be checked at analysis-time. The representation for method call is the com-
position of a Boolean function, matching the actual parameters with the formal
ones, with a Boolean function that fetches the interpretations of the methods
which might be called (I is fed later), and a Boolean function which renames
out into res . A frame condition expresses that no variable is changed by the
call, except those in SE (Figure 4). Assignments use, as in Figure 5, maps (now
formulas) setVar and setField . The latter checks, at analysis-time, if res shares
with v and field f has cyclical type. The representation of the conditionals is
the disjunction of their two branches, but we improve the information avail-
able on the then branch, exactly as in Figure 5. Namely, if v = w holds then
v and w are both cyclical or both non-cyclical. If v = null holds then v is
non-cyclical.

Example 15. Figure 2 shows the application of the compilation rules in Figure 7
to the abstract compilation of the method ForeignSubs.foreign in Figure 1.
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Interpretations over Boolean functions are updated by a transformer which is
the compilation into Boolean functions of that of Definition 13.

Definition 15. The transformer on non-cyclicity interpretations transforms a
non-cyclicity interpretation I ′ into I ′′ (both represented with Boolean functions)
such that I ′′(κ.m) = (U(dom(input(κ.m))) ∧ ˆout ∧ ŵn+1 ∧ . . .∧ ŵn+m) ◦ φκ.m[I �→
I ′] ◦ ( ˇout → ˆout), where φκ.m[I �→ I ′] is the compiled body (formula) of method
κ.m with I ′ plugged instead of I. The denotational non-cyclicity semantics over
Boolean functions of a program is the least fixpoint of this transformer.

Proposition 4. The denotational non-cyclicity semantics over Boolean func-
tions represents (Definition 14) the non-cyclicity semantics of Definition 13.

Example 16. The bottom interpretation of Example 10 is represented as I ′(κ.m)=
ˆout for every κ.m. Formula φSubs.foreign is in Figure 2. Then I ′′(Subs.foreign) =

(( ˇthis → ˆthis)∧ ˆout ∧ ˆtemp)◦ (φ1 ◦ (φ2∨φ3[I �→ I ′])))◦ ( ˇout → ˆout). To compute
φ3[I �→ I ′], plug ˆout instead of each occurrence of I. We have φ3[I �→ I ′] =
((( ˇtemp → ˆthis) ◦ ˆout ◦ ( ˇout → ˆres)) ∧ ( ˇout → ˆout)) ◦ (( ˇres → ˆout) ∧ ( ˇthis →
ˆthis) ∧ ( ˇtemp → ˆtemp)). We show an example of (associative) composition:
ˆout ◦ ( ˇout → ˆres) = ∃out′(out ′ ∧ (out ′ → ˆres)) = (out ′ ∧ (out ′ → ˆres))[out ′ �→

true] ∨ (out ′ ∧ (out ′ → ˆres))[out ′ �→ false] = ˆres. Continuing the calculation
we have φ3[I �→ I ′] = ( ˆres ∧ ( ˇout → ˆout)) ◦ (( ˇres → ˆout) ∧ ( ˇthis → ˆthis) ∧
( ˇtemp → ˆtemp)) = ˆout . It can also be checked that φ1 ◦ (φ2 ∨ φ3[I �→ I ′]) =
ˆout . Hence I ′′(Subs.foreign) = (( ˇthis → ˆthis) ∧ ˆtemp ∧ ˆout) ◦ ˆout ◦ ( ˇout →
ˆout) = ˆout . The same can be computed for ForeignSubs.foreign. In conclusion
I ′ = I ′′ is the least fixpoint of the transformer of Definition 15 (compare with
Example 11).

8 Conclusion

We have applied abstract compilation into Boolean formulas to define a static
analysis which detects non-cyclicity of program variables. This leads to an elegant
and relational formulation of the analysis, and in prospective to an implemen-
tation through binary decision diagrams [4]. This is considered very important
for building efficient implementations of static analyses [2].
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Abstract. Polyhedral analysis infers invariant linear equalities and in-
equalities of imperative programs. However, the exponential complex-
ity of polyhedral operations such as image computation and convex hull
limits the applicability of polyhedral analysis. Weakly relational domains
such as intervals and octagons address the scalability issue by considering
polyhedra whose constraints are drawn from a restricted, user-specified
class. On the other hand, these domains rely solely on candidate expres-
sions provided by the user. Therefore, they often fail to produce strong
invariants.

We propose a polynomial time approach to strongly relational analy-
sis. We provide efficient implementations of join and post condition op-
erations, achieving a trade off between performance and accuracy. We
have implemented a strongly relational polyhedral analyzer for a subset
of the C language. Initial experimental results on benchmark examples
are encouraging.

1 Introduction

Polyhedral analysis seeks to discover invariant linear equality and inequality re-
lationships among the variables of an imperative program. The computed invari-
ants are used to establish safety properties such as freedom from buffer overflows.
The standard approach to polyhedral analysis is through a fixed point iteration
in the domain of convex polyhedra [9]. Complexity considerations, however, re-
strict its application to small systems. Libraries such as NewPolka [13] and
PPL [2] have made strides towards addressing some of these tractability issues,
but still the approach remains impractical for large systems.

At the heart of this intractability lies the need to repeatedly convert between
constraint and generator representations of polyhedra. Efficient analysis tech-
niques work on restricted forms of polyhedra wherein such a conversion can
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be avoided. Weakly relational domains such as octagons [17], intervals [7], oc-
tahedra [6] and the TCM domain [18], avoid these conversions by considering
polyhedra whose constraints are fixed a priori. The abstract domain of Simon
et al. [19] considers polyhedra with at most two variables per constraint. Using
these syntactic restrictions, the analysis can be carried out efficiently. However,
the main drawback of such syntactic restrictions is the inability of the analysis
to infer invariants that require expressions of an arbitrary form. Thus, in many
cases, such domains may fail to prove the property of interest.

In this paper, we provide an efficient strongly relational polyhedral domain
by drawing on ideas from both weak and strong relational analysis. We present
alternatives to the join and post condition operations. In particular, we provide
a new join algorithm, called inversion join, that works in polynomial time in
the size of the input polyhedra, as opposed to the exponential space polyhedral
join. We make use of linear programming to implement an efficient join and post
condition operators, along with efficient inclusion checks and widening operators.

On the other hand, our domain operations are weaker than the conventional
polyhedral domain operations, potentially yielding weaker invariants. Using a
prototype implementation of our techniques, we have analyzed several sorting
and string handling routines for buffer overflows. Our initial results are promis-
ing; our analysis performs better than the standard approaches while computing
invariants that are sufficiently strong in practice.

Outline. Section 2 discusses the preliminary notions of polyhedra, transition
systems and invariants. Section 3 discusses algorithms for domain operations
needed for polyhedral analysis. Section 4 discusses the implementation and the
results obtained on benchmark examples.

2 Preliminaries

We recall some standard results on polyhedra, followed by a brief description of
system models and abstract interpretation. Throughout the paper, let R repre-
sent the set of reals and R+ = R∪ {±∞} represent the extended real numbers.

Definition 1 (Linear Assertions). A linear expression e is of the form
a1x1 + · · · + anxn + b, wherein each ai ∈ R and b ∈ R+. The expression is
said to be homogeneous if b = 0. A linear constraint is of the form a1x1 + · · ·+
anxn + b �� 0, with �� ∈ {≥, =}. A linear assertion is a finite conjunction of
linear inequalities.

Note that the linear inequality e+∞ ≥ 0 represents the assertion true, whereas
the inequality e − ∞ ≥ 0 represents false. Since each equality e = 0 can be
represented as a conjunction of two inequalities, an assertion can be written in
matrix form as A�x+�b ≥ �0, where A is a m× n matrix, while �x and �b are n and
m-dimensional vectors, respectively. The set of points in Rn satisfying a linear
assertion is called a polyhedron.

The representation of a polyhedron by a linear assertion is known as its con-
straint representation. Alternatively, a polyhedron may be represented explicitly
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by a finite set of vertices and rays, known as the generator representation. Each
representation may be exponentially larger than the other. For instance, the n
dimensional hypercube is represented by 2n constraints and 2n generators. Ef-
ficient libraries of conversion algorithms such as the new PolKa [12] and the
Parma Polyhedral Library (PPL) [2] have made significant improvements to the
size of the polyhedra for which the conversion is possible. Nevertheless, this con-
version still remains intractable for large polyhedra involving 100s of variables
and constraints.

A Template Constraint Matrix (TCM) T is a finite set of homogeneous linear
expressions over �x. Given an assertion ϕ, its expressions induce a TCM T which
we shall denote as Ineqs (ϕ). If ϕ is represented as A�x+�b ≥ 0 then Ineqs (ϕ) : A�x.

Linear Programming. We briefly describe the theory of linear programming.
Details may be found in standard textbooks [5].

Definition 2 (Linear Programming). A canonical instance of the linear pro-
gramming (LP) problem is of the form

minimize e subject to ϕ ,

for assertion ϕ and a linear expression e, called the objective function.

The goal is to determine the solution of ϕ for which e is minimal. A LP problem
can have one of three results: (1) an optimal solution; (2)−∞, i.e, e is unbounded
from below in ϕ; (3) +∞, i.e, ϕ has no solutions.

It is well-known that an optimal solution, if it exists, is realized at a vertex
of the polyhedron. Therefore, the optimal solution can be found by evaluating
e at each of the vertices. Enumerating all the vertices is very inefficient because
the number of generators is worst-case exponential in the number of constraints.
The popular simplex algorithm (due to Danzig [10]) employs a sophisticated
hill climbing strategy that converges on an optimal vertex without necessarily
enumerating all vertices. In theory, the technique is worst-case exponential. The
simplex method is efficient over most problems. Interior point methods such as
Karmarkar’s algorithm and other techniques based on ellipsoidal approximations
are guaranteed to solve linear programs in polynomial time. Using an open-source
implementation of simplex such as glpk [15], massive LP instances involving
tens of thousands (104 and beyond) of variables and constraints can be solved
efficiently.

Programs and Invariants

We assume programs over real valued variables without any function calls. The
program is represented by a linear transition system also known as a control flow
graph.

Definition 3 (Linear Transition Systems). A linear transition system
(LTS) Π : 〈L, T , �0, Θ〉 over a set of variables V consists of
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– L: a set of locations (cutpoints);
– T : a set of transitions (edges), where each transition τ : 〈�i, �j, ρτ 〉 consists

of a pre-location �i, a post-location �j, and a transition relation ρτ , repre-
sented as a linear assertion over V ∪ V ′, where V denotes the values of the
variables in the current state, and V ′ their values in the next state;

– �0 ∈ L: the initial location;
– Θ: a linear assertion over V specifying the initial condition.

A run of a LTS is a sequence 〈m0, s0〉 , 〈m1, s1〉 , . . ., with mi ∈ L and si a
valuation of V , also called a state, such that

– Initiation: m0 = �0, and s0 |= Θ
– Consecution: for all i ≥ 0 there exists a transition τ : 〈�j, �k, ρτ 〉 such that
mi = �j , mi+1 = �k, and 〈si, si+1〉 |= ρτ .

A state s is reachable at location � if 〈�, s〉 appears in some run.
A given linear assertion ψ is a linear invariant of a linear transition system

(LTS) at a location � iff it is satisfied by every state reachable at �. An assertion
map associates each location of a LTS to a linear assertion. An assertion map
η is invariant if η(�) is an invariant, for each � ∈ L. In order to prove a given
assertion map invariant, we use the inductive assertions method due to Floyd
(see [16]).

Definition 4 (Inductive Assertion Maps). An assertion map η is inductive
iff it satisfies the following conditions:

Initiation: Θ |= η(�0),
Consecution: For each transition τ : 〈�i, �j, ρτ 〉, (η(�i) ∧ ρτ ) |= η(�j)′. Note

that η(�j)′ refers to η(�j)[V |V ′] with variables in V substituted by their cor-
responding primed variables in V ′.

It is well known that any inductive assertion map is invariant. However, the
converse need not be true. The standard technique for proving an assertion
invariant is to find an inductive assertion that strengthens it.

Linear Relations Analysis

Linear relation analysis seeks an inductive assertion map for the input program,
labeling each location with a linear assertion. Analysis techniques are based
on the theory of Abstract Interpretation [8] and specialized for linear relations
by Cousot and Halbwachs [9]. The technique starts with an initial assertion
map, and weakens it iteratively using the post, join and the widening operators.
When the iteration converges, the resulting map is guaranteed to be inductive,
and hence invariant. Termination is guaranteed by the design of the widening
operator.

The post condition operator takes an assertion ϕ and a transition τ , and
computes the set of states reachable by τ from a state satisfying ϕ. It can be
expressed as

post(ϕ, τ) : (∃V0)(ϕ(V0) ∧ ρτ (V0, V ))
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Standard polyhedral operations can be used to compute post. However, more
efficient strategies for computing post exist when ρτ has a special structure.
Given assertions ϕ{1,2} such that ϕ1 |= ϕ2, the standard widening ϕ1∇ϕ2 is an
assertion ϕ that contains all the inequalities in ϕ1 that are satisfied by ϕ2. The
details along with key mathematical properties of widening are described in [9, 8],
and enhanced versions appear in [12, 4, 1]. As mentioned earlier, the analysis
begins with an initial assertion map defined by η0(�0) = Θ, and η0(�) = false for
� �= �0. At each step, the map ηi is updated to map ηi+1 as follows:

ηi+1(�) = ηi(�) 〈op〉

⎡⎣ηi(�)
⊔

τj≡〈�j ,�,ρ〉
(post(ηi(�j), τj))

⎤⎦ ,

where op is the join (�) operator for a propagation step, and the widening (∇)
operator for a widening step. The overall algorithm requires a predefined itera-
tion strategy. A typical strategy carries out a fixed number of initial propagation
steps, followed by widening steps until termination.

Linear Assertion Domains

Linear relation analysis is performed using a forward propagation wherein poly-
hedra are used to represent sets of states. Depending on the family of polyhedra
considered, such domains are classified as weakly relational or strongly relational.

Let T = {e1, . . . , em} be a TCM. The weakly relational domain induced by
T consists of assertions

∧
ei∈T ei + bi ≥ 0 for bi ∈ R+. TCMs and their induced

weakly relational domain are formalized in our earlier work [18]. Given a weakly
relational domain defined by a TCM T and a linear transition system Π , we
seek an inductive assertion map η such that η(�) belongs to the domain of T for
each location �. Many weakly relational domains have been studied: Intervals,
octagons and octahedra are classical examples.

Example 1 (Weakly Relational Analysis). Let X be the set of system variables.
The interval domain is defined by the TCM consisting of expressions TX =
{±xi | xi ∈ X}. Thus, any polyhedron belonging to the domain is an interval
expression of the form

∧
(xi + ai ≥ 0 ∧ −xi + bi ≥ 0) . The goal of interval

analysis is to discover the coefficients ai, bi ∈ R+ representing the bounds for
each variable xi at each location of the program [7].

The octagon domain of Miné subsumes the interval domain by considering
additional expressions of the form ±xi ± xj such that xi, xj ∈ X [17]. The
octahedron domain due to Clarisó and Cortadella considers expressions of the
form

∑
i aixi such that ai ∈ {−1, 0, 1} [6].

It is possible to carry out the analysis in any weakly relational domain effi-
ciently [18].

Theorem 1. Given a TCM T and a linear system Π, all the domain opera-
tions for the weakly relational analysis of Π in the domain induced by T can be
performed in time polynomial in |T | and |Π |.
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integer x,y where (x = 1 ∧ x ≥ y)
�0 : while true do

if (x ≥ y) then
(x, y) := (x + 2, y + 1)

else
(x, y) := (x + 2, y + 3)

end if
end while

Fig. 1. An example program

Weakly relational domains are appealing since the analysis in these domains is
scalable to large systems. On the other hand, the invariants they produce are
often imprecise. For instance, even if ei + ai ≥ 0 is invariant for some expression
ei in the TCM, its proof may require an inductive strengthening ej + aj ≥ 0,
where ej is not in the TCM.

A strongly relational analysis does not syntactically restrict the polyhedra
considered. The polyhedral domain is not restricted in its choice of invariant
expressions, and is potentially more precise than a weakly relational domain.
The main drawback, however, is the high complexity of the domain operations.
Each domain operation requires conversions from the constraint to the gener-
ator representation and back. Popular implementations of strongly relational
analysis require worst case exponential space due to repeated representation
conversions.

Example 2. Consider the system in Figure 1. Interval and octagon domains both
discover the invariant ∞ ≥ x ≥ 1 at location �0. A strongly relational analysis
such as polyhedral analysis discovers the invariant x ≥ 1 ∧ 3x−2y ≥ 1, as does
the technique that we present.

3 Domain Operations

The theory of Abstract Interpretation provides a framework for the design of
program analyses. A sound program analysis can be designed by constructing
an abstract domain with the following domain operations:

Join (union). Given two assertions ϕ1, ϕ2 in the domain, we seek an assertion
ϕ such that ϕ1 |= ϕ and ϕ2 |= ϕ. In many domains, it is possible to find the
strongest possible ϕ satisfying this condition. The operation of computing
such an assertion is called the strong join.

Post Condition. Given an assertion ϕ, and a transition relation ρτ , we seek
an assertion ψ such that ϕ[V ] ∧ ρτ [V, V ′] |= ψ[V ′]. A strong post con-
dition operator computes the strongest possible assertion ψ satisfying this
condition.

Widening. Widening ensures the termination of the fixed point iteration.

Additionally, inclusion tests between assertions are important for detecting the
termination of an iteration. Feasibility tests and redundancy elimination are also
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frequently used to speed up the analysis. We present several different join and
post condition operations, each achieving a different trade off between efficiency
and precision.

Join

Given two linear assertions ϕ1 and ϕ2 over a vector �x of system variables, we
seek a linear assertion ϕ, such that both ϕ1 |= ϕ and ϕ2 |= ϕ.

Strong Join. The strong join seeks the strongest assertion ϕ (denoted ϕ1 �s

ϕ2) subsuming both ϕ1 and ϕ2. In the domain of convex polyhedra, this is
known as the polyhedral convex hull and is obtained by computing the generator
representations of ϕ1 and ϕ2. The set of generators of ϕ is the union of those
of ϕ1 and ϕ2. This representation is then converted back into the constraint
representation. Due to the repeated representation conversions, the strong join
is worst-case exponential space in the size of the input assertions.

Example 3. Consider the assertions

ϕ1 : x− y ≤ 5 ∧ y + x ≤ 10 ∧ −10 ≤ x ≤ 5
ϕ2 : x− y ≤ 9 ∧ y + x ≤ 5 ∧ −9 ≤ x ≤ 6

Their strong join ϕ1 �s ϕ2, generated by the union of their vertices, is

ϕ : 6x+ y ≤ 35 ∧ y+ 3x+ 45 ≥ 0 ∧ x− y ≤ 9 ∧ x+ y ≤ 10 ∧ −10 ≤ x ≤ 6 .

Weak Join. The weak join operation is inspired by the join used in weakly
relational domains.

Definition 5 (Weak Join). The weak join of two polyhedra ϕ1, ϕ2 is computed
as follows:

1. Let TCM T = Ineqs (ϕ1) ∪ Ineqs (ϕ2) be the set of inequality expressions that
occur in either of ϕ{1,2}. Recall that each equality in ϕ1 or ϕ2 is represented by
two inequalities in T .
2. For each expression ei in T , we compute the values ai and bi using linear
programming, as follows:

ai = minimize ei subject to ϕ1
bi = minimize ei subject to ϕ2

It follows that ϕ1 |= (ei ≥ ai) and ϕ2 |= (ei ≥ bi).
3. Let ci = min(ai, bi). Therefore, both ϕ1, ϕ2 |= (ei ≥ min(ai, bi) ≡ ci).

The weak join ϕ1 �w ϕ2 is given by the assertion
∧

ei∈T ei ≥ ci.

The advantage of the weak join is its efficiency: it can be computed using LP
queries, where both the number of such queries and the size of each individual
query is polynomial in the input size. On the other hand, the weak join does not
discover any new relations. It is weaker than the strong join, as shown by the
argument above (and strictly so, as shown by the following Example).
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Example 4. Consider the assertions ϕ1, ϕ2 from Example 3 above. The TCM T
and the ai, bi values are shown in the table below:

T :

# Relation ai(ϕ1) bi(ϕ2)
1 y − x ≥ −5 −9
2 −y − x ≥ −10 −5
3 x ≥ −10 −9
4 −x ≥ −5 −6

The weak join is given by

ϕw : (y − x ≥ −9 ∧ −y − x ≥ −10 ∧ x ≥ −10 ∧ −x ≥ −6) .

This result is strictly weaker than the strong join computed in Example 3.

Restricted Joins. The weak join shown above is more efficient than the strong
join. However, this efficiency comes at the cost of precision. We therefore seek
efficient alternatives to strong and weak join. The k-restricted join (denoted �k)
improves upon the weak join as follows:

1. Choose a subset of inequalities from ϕ1, ϕ2, each of cardinality at most k. Let
ψ1 and ψ2 be the assertions formed by the chosen inequalities. In general,
ψ1, ψ2 may contain different sets of inequalities, even different cardinalities.
Note that ϕi |= ψi for i = 1, 2.

2. Compute the strong join ψ1 �s ψ2 in isolation. Conjoin the results with the
weak join ϕ1 �w ϕ2.

3. Repeat step 1 for a different set of choices of ψ{1,2}, while conjoining each
such join to the weak join.

Since ϕi |= ψi, for i = 1, 2, it follows by the monotonicity of the strong join
operation that ϕ1 �s ϕ2 |= ψ1 �s ψ2. Thus ϕ1 �s ϕ2 |= ϕ1 �k ϕ2 for each k ≥ 0.

Let ϕ1, ϕ2 have at most m constraints. The k-restricted join requires vertex
enumeration for O((m

k )2) polyhedra with at most k constraints. As such, this
join is efficient only if k is a small constant. We shall now provide an efficient
O(m2) algorithm based on �2, to improve the weak join.

Inversion Join. The inversion join is based on the 2-restricted join. Let T be
the TCM and ai, bi be the values computed for the weak join as in Definition 5.
Consider pairs of expressions ei, ej ∈ T yielding the assertions

ψ1 : ei ≥ ai ∧ ej ≥ aj

ψ2 : ei ≥ bi ∧ ej ≥ bj

We use the structure of the assertions ψ1, ψ2 to perform their strong join ana-
lytically. The key notion is that of an inversion.

Definition 6 (Inversion). Expressions ei, ej ∈ T and corresponding coeffi-
cients ai, aj , bi, bj form an inversion iff the following conditions hold:
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ei ≥ ai

e j
≥

a
j

ei ≥ bi

e j
≥

b j

(a) (b)

H

(c)

Fig. 2. (a) ai > bi, aj < bj , (b) Weak join is strictly weaker than strong join, (c)
ai > bi, aj > bj : Weak join is the same as strong join

1. ai, aj, bi, bj ∈ R, i.e, none of them is ±∞.
2. ei �= λej for λ ∈ R, i.e, ei, ej are linearly independent.
3. ai < bi and bj < aj (or vice-versa).

Example 5. Consider two “wedges” ψ1 : ei ≥ ai ∧ ej ≥ aj and ψ2 : ei ≥
bi ∧ ej ≥ bj . Depending on the values of ai, aj , bi, bj, two cases arise as depicted
in Figures 2(a,b,c). Figures 2(a,b) form an inversion. When this happens, the
weak join (a) is strictly weaker than the strong join (b). Figure 2(c) does not
form an inversion. The weak and strong joins coincide in this case.

Therefore, a strong join of polyhedra that form an inversion gives rise to a half
space that is not discovered by the weak join. We now derive this “missing
half-space” H analytically.

The half space subsumes both ψ1 and ψ2. A half-space that is a consequence
of ψ1 : ei ≥ ai ∧ ej ≥ aj is of the form H : ei + λijej ≥ ai + λijaj, for
some λij ≥ 0. Similarly for ψ2, we obtain H : ei + λijej ≥ bi + λijbj . Equating
coefficients, yields the equation ai + λijaj = bi + λijbj . The required value of
λij is

λij =
ai − bi
bj − aj

.

Note that requiring λij > 0 yields ai < bi and bj < aj . Therefore, ψ1, ψ2 contain
a non trivial common half-space iff they form an inversion.

Definition 7 (Inversion Join). Given ϕ1, ϕ2 the inversion join ϕ1 �inv ϕ2 is
computed as follows:

1. Compute the TCM T = Ineqs (ϕ1) ∪ Ineqs (ϕ2).
2. For each ei ∈ T compute ai, bi as defined in Definition 5 using linear pro-

gramming. At this point ϕ1 |= ei ≥ ai and ϕ2 |= ei ≥ bi. Let ϕw = ϕ1 �w ϕ2
be the weak join.

3. For each pair ei, ej, consider the expression ei +λijej ≥ ai +λijaj, with λij

as defined above.
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(a)

(b)

(c)

y

x

Fig. 3. Inversion join over two polyhedra (a), (b) and (c) are the newly discovered
relations

4. The inversion join is the conjunction of ϕw and all the inversion expressions
generated in Step 3. Optionally, simplify the result by removing redundant
inequalities.

Example 6. Figure 3 shows the result of an inversion join over two input poly-
hedra ϕ1, ϕ2 used in Example 3. Example 4 shows the TCM T and the ai, bi
values. There are three inversions

# Expressions Subsuming Half-Space
(a) 〈1, 3〉 y + 3x+ 45 ≥ 0
(b) 〈2, 4〉 −y − 6x+ 35 ≥ 0
(c) 〈1, 2〉 y − 9x+ 65 ≥ 0

The “expressions” column in the table above refers to expressions by their row
numbers in the table of Example 4. From Figure 3, note that (c) is redundant.
Therefore the result of the join may require redundancy elimination (algorithm
provided later in this section). This result is equivalent to the result of the strong
join in Example 3.

Theorem 2. Let ϕ1, ϕ2 be two polyhedra. It follows that

ϕ1 �s ϕ2 |= ϕ1 �inv ϕ2 |= ϕ1 �w ϕ2 .

The inversion join requires as many LP queries as the weak join and additional
O(m2n) arithmetic operations to compute inversions, where m is the number of
inequalities in T and n, the dimensionality.

Note. The descriptions of the weak and inversion join treat each equality as
two inequalities. The resulting join could be made more precise if additionally,
the equality join defined by Karr’s analysis [14] is computed and conjoined to
the result. This can be achieved in time that is polynomial in the number of
equalities.

Post Condition

The post condition computes the image of an assertion ϕ under a transition
relation of the form ξ ∧ �x′ = A�x + �b. This is equivalent to the image of
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ϕ ∧ ξ under the affine transformation �x′ = A�x+�b. If the matrix A is invertible,
then this image is easily computed by substituting �x = A−1(�x′ −�b) [9]. On the
other hand, it is frequently the case that A is not invertible. We present three
alternatives, the strong, weak and restricted post conditions.

Strong Post. The strong post is computed by first enumerating the generators of
ϕ ∧ ξ. Each generator is transformed under the operation A�x+�b. The resulting
polyhedron is generated by these images. Conversion back to the constraint
representation completes the computation.

Weak Post. Weak post requires a TCM T ′ labeling the post location of the
transition. Alternatively, this TCM may be derived from Ineqs (η(�′)) where η(�′)
labels the post-location. Given the existence of such a TCM, we may use the
post operation defined for TCMs [18] to compute the weak post.

Note. The post condition computation for equalities can be performed separately
using the image operation defined for Karr’s analysis. This can be added to the
result, thus strengthening the weak post.

k-Restricted Post The k-restricted post condition improves upon the weak post
by using the monotonicity of the strong post operation (see [8]) similar to the k-
restricted join algorithm. Therefore, considering a subset of up to k inequalities
ψ, we may compute the strong post of ψ and add the result conjunctively to the
weak post. The results improve upon the precision of weak post. As is the case
for join, it is possible to treat the cases for k = 1, 2 efficiently.

Example 7. Consider the polyhedron ϕ : x − y ≥ 0 ∧ x ≤ 0 ∧ x+ y + 3 ≤ 0
and the transformation x := x + 3, y := 0. Consider the TCM T = {x − y, x +
y, y−x,−x− y}. The weak post of ϕ w.r.t T is computed by finding bounds for
each expression. For instance the bound for x− y is discovered by solving:

minimize x′ − y′ s.t. ϕ ∧ x′ = x+ 3 ∧ y′ = 0

The overall weak post is obtained by solving 4 LPs, one for each element of T ,

ϕw : 3 ≥ x− y ≥ 1.5 ∧ 3 ≥ x+ y ≥ 1.5 .

This is strictly weaker than the strong post ϕs : 3 ≥ x ≥ 1.5 ∧ y = 0. The
1-restricted post computes the post condition of each half-space in ϕ separately.
This yields the result y = 0 for all the three half-spaces. Conjoining the 1-
restricted post with the weak post yields the same result as the strong post in
this example.

Note. The projection operation, an important primitive for interprocedural
analysis, can be implemented along the same lines as the post condition op-
eration, yielding the strong, weak and restricted projection operations.

Feasibility, Inclusion Check and Redundancy Elimination

There exist polynomial time algorithms that are efficient in practice for checking
feasibility of a polyhedron and inclusion between two polyhedra.
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Feasibility. The simplex method can be used to check feasibility of a given
linear inequality assertion ϕ. In practice, we solve the optimization problem
minimize 0 subject to ϕ. An answer of +∞ indicates the infeasibility of ϕ.

Inclusion Check. As a primitive, consider the problem of checking whether a
given inequality e ≥ 0 is entailed by ϕ, posing the LP: minimize e subject to ϕ.
If the optimal solution is a, it follows from the definition of a LP problem that
ϕ |= e ≥ a. Thus subsumption holds iff a ≥ 0. In order to decide if ϕ |=
A�x+�b ≥ 0, we decide if the entailment holds for each half-space Ai�x+ bi ≥ 0.

Redundancy Elimination (Simplification). Each inequality is checked for sub-
sumption by the remaining inequalities using the inclusion check primitive.

Widening

The standard widening of Cousot and Halbwachs may be implemented efficiently
using linear programming. Let ϕ1, ϕ2 be two polyhedra such that ϕ1 |= ϕ2.

Let us assume that ϕ1, ϕ2 are both satisfiable. We seek to drop any constraint
ei ≥ 0 in ϕ1 that is not a consequence of ϕ2. This can be achieved by the inclusion
test primitive described above.

Definition 8 (Standard Widening). The standard widening of two polyhedra
ϕ1 |= ϕ2, denoted ϕ = ϕ1∇ϕ2 is computed as follows,

1. Check satisfiability of ϕ1, ϕ2. If either one is unsatisfiable, widening reduces
to their join.

2. Otherwise, for each ei ∈ Ineqs (ϕ1), compute bi = minimize ei subject to ϕ2.
If bi < 0 then drop the constraint ei ≥ 0 from ϕ1.

This operator is identical to the widening defined by Cousot and Halbwachs [9].
The operator may be improved by additionally computing the join of the equalities
in both polyhedra. The work of Bagnara et al. [1] presents several approaches to
improving the precision of widening operators.

4 Performance

We have implemented many of the ideas in this paper in the form of an ab-
stract domain library written in Ocaml. Our library uses GLPK [15] to solve
LP queries, and PPL [2] to convert between the constraint and generator rep-
resentations of polyhedra. Such conversions are used to implement the strong
join and post condition. Communication between the different libraries is imple-
mented using Unix pipes. As a result, the communication overhead is significant
for small examples.

Choosing Domain Operations. We have provided several options for the join and
the post condition operations. In practice, one can envision many strategies for
choosing among these operations.Our implementation chooses between the strong
and the weak versions based on the sizes of the input polyhedra. Strong post con-
dition and joins are used for smaller polyhedra (40 variables+constraints). On the
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other hand, the inversion join is used for polyhedra with roughly 100s of
variables+constraints, while the weak versions are used for larger polyhedra. We
observe empirically that the use of strong operations does not improve the result
once the widening phase is started. Therefore, we resort to weak join and post
condition for the widening phase of the analysis.

4.1 Benchmark Examples

We supplied our library to generate invariants for a few benchmark system mod-
els drawn from related projects such as FAST [3] and our previous work [18].
Table 1 shows the complexity of each system in terms of number of variables
(#vars) along with the performance of our technique of mixed strong, weak
and inversion domain operations as compared with the purely strong join/post
operations implemented directly in C++ using the PPL library. We compare
the running time and memory utilization of both implementations. Results were
measured on an Intel Xeon II processor with 1GB RAM. The last column com-
pares the invariants generated. A “+” indicates that our technique discovers
strictly stronger invariants whereas a “ �=” denotes that the invariants are in-
comparable.

Also, for small polyhedra, strong operations frequently outperform weak do-
main operations in terms of time. However, their memory consumption seems
asymptotically exponential. Therefore, weak domain operations yield a drastic
performance improvement when the size of the benchmark examples increases
beyond the physical memory capacity of the system. Comparing the invariants
generated, it is interesting to note that the invariants produced by both tech-
niques are, for the most part, incomparable. While inversion join is weaker than
strong join, the non-monotonicity of the widening operation and its dependence
on the syntactic representation of the polyhedra cause the two versions to com-
pute different invariants.

Analysis of πVC Programs. We applied our abstract domain library to analyze
a subset of the C language called πVC , consisting of imperative programs over

Table 1. Performance on Benchmark Examples. All times are in seconds and memory
utilization in Mbs.

Name (#vars) #trans Strong+Weak Purely Strong ±
time mem time mem

req-grant(11) 8 3.14 5.7 0.1 4.1 +
csm(13) 8 6.21 5.9 0.1 4.2 �=
c-pJava(18) 14 11.2 6.0 0.1 4.1 �=
multipool(18) 21 10.0 6.0 2.1 9.2 +

incdec(32) 28 39.12 6.8 8.7 10.4 �=
mesh2x2(32) 32 33.8 6.4 18.53 66.2 �=
bigjava(44) 37 46.9 7.2 256.2 55.3 �=
mesh3x2(52) 54 122 8.1 > 1h+ > 800+ +
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integers with function calls. The language features dynamically allocated arrays,
records and recursive function calls while excluding pointers. Parameters are
passed by value and global variables are disallowed. The language incorporates
invariant annotations by the user that are verified by the compiler using a back-
ground decision procedure. Our analysis results in sound annotations that aid the
verifying compiler in checks for runtime safety such as freedom from overflows,
and with optional user supplied assertions, help prove functional correctness.

Our analyzer is inter-procedural, using summaries to handle function calls in
a context sensitive manner. Our abstraction process models arrays in terms of
their allocated sizes while treating their contents as unknowns. Integer opera-
tions such as multiplication, division and modulo are modeled conservatively so
that soundness is maintained. The presence of recursive function calls requires
that termination be ensured by limiting the number of summary instances per
function and by widening on the summary preconditions.

Table 2 shows the performance on implementations of standard sorting al-
gorithms, string search algorithms and a part of the web2C code for convert-
ing Pascal-style writes into C-style printf functions, originally verified by Dor
et al. [11]. The columns in Table 2 show the size of each program in lines of code
and number of functions. An asterisk (*) identifies programs containing recur-
sive functions. We place a check mark (

√
) in the “proves property” column if

the resulting annotations themselves prove all array accesses and additional user
provided assertions. Otherwise, the number of unproven accesses/assertions is
indicated. Our analyzer proves a vast majority (≥ 90%) of the assertions valid,
without any user interaction. Indirect array accesses such as a[b[i]] are a major
reason for the false positives. We are looking into more sophisticated abstrac-
tions to handle such accesses. The invariants generated by both the versions are
similar for small programs, even though weak domain operations were clearly
used during the analysis. The difference in performance is clearer as the size of
the program increases. Our interface to the PPL library represents coefficients
using long integers. This led to an overflow error while analyzing quicksort.

In conclusion, we have designed and implemented efficient domain operations
and applied our technique to verify interesting benchmark examples. We hope
to extend our analyzer to handle essential features such as pointers and arrays.

Table 2. Performance of invariant generator for benchmark programs

Description Size (Weak+Strong) (Strong) Proves
#LOC #fns time(sec) mem(Mb) time(sec) mem(Mb) Property

binary-search (*) 27 2 0.48 7.8 0.4 7.5
√

insertionsort 37 1 2.9 7.9 2 7.8
√

heapsort 75 5 26.2 9.8 23.0 9.6
√

quicksort (*) 106 4 2m 13.2 overflow
√

Knuth-Morris-Pratt 110 4 9.4 8.6 7.9 8.6 4
Boyer-Moore 106 3 33.7 10.4 28.8 10.8 12
fixwrites(*) 270 10 4.2m 26.5 > 75m > 75M 28
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5. Chvátal, V. Linear Programming. Freeman, 1983.
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Abstract. Many aspects of computer systems are naturally modeled as param-
eterized systems which renders their automatic verification difficult. In well-
known examples such as cache coherence protocols and mutual exclusion proto-
cols, the unbounded parameter is the number of concurrent processes which run
the same distributed algorithm. In this paper, we introduce environment abstrac-
tion as a tool for the verification of such concurrent parameterized systems. Envi-
ronment abstraction enriches predicate abstraction by ideas from counter abstrac-
tion; it enables us to reduce concurrent parameterized systems with unbounded
variables to precise abstract finite state transition systems which can be verified
by a finite state model checker. We demonstrate the feasibility of our approach
by verifying the safety and liveness properties of Lamport’s bakery algorithm and
Szymanski’s mutual exclusion algorithm. To the best of our knowledge, this is the
first time both safety and liveness properties of the bakery algorithm have been
verified at this level of automation.

1 Introduction

We propose a new method for the verification of concurrent parameterized systems
which combines predicate abstraction [21] with ideas from counter abstraction [29].
In predicate abstraction, the memory state of a system is approximated by a tuple of
Boolean values which indicate whether certain properties (“predicates”) of the memory
state hold or not. For example, instead of keeping all 64 bits for two integer variables
x, y, predicate abstraction may just track the Boolean value of the predicate x > y.

Counter abstraction, in contrast, is specifically tailored for concurrent parameterized
systems which are composed of finite state processes: for each possible state s of a
single finite state process, the abstract state contains a counter Cs which denotes the
number of processes currently in state s. Thus, the process identities are abstracted away
in counter abstraction. It can be argued that counter abstraction constitutes a very natural
abstraction mechanism for protocols. In practice, the counters in counter abstraction are
themselves abstracted in that they are cut off at value 2.

Counter abstraction however has two main problems: first, it works only for finite
state systems, and second, it assumes perfect symmetry, i.e., each process is identical

� This research was sponsored by the the National Science Foundation (NSF) under grants no.
CCR-9803774 and CCR-0121547. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of NSF. The third author was also supported by the EU GAMES Net-
work.

E.A. Emerson and K.S. Namjoshi (Eds.): VMCAI 2006, LNCS 3855, pp. 126–141, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Environment Abstraction for Parameterized Verification 127

to every other process in every aspect. Well-known algorithms such as Lamport’s bak-
ery algorithm are not directly amenable to counter abstraction: the bakery algorithm
has an infinite state space due to an unbounded integer variable, and also an inherent
asymmetry due to its use of process id’s.

In this paper, we will address the two disadvantages of counter abstraction by incor-
porating the idea of counter abstraction into a new form of predicate abstraction: since
the state space is infinite, we do not count the processes in a given state as in tradi-
tional counter abstraction, but instead we count the number of processes satisfying a
given predicate. Note that the counters which we actually use in this paper are cut off
at the value 1; such degenerated counters are evidently tantamount to existential quan-
tifiers. Counting abstraction, too, usually needs only counters in the range [0..2]. Since
our abstraction maintains the state of one process explicitly, a range of [0..1] for each
counter suffices.

Our new form of abstraction is also different from common predicate abstraction
frameworks: Since the number of processes in a concurrent parameterized system is un-
bounded, the system does not have a single infinite-state model, but an infinite sequence
of models which increase in complexity. Moreover, since the individual processes can
have local data variables with unbounded range (e.g. integers), each of these models
is an infinite-state system by itself. Thus, computing the abstract transition relation is a
non-trivial task. Note that the predicates need to reflect the properties of a set of concur-
rent processes whose cardinality we do not know at verification time. To encode the nec-
essary information into the abstract model, we will introduce environment predicates.

Environment Predicates. We use an asynchronous model which crucially distinguishes
between the finite control variables of a process and the unbounded data variables of
a process. The control variables are used to model the finite control of the processes
while the data variables can be read by other processes in order to modify their own
data variables. The variables can be used in the guards of the other processes, thus
facilitating a natural communication among the processes.1

Figure 1 visualizes the intuition underlying environment abstraction. The grey box
on the left hand side represents a concrete state of a system with 16 concurrent pro-
cesses. The different colors of the disks/processes represent the internal states of the
processes, i.e., the positions of the program counter.

The star-shaped graph on the right hand side of Figure 1 represents an abstract state.
The abstract state contains one distinguished process – called the reference process x –
which is at the center of the star. In this example, the reference process x represents
process 1 of the concrete state. The disks on the circumference of the star represent
the environment of the reference process. Intuitively, the goal of the abstraction is to
embed the reference process x of the abstract state into an abstract environment as rich
as the environment which process 1 has in the concrete state. Thus, the abstract state
represents the concrete state “from the point of view of process 1.”

1 We assume that transitions involving global conditions are treated atomically, i.e., while a pro-
cess is evaluating e.g. a guard, no other process makes any transition. This simplification –
which we shall call the atomicity assumption further on – is implicit in other works on param-
eterized verification, see [3, 5, 6, 29].
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Fig. 1. Abstraction Mapping

To describe the environment of a process, we need to consider the relationships
which can hold between the data variables of two processes. We can graphically indicate
a specific relationship between any two processes by a corresponding arrow between
the processes; the form of the arrow (full, dashed, etc.) determines which relationship
the two processes have. In the figure, we assume that we have only two relationships
R1, R2. For example, R1(x, y) might say that the local variable t of process x has the
same value as local variable t in process y, whileR2(x, y) might say that t has different
values in processes x and y. Relationship R1 is indicated by a full arrow, and R2 is
indicated by a dashed arrow. For better readability, not all relationships between the 16
processes are drawn.

More precisely, the environment of the reference process is described as follows:
we enumerate all cases how the data variables in the reference process can relate to
the data variables in a different process, as well as all possible program counter val-
ues which the other process can take. In our example, we have 2 relationships R1, R2
and 4 program counter positions, giving 8 different environment conditions. Therefore,
the abstract state contains 8 environment processes on the circumference. For each of
these 8 environment conditions, we indicate by the absence or presence of a bar, if
this environment condition is actually satisfied by some process in the concrete state.
For example, the dashed arrow from process 1 to the vertically striped process 2 in the
concrete state necessitates a dashed arrow from x to a vertically striped process in the
abstract state. Similarly, since there is no full arrow starting at process 1 in the concrete
state, all full arrows in the abstract state have a bar. An environment predicate is a quan-
tified formula which indicates the presence or absence of an environment condition for
the reference process. We will give a formal definition of these notions in Section 4.

Note that a single abstract state in general represents an infinite number of concrete
states. Moreover, a given concrete state gives rise to several abstract states, each of
which is induced by choosing a different possible reference process. For example, the
concrete state in Figure 1 may induce up to 16 abstract states, one for each process.

Existential Abstraction for Parameterized Systems. We construct an abstract system by
a variant of existential abstraction. We include an abstract transition if in some con-
crete instance of the parameterized system we can find a concrete transition between
concrete states which match the abstract states with respect to the same reference pro-
cess. The abstract model obtained by environment abstraction is a sound abstraction
which preserves both safety and liveness properties.
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In this paper we use a simple input language which is general enough to describe
most practically relevant symmetric protocols, and to demonstrate the underlying prin-
ciples of our abstraction. We believe that our abstraction method can be naturally gen-
eralized for additional constructs as well.

To handle liveness we augment the abstract model using an approach suggested
by [29]. Note that in contrast to the indexed predicates method [24, 25], our approach
constructs an abstract transition system, instead of computing the set of reachable ab-
stract states. This feature of our approach is crucial for verifying liveness properties.

Tool Chain and Experiments. Our approach provides an automated tool chain in the
tradition of model checking.

1. The user feeds the protocol described in our language to the verification tool.
2. The environment abstraction tool extracts a finite state model from the process de-

scription, and puts the model in NuSMV format.
3. NuSMV verifies the specified properties.

Using the abstraction method described here, we have been able to verify automati-
cally the safety and liveness properties of two well known mutual exclusion algorithms,
namely Lamport’s Bakery algorithm [26] and Szymanski’s algorithm [31]. While safety
and liveness properties of Szymanski’s algorithm have been automatically verified with
atomicity assumption by Baukus et al [5], this is the first time both safety and liveness
of Lamport’s bakery algorithm have been verified (with the atomicity assumption) at
this level of automation.

2 Discussion of Related Work

Verification of parameterized systems is well known to be undecidable [2, 30]. Many
interesting approaches to this problem have been developed over the years, including
the use of symbolic automata-based techniques [1, 23, 8, 7], invariant based techniques
[3, 28], predicate abstraction [24], or exploiting symmetry [11, 14, 17, 15, 16]. Some of
the earliest work on verifying parameterized systems includes works by Browne et al
[9], German and Sistla [20], Emerson and Sistla [16]. In the rest of this section, we will
concentrate on the work which is closest to our approach.

Counter Abstraction [4, 12, 13, 29, 20] is an intuitive method to use on parameterized
systems. Pnueli et al [29] who coined the term counter abstraction show how systems
composed of symmetric and finite state processes can be handled automatically. Pro-
tocols which either break symmetry by exploiting knowledge of process id’s or which
have infinite state spaces however require manual intervention. Thus, the verification
of Szymanski’s and the Bakery protocol in [29] requires manual introduction of new
variables. The method also makes assumptions on the atomicity of guards.

The Invisible Invariants method was introduced in a series [28, 3, 18, 19] of papers.
The idea behind this technique is to find an invariant for the parameterized system by
examining concrete systems for low valuations of the parameter(s). The considered sys-
tem model is powerful enough to model various mutual exclusion and cache coherence
protocols which do not need unbounded integer variables. In [3], a modified version
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of the bakery algorithm is verified: the original bakery algorithm is modified to elimi-
nate unbounded integer variables. In contrast, the method proposed in the current paper
can handle the original bakery protocol without such modifications. The authors of [3]
implicitly make the assumption that guards are evaluated atomically.

The Indexed Predicates method [24, 25] is a new form of predicate abstraction for
infinite state systems. This method relies on the observation that complex invariants
are built of simple indexed predicates, i.e., predicates which have free index variables.
By choosing a set of indexed predicates appropriately one can use a modified form of
predicate abstraction to find a system invariant. In comparison to the above mentioned
work, this method makes weaker atomicity assumptions.

Our method is also based on predicate abstraction; in fact, the notion of a reference
process can be viewed as an “index” in the indexed predicates framework. However,
the contribution we make is very different: (i) We focus on concurrent parameterized
systems which enables us to use the specific and precise technique of environment ab-
straction. Our abstraction method exploits and reflects the structure of communicating
protocols. (ii) In the indexed predicates approach there is no notion of an abstract tran-
sition relation. Thus, their approach, which is tailored for computing reachable states,
works only for safety properties. In our framework, the abstract model does have a tran-
sition relation, and we can verify liveness properties as well as safety properties. (iii)
The indexed predicate technique requires manual intervention or heuristics for choosing
appropriate predicates. In contrast, our technique is automatic.

A method pioneered by Baukus et al [5] models an infinite class of systems by a
single WS1S system which is then abstracted into a finite state system. While this is
an automatic technique it cannot handle protocols such as the Bakery algorithm which
have unbounded integer variables. The global conditions are assumed to be atomic.

The inductive method of [27] based on model checking is applied to verify both
safety and liveness of the Bakery algorithm, notably without assuming atomicity. This
approach however is not automatic: the user is required to provide lemmas and theorems
to prove the properties under consideration. Our approach in contrast is fully automatic.

Regular model checking [8] is an interesting verification technique very different
from ours. It is based on modeling systems using regular languages. This technique is
applicable to a wide variety of systems but it requires the user to express systems in
terms of regular languages which is a non-trivial process and requires user ingenuity.

Henzinger et. al. [22] also consider the problem of unbounded number of threads
but the system model they consider is different. The communication between threads
occurs through shared variables, whereas in our case, each process can look at the state
of the other processes.

In summary, automatic methods such as the WS1S method and counter abstraction
are restricted in the systems they can handle and make use of the atomicity assumption.
In contrast, the methods which make no or weaker assumptions about atomicity tend
to require user intervention, either in the form of providing appropriate predicates or in
the form of lemmas and theorems which lead to the final result. In this paper, we as-
sume atomicity of guards and describe a method which can handle well known mutual
exclusion protocols such as the Bakery and Szymanski’s protocols automatically. Im-
portantly, our method is able to abstract and handle unbounded integer variables. To the
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best of our knowledge, this is the first time that the Bakery algorithm (under atomicity
assumption) has been verified automatically.

The method of environment abstraction described here has a natural extension which
eliminates the atomicity assumption. This extension of our method, which will be de-
scribed in future work, has been used to verify the Bakery algorithm and Szymanski’s
protocol without any restrictions.

3 System Model

Parameterized Systems. We consider asynchronous systems composed of an un-
bounded number of processes which communicate via shared variables. Each process
can modify its own variables, but has only read access to the variables of the other pro-
cesses. Each process has two sets of variables: the control variables F = {f1, . . . , fc},
where each fi has a finite, constant range and the data variables U = {u1, . . . ud},
where each ui is an unbounded integer. Intuitively, the two sets of variables serve dif-
ferent purposes: (i) The control variables in F determine the internal control state of the
process. As they have a finite domain, the variables in F amount to the finite control of
the process. (ii) The data variables in U contain actual data which can be read by other
processes to calculate their own data variables.

All processes run the same protocol P . For a given protocol P , a system consisting
of K processes running P will be denoted by P(K). Thus, the number K of pro-
cesses is the system parameter. We will write P(N) to denote the infinite collection
P(2),P(3), . . . of systems. To be able to refer to the state of individual processes in a
system P(K) we will assume that each process has a distinct and fixed process id from
the range [1..K]. We will usually refer to processes and their variables via their process
id’s. In particular, fa[i] and ub[i] denote the variables fa and ub of the process with id i.
The set of local states of a process i is then naturally given by the different valuations
of the tuple 〈f1[i], . . . , fc[i], u1[i], . . . , ud[i]〉. The global state of system P(K) is given
by a tuple 〈L1, . . . ,LK〉, where each Li is the local state of process i. The initial state
of each process is given by a fixed valuation of the local state variables. Note that all
processes in a system P(K) are identical except for their id′s. Thus, the process id’s
are the only means to break the symmetry between the processes. A process can use the
reserved expression slf to refer to its own process id. When a protocol text contains the
variables fa or ub without explicit reference to a process id, then this stands for fa[slf]
and ub[slf] respectively.

A concrete valuation of the variables in F determines the control state of a process.
Without loss of generality, we can assume for simplicity that F has only one variable pc
which determines the control state of a process. Thus, in the rest of the paper F = {pc},
although in program texts we may take the freedom to use more than one finite range
control variable. A formula of the form pc = const is called a control assignment. The
range of pc is called the set of control locations.

Guarded Transitions and Update Transitions. We will describe the transition rela-
tion of the processes in terms of two basic constructs, guarded transitions for the finite
control, and the more complicated update transitions for modifying data variables. A
guarded transition has the form
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pc = L1 : if ∀otr �= slf.G(slf, otr) then goto pc = L2 else goto pc = L3

or shorter

L1 : if ∀otr �= slf.G(slf, otr) then goto L2 else goto L3

where L1, L2, L3 are control locations. In the guard ∀otr �= slf.G(slf, otr) the variable
otr ranges over the process id’s of all other processes. The condition G(slf, otr) is any
formula involving the data variables of processes slf, otr and the pc variable of otr. The
semantics of a guarded transition is straightforward: in control location L1, the process
evaluates the guard and changes to control location L2 or L3 accordingly.

Update transitions are needed to describe protocols such as the Bakery algorithm
where a process computes a data value depending on all values which it can read from
other processes. For example, the Bakery algorithm has to compute the maximum of a
certain data variable (the “ticket variable”) in all other processes. Thus, we define an
update transition to have the general form

L1 : for all otr �= slf if T (slf, otr) then uk := φ(otr)
goto L2

where L1 and L2 are control assignments, and T (slf, otr) is a condition involving data
variables of processes slf, otr. The semantics of the update transition is best understood
in an operational manner: In control location L1, the process scans over all the other
processes (in nondeterministically chosen order), and for each process otr checks if the
formula T (slf, otr) is true. In this case, the process changes the value of its data variable
uk according to uk := φ(otr), where φ(otr) is an expression involving variables of
process otr. Thus, the variable uk can be reassigned multiple times within a transition.
Finally, the process changes to control location L2. We assume that both guarded and
update transitions are atomic, i.e., during their execution no other process makes a
move.

Example 1. As an example of a protocol written in this language, consider a parame-
terized system P(N) where each process P has one finite variable pc : {1, 2, 3} rep-
resenting a program counter, one unbounded/integer variable t : Int, and executes the
following program:

1 : goto 2
2 : if ∀otr �= slf.t[slf] �= t[otr] then goto 3
3 : t := t[otr] + 1; goto 1

The statement 1 : goto 2 is syntactic sugar for

pc = 1 : if ∀otr �= slf.true then goto pc = 2 else goto 1

Similarly, 3 : t := t[otr] + 1; goto = 1 is syntactic sugar for

pc = 3 : if ∀otr �= slf.true then t := t[otr] + 1 goto pc = 1.

This example also illustrates that most commonly occurring transition statements in
protocols can be written in our input language. �
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Note that we have not specified the operations and predicates which are used in the
conditions and assignments. Essentially, this choice depends on the protocols and the
power of the decision procedures used. For the protocols considered in this paper, we
need linear order and equality on data variables as well as incrementation, i.e., addition
by 1. The full version of the paper [10] contains the descriptions of the Bakery algorithm
and Szymanski’s algorithm in terms of our language.

4 Environment Abstraction

In this section, we describe the principal framework of environment abstraction. In
Section 5 we will discuss how to actually compute abstract models for the class of
parameterized systems introduced in the previous section. Both tasks are non-trivial, as
we need to construct a finite abstract model which reflects the properties of P(K) for
all K ≥ 1. We shall write P(N) |= Φ to say that P(K) |= Φ for all parametersK > 1.
Given a specification Φ and a system P(N), we will construct an abstract model PA

and an abstract specification ΦA such thatPA |= ΦA impliesP(N) |= Φ. The converse
does not have to hold, i.e., the abstraction is sound but not complete.

We will first describe how to construct the abstract model. We have already infor-
mally visualized and discussed the abstraction concept using Figure 1. More formally,
our approach is best understood by viewing the abstract state as a description Δ(x)
of the computing environment of a reference process x. Since x is a variable, we can
then meaningfully say that the description Δ(x) holds true or false for a concrete pro-
cess. We write g |= Δ(p) to express that in a global state g, Δ(x) holds true for the
process p.

An abstract state (i.e., a description Δ(x)) contains (i) detailed information about
the current internal state of x and (ii) information about the internal states of other
processes and their relationship to x. Since the number of other processes is not fixed,
we can either count the number of processes which are in a given relationship to x, or,
as in the current paper, keep track of the existence of such processes.

Technically, our descriptions reuse the predicates which occur in the control state-
ments of the protocol description. Let S be the number of control locations in the pro-
gram P . The internal state of a process x can be described by a predicate of the form

pc[x] = L

where L ∈ {1..S} is a control location.
In order to describe the relations between the data variables of different processes

we collect all predicates EP1(x, y), . . . , EPr(x, y) which occur in the guards of the
program. From now on we will refer to these predicates as the inter-predicates of the
program. Since in most practical protocols, synchronization between processes involves
only one or two data variables, the number of inter-predicates is usually quite small. The
relationship between a process x and a process y is now described by a formula of the
form

Ri(x, y)
.= ±EP1(x , y) ∧ . . . ∧ ±EPr(x , y)

where ±EPi stands for EP i or its negation ¬EP i. It is easy to see that there are 2r

possible relationshipsR1(x, y), . . . , R2r (x, y) between x and y. In the example of Fig-
ure 1, the two relationship predicatesR1, R2 are visualized by full and dashed arrows.
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Fact 1. The relationship conditionsR1(x, y), . . . , R2r (x, y) are mutually exclusive.

Before we explain the descriptions Δ(x) in detail, let us first describe the most im-
portant building blocks for the descriptions which we call environment predicates. An
environment predicate expresses that for process x we can find another process y which
has a given relationship to process x and a certain internal state. The environment pred-
icates thus have the form

∃y.y �= x ∧Ri(x, y) ∧ pc[y] = j.

An environment predicate says the following: there exists a process y different from x
whose relationship to x is described by the EP predicates in Ri, and whose internal
state is j. There are T := 2r × S different environment predicates; we name them
E1(x), . . . , ET (x), and their quantifier-free matrices E1(x, y), . . . , ET (x, y). Note that
each Ek(x, y) has the form y �= x ∧Ri(x, y) ∧ pc[y] = j.

Fact 2. If an environment process y satisfies an environment condition Ei(x, y), then
it cannot simultaneously satisfy any other environment condition Ej(x, y), i �= j.

Fact 3. Let Ei(x, y) be an environment condition and G(x, y) be a boolean formula
over the inter-predicates EP1(x, y), . . . , EPr(x, y) and predicates of the form pc[y] =
L. Then either Ei(x, y)⇒ G(x, y) or Ei(x, y)⇒ ¬G(x, y).
We are ready to return to the descriptionsΔ(x). A description Δ(x) has the format

pc[x] = i ∧ ±E1(x) ∧ ±E2(x) ∧ · · · ∧ ±ET (x), where i ∈ [1..S]. (∗)
Intuitively, a descriptionΔ(x) therefore gives detailed information on the internal state
of process x, and how the other processes are related to process x. Note the correspon-
dence of Δ(x) to the abstract state in Figure 1: the control location i determines the
color of the central circle, and the Ej determine the processes surrounding the central
one.

We will now represent descriptions Δ(x) by tuples of values, as usual in predicate
abstraction. The possible descriptions (∗) only differ in the value of the program counter
pc[x] and in where they have negations in front of the E predicates. Denoting negation
by 0 and absence of negation by 1, every description Δ(x) can be identified with a
tuple 〈pc, e1, . . . eT 〉 where pc is a control location, and each ei is a boolean variable.
From this point of view, we have two ways to speak about abstract states: as descriptions
Δ(x), and as tuples 〈pc, e1, . . . , eT 〉. Thinking of abstract states as descriptions is more
intuitive in the conceptual phase of this work, while the latter approach is more in line
with traditional predicate abstraction, and closer to the algorithms we use.

Example 2. Consider again the protocol shown in Example 1. There is only one inter-
predicate EP1(x, y)

.= t[x] �= t[y]. Thus we have two possible relationship conditions
R1(x, y)

.= t[x] = t[y] and R2(x, y)
.= t[x] �= t[y]. Consequently, we have 6 different

environment predicates:

E1(x) .= ∃y �= x.pc[y] = 1 ∧R1(x, y) E4(x) .= ∃y �= x.pc[y] = 1 ∧R2(x, y)
E2(x) .= ∃y �= x.pc[y] = 2 ∧R1(x, y) E5(x) .= ∃y �= x.pc[y] = 2 ∧R2(x, y)
E3(x) .= ∃y �= x.pc[y] = 3 ∧R1(x, y) E6(x) .= ∃y �= x.pc[y] = 3 ∧R2(x, y)
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The abstract state then is a 7-tuple 〈pc, e1, . . . , e6〉 where pc refers to the internal
state of the reference process x. For each i ∈ [1..6], the bit ei tells whether there is an
environment process y �= x such that the environment predicate Ei(x) becomes true. �

Definition 1 (Abstract States). Given a parameterized system P(N) with control lo-
cations {1, .., S} and environment predicates E1(x ), . . . , ET (x ), the abstract state
space contains tuples 〈pc, e1, . . . eT 〉, where

– pc ∈ {1, .., S} denotes the control location of the reference process.
– each ej is a Boolean variable corresponding to the predicate Ej(x ).

Since the concrete system P(K) contains K processes, a state s ∈ P(K) can give
rise to up to K different abstract states, one for every different choice of the reference
process.

Definition 2 (Abstraction Mapping). Let P (K), K > 1, be a concrete system and
p ∈ [1..K] be a process. The abstraction mapping αp induced by p maps a global state
g of P(K) to an abstract state 〈pc, e1, . . . , eT 〉 where

pc = the value of pc[p] in state g and for all ej we have ej = 1⇔ g |= Ej(p).

Definition 3 (Abstract Model). The abstract model PA is given by the transition
system (SA, ΘA, ρA) where

– SA = {1, .., S} × {0, 1}T , the set of abstract states, contains all valuations of the
tuple 〈pc, e1, . . . , eT 〉.

– ΘA, the set of initial abstract states, is the set of abstract states ŝ such that there
exists a concrete initial state s of a concrete system P(K), K > 1, such that there
exists a concrete process p with αp(s) = ŝ.

– ρA ⊆ SA × SA is a transition relation on the abstract states defined as follows:
There is a transition from abstract state ŝ1 to abstract state ŝ2 if there exist

(i) a concrete system P(K),K > 1 with a process p
(ii) a concrete transition from concrete state s1 to s2 in P(K)

such that αp(s1) = ŝ1 and αp(s2) = ŝ2.

4.1 Specifications

We will now focus on the properties that we want to verify. By a one process control
condition we mean a boolean formula over expressions of the form pc[x] = L,L ∈
{1, .., S}. By a two process control condition we mean a boolean formula over expres-
sions of the form pc[x] = L1, pc[y] = L2, where L1, L2 ∈ {1, .., S}.

Definition 4 (Two-Indexed Safety Properties). A two-indexed safety property is a
specification ∀x , y. AGφ(x , y), where x , y are variables which refer to distinct pro-
cesses, and φ(x , y) is a two process control condition.

Definition 5 (Liveness Properties). A liveness property is a specification of the form
∀x . AG(φ(x )→ Fψ(x )), where φ(x ) and ψ(x ) are one process control conditions.
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A standard example of a two-indexed safety property is the mutual exclusion property
∀x , y. AG¬(pc[x ] = crit ∧ pc[y] = crit), where crit is the control location of the
critical section. An example of a liveness property is the formula ∀x . AG (pc[x ] =
try → F pc[x ] = crit) which expresses that a process gets to enter the critical section
if it wants to.

We first show how to abstract a formula φ(x , y) without any temporal operators. The
abstraction φA of φ(x , y) is a predicate over the abstract states that is satisfied by those
and only those abstract states ŝ for which there exists a system P(K), K > 1 with a
process p, and a global state s of P(K) such that

αp(s) = ŝ and ∀q �= p. (s |= φ(p, q)).

Intuitively, we treat x as the reference process and y as an environment process and
find which abstract states correspond to the concrete formula φ(x , y). Similarly, for a
single index property φ(x ), its abstraction φA is the predicate that is satisfied by those
and only those abstract states ŝ for which there exists a system P(K), K > 1, with a
process p and a global state s of P(K) such that αp(s) = ŝ and s |= φ(p).

Now we can define the abstract specifications: The abstraction of a two-indexed
safety property ∀x , y. AGφ(x , y) is the formula AGφA. The abstraction of a single-
indexed liveness property ∀x . AG (φ(x )→ Fψ(x )) is the formula AG (φA → FψA).

Theorem 1 (Soundness of Abstraction). Let P(N) be a parameterized system and
PA be an over-approximation of its abstraction PA. Given any two-indexed safety or
single-indexed liveness property Φ and its abstraction ΦA we have PA |= ΦA implies
P(N) |= Φ.

4.2 Extensions for Fairness and Liveness

The abstract model that we have described, while sound, might be too coarse in practice
to be able to verify liveness properties. The reason is two fold:

(i) Spurious Infinite Paths. Our abstract model may have infinite paths which cannot
occur in any concrete system. This happens when two concrete states s1 and s2,
where s1 transitions to s2, both map to the same abstract state ŝ, leading to a self-
loop involving ŝ. Such a self-loop can lead to a spurious infinite path which hinders
the verification of liveness properties.

(ii) Fairness Conditions. Liveness properties are usually expected to hold under some
fairness conditions. A typical example of a fairness condition is that every process
x must leave the critical section a finite time after entering it. This is expressed
formally by the fairness condition pc[x] �= crit. In this paper we will consider
fairness conditions pc[x] �= L, where L is a control location. Liveness properties
are then expected to hold on fair paths: an infinite path in a concrete system P(K),
K ≥ 1 is fair only if the fairness condition pc[i] �= L holds for each process i
infinitely often.

To handle these situations, we adapt a method developed by Pnueli et al. [29] in the con-
text of counter abstraction to our environment abstraction. To this end, we augment our
abstract model by adding new Boolean variables fromi, toi for every i ∈ [1..T ]. Thus
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our new abstract states are tuples 〈pc, e1, . . . , eT , from1, . . . , fromT , to1, . . . , toT 〉. We
will now briefly describe this extension.

Intuitively, the new from, to variables keep track of the immediate history of an
abstract state, that is, the last step by which the abstract state was reached. The variable
fromi is true if a process y having satisfied Ei(x, y) in the previous state does not
satisfy Ei(x, y) in the new state. Similarly, the variable toi is true if the active process
having satisfied Ej(x, y), j �= i in the previous state satisfies Ei(x, y) in the new state.
To eliminate the spurious infinite paths arising from loops described in item (i) above,
we add for each i ∈ [1..T ] a compassion condition [29] 〈fromi, toi〉 which says If
fromi = true holds infinitely often in a path, then toi = true must hold infinitely
often as well.

Let us now turn to item (ii). Given a concrete fairness condition of the form pc[x] �=
L, the corresponding abstract fairness condition for the reference process is given by
pc �= L. Moreover, we introduce fairness conditions ¬(fromi = false ∧ ei = 1) for
all those environments Ei(x, y) which require process y to be in control location L,
i.e., those Ei(x, y) which contain the subformula pc[y] = L. For such an environment
condition Ei, the fairness condition ¬(fromi = false ∧ ei = 1) excludes the case
that there are environment processes satisfying Ei(x, y) which never move. For a more
detailed explanation and proofs please consult the full version.

5 Computing the Abstract Model

In our implementation, we consider protocols in which all inter-predicates EP i(x, y)
have the form t[x] ≺ t[y] where ≺∈ {<,>,=} and t is a data variable.2 Thus, each
local process compares its own variables only with their counterparts in other processes.
Most real protocols satisfy this condition. Our results however do not depend on this
particular choice of inter-predicates.

Computing the abstract transition relation is evidently complicated by the fact that
there is an infinite number of concrete systems. To get around this problem, we con-
sider each concrete transition statement of the program separately and over-approximate
the set of abstract transitions it can lead to. Their union will be our abstract transition
relation.

A concrete transition can either be a guarded transition or an update transition. Each
transition can be executed by the reference process or one of the environment processes.
Thus there are four cases to consider:

Active process is . . . guarded transition update transition
. . . reference process Case 1 Case 2
. . . environment process Case 3 Case 4

In this section we will consider Case 1, that is, the reference process executing the
guarded transition. Computing the abstract transition in other cases is similar in spirit
but quite lengthy. We refer the reader to the full version [10] of this paper for a more

2 The incrementation operation occurs only on the right hand side of assignments in update
transitions.
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detailed description of how we compute the abstract initial condition and the abstract
transition relation.

Let us now turn to Case 1 in detail, and consider the guarded transition

L1 : if ∀otr �= slf.G(slf, otr) then goto L2 else goto L3. (∗)

Suppose the reference process is executing this guarded transition statement. If at least
one of the environment processes contradicts the guard G then the reference process
transitions to control location L3, i.e., the else branch. Otherwise, the reference process
goes to L2. We will now formalize the conditions under which the if and else branches
are taken.

Definition 6 (Blocking Set for Reference Process). Let G
.= ∀otr �= slf.G(slf, otr)

be a guard. We say that an environment condition Ei(x , y) blocks the guard G if
Ei(x , y) ⇒ ¬G(x , y). The set Bx(G ) of all indices i such that Ei(x , y) blocks G is
called the blocking set of the reference process for guard G .

Note that by Fact 3, either Ei(x , y) ⇒ ¬G(x , y) or Ei(x , y) ⇒ G(x , y) for every
environment Ei(x , y). The intuitive idea behind the definition is that Bx(G ) contains
the indices of all environment conditions which enforce the else branch. We will now
explain how to represent the guarded transition (∗) in the abstract model: we introduce
an abstract transition from ŝ1 = 〈pc, e1, .., eT , from1, .., fromT , to1, .., toT 〉 to ŝ2 =
〈pc′, e1, .., eT , from′

1, .., from′
T , to

′
1, .., to

′
T 〉 if

1. pc = L1, i.e., the reference process is in location L1,
2. one of the following two conditions holds:

– If Branch: ∀i ∈ Bx(G ). (ei = 0) and pc′ = L2, i.e., the guard is true and the
reference process moves to control state L2.

– Else Branch: ¬∀i ∈ Bx(G ). (ei = 0) and pc′ = L3, i.e., the guard is false and
the reference process moves to control state L3.

3. all the variables from′
1, .., from′

T and to′
1, .., to

′
T are false, expressing that none of

the environment processes changes its state.

Thus, in order to compute the abstract transition we just need to find the blocking set
Bx(G ). This task is easy for predicates involving only linear order.

6 Experimental Results

We have implemented a prototype of our abstraction method in JAVA. As argued above,
our implementation handles protocols in which all the predicates appearing in the
guards involve only {<,>,=}. Thus, in this preliminary implementation, the decision
problems that arise during the abstraction are simple and are handled by our abstrac-
tion program internally. We verified the safety and liveness properties of Szymanski’s
mutual exclusion protocol and Lamport’s bakery algorithm. These two protocols have
an intricate combinatorial structure and have been used widely as benchmarks for pa-
rameterized verification. For safety properties, we verified that no two processes can be
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Inter-preds Intra-preds Reachable states Safety Liveness
Szymanski 1 8 O(214) 0.1s 1.82s
Bakery 3 5 O(2146) 68.55s 755.0s

Fig. 2. Running Times

present in the critical section at the same time. For liveness, we verified the property
that if a process wishes to enter the critical section then it eventually will.

We used the NuSMV model checker to verify the finite abstract model. The model
checking times are shown in Figure 2. The abstraction time is negligible, less than 0.1s.
Figure 2 also shows the number of predicates and the size of the reachable state space
as reported by NuSMV. All experiments were run on a 2.4 GHz Pentium machine with
512 MB main memory.

7 Conclusion

We have enriched predicate abstraction by ideas from counter abstraction to develop a
new framework for verifying parameterized systems. We have applied this method to
verify, under the atomicity assumption, the safety and liveness properties of two well
known mutual exclusion protocols.

The main focus of this paper was the verification of small but very intricate systems.
In these systems, the challenge is to handle the tightly inter-twined execution of an
unbounded number of processes and to maintain predicates which are spanning multiple
processes.

At the heart of our approach lies a notion of abstraction – environment abstraction –
which describes the status of a concurrent system from the point of view of a single pro-
cess. In addition to safety properties, environment abstraction naturally allows to verify
fairness properties as well. The framework presented in this paper is a specific instance
of environment abstraction tailored for distributed mutual exclusion algorithms. The
general approach can be naturally extended in several ways:

– In this paper, the internal state of a process is described by a control location pc =
L. In a more general framework, the state of a process can be described using
additional predicates which relate the different data variables of one process. This
extension is quite straightforward but omitted from the current paper for the sake
of simplicity.

– We have also extended the method to deal with systems in which there is a central
process in addition to the K local processes. This extension allows us to handle
directory based cache coherence protocols and will be reported in future work.

– The most important improvement of our results concerns the elimination of the
atomicity assumption as to achieve automated protocol verification in a non-
simplified setting for the first time. We recently have reached this goal by an exten-
sion of environment abstraction. We will report these results in future work.

To conclude, we want to emphasize that viewing a concurrent system from the point
of view of a single process closely matches the reasoning involved in designing a dis-
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tributed algorithm. We therefore believe that environment abstraction naturally yields
powerful system abstractions.
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Error Control for Probabilistic Model Checking�
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Abstract. We introduce a framework for expressing correctness guar-
antees of model-checking algorithms. The framework allows us to qual-
itatively compare different solution techniques for probabilistic model
checking, both techniques based on statistical sampling and numeri-
cal computation of probability estimates. We provide several new in-
sights into the relative merits of the different approaches. In addition,
we present a new statistical solution method that can bound the prob-
ability of error under any circumstances by sometimes reporting unde-
cided results. Previous statistical solution methods could only bound the
probability of error outside of an “indifference region.”

1 Introduction

Probabilistic model checking, based on the model-checking paradigm pioneered
by Clarke and Emerson [4], is a technique for automated verification of stochastic
processes. Given a model of a stochastic process, for example a Markov chain, the
model-checking task is to determine whether the model satisfies some property
Φ. For instance, consider a queuing system with random (according to some
distribution) arrivals and departures. We may ask whether the probability is at
most 0.5 that the queue will become full in the next hour of operation. This is an
example of a probabilistic time-bounded property. Techniques for verifying such
properties for stochastic discrete-event systems without nondeterminism are the
focus of this paper.

Algorithms for probabilistic model checking of time-bounded properties come
in two flavors: numerical [3, 12] and statistical [19, 8, 15, 17]. The former rely on
numerical algorithms for probability computations, while the latter use statisti-
cal sampling and discrete-event simulation to assess the validity of probabilistic
properties. Some insights into the relative merits of the two approaches are
given by Younes et al. [18]. Yet, a direct comparison is difficult because numer-
ical and statistical techniques provided quite different correctness guarantees.
Furthermore, conflicting claims have been made about the benefits of competing
statistical solution methods. Hérault et al. [8] state that their solution method,
based on statistical estimation, is better than the method of Younes and Sim-
mons [19], based on hypothesis testing, because the sample size of the former
method is known exactly. Sen et al. [15] provide empirical data that seem to

� Supported in part by the US Army Research Office (ARO), under contract no.
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suggest that hypothesis testing with fixed-size samples consistently outperforms
sequential hypothesis testing (the latter being advocated by Younes et al. [18]).

This paper is an attempt to set the record straight regarding the relative
merits of different solution methods for probabilistic model checking. We estab-
lish a framework for expressing the correctness guarantees of model-checking
algorithms (Sect. 3). Section 4 shows how to connect the truncation error, ε, of
numerical methods with the parameter δ (the half-width of the “indifference
region”) of statistical methods. We conclude that numerical and statistical solu-
tion methods can, indeed, be interpreted as solving the same problem. Statistical
solution methods are simply randomized algorithms for the same problems that
numerical methods solve. We are also able to prove that statistical estimation,
when used for probabilistic model checking, reduces to hypothesis testing with
fixed-size samples. It follows that Younes and Simmons’ solution method never
needs to use a larger sample size than Hérault et al.’s estimation-based method,
and it will often use a much smaller sample size to achieve the same correctness
guarantees. Our framework for error control also helps us understand the results
of Sen et al., which seem to contradict results presented by Younes [17].

The second contribution of this paper is a new statistical method for prob-
abilistic model checking. Current statistical solution methods provide bounds
for the probability of error only when a formula holds (or does not hold) with
some margin. Our new method bounds the probability of error under all cir-
cumstances. This is accomplished by permitting an undecided result. The idea
of undecided results for statistical solution methods is due to Sen et al. [15], but
they did not provide any mechanisms for bounding the probability of produc-
ing an undecided result (or even an incorrect result, for that matter). Section 5
shows, for the first time, how to bound the probability of undecided and incor-
rect results for any time-bounded formula, including conjunctions of probabilistic
statements and nested probabilistic statements. Section 6 discusses the compu-
tational complexity of statistical solution methods in general. A brief empirical
evaluation of the new statistical solution method is provided in Sect. 7.

2 Probabilistic Model Checking

This section describes stochastic discrete-event systems (without nondetermin-
ism), which is the class of models that we consider for probabilistic model check-
ing. A logic, UTSL, for expressing properties of such models is introduced. We
describe the semantics of UTSL and of UTSLδ, the latter being a relaxation of
the former logic that permits practical model-checking algorithms.

2.1 Stochastic Discrete-Event Systems

A stochastic discrete-event system is any stochastic process that can be thought
of as occupying a single state for a duration of time before an event causes
an instantaneous state transition to occur. The canonical example is a queuing
system, with the state being the number of items currently in the queue. The
state changes at the occurrence of an arrival or departure event.
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The evolution of a stochastic discrete-event system over time is captured by
a trajectory. The trajectory of a stochastic discrete-event system is piecewise
constant and can be represented as a sequence σ = {〈s0, t0〉, 〈s1, t1〉, . . .}, with
si ∈ S and ti > 0. Let

Ti =

{
0 if i = 0∑i−1

j=0 tj if i > 0
, (1)

so that Ti is the time at which state si is entered and ti is the duration of time
for which the process remains in si before an event triggers a transition to state
si+1. It is assumed that limi→∞ Ti =∞. This implies that only a finite number
of events can trigger in a finite interval of time, which is a reasonable assumption
for any physical process (cf. [1]).

A measurable stochastic discrete-event system is a tripleM = 〈S, T, μ〉, where
S is the state space, T is the time domain (ZZ∗ for discrete-time models and
[0,∞) for continuous-time models), and μ is a probability measure over sets
of trajectories with common prefix. A prefix of σ = {〈s0, t0〉, 〈s1, t1〉, . . .} is a
sequence σ≤τ = {〈s′0, t′0〉, . . . , 〈s′k, t′k〉}, with s′i = si for all i ≤ k,

∑k
i=0 t

′
i = τ ,

t′i = ti for all i < k, and t′k < tk. Let Path(σ≤τ ) denote the set of trajectories with
common prefix σ≤τ . This set must be measurable for probabilistic model checking
to have meaning and its measure is determined by μ. The exact definition of μ
depends on the structure of the process. Baier et al. [3] provide a definition for
continuous-time Markov chains and Younes [17] discusses the construction of a
probability space for trajectories of stochastic discrete-event systems in general
(see also, Segala’s [14] definition of trace distributions).

2.2 UTSL: The Unified Temporal Stochastic Logic

A stochastic discrete-event system is a triple 〈S, T, μ〉. We assume a factored
representation of S, with a set of state variables SV and a value assignment
function V (s, x) providing the value of x ∈ SV in state s. The domain of x is the
setDx =

⋃
s∈S V (s, x) of possible values that x can take on. We define the syntax

of UTSL for a factored stochastic discrete-event systemM = 〈S, T, μ,SV , V 〉 as

Φ ::= x ∼ v
∣∣ ¬Φ ∣∣ Φ ∧Φ

∣∣ P�� θ[Φ UI Φ] ,

where x ∈ SV , v ∈ Dx, ∼ ∈ {≤,=,≥}, θ ∈ [0, 1], �� ∈ {≤,≥}, and I ⊂ T .
Additional UTSL formulae can be derived in the usual way. For example, ⊥ ≡
(x = v)∧¬(x = v) for some x ∈ SV and v ∈ Dx, � ≡ ¬⊥, Φ∨Ψ ≡ ¬(¬Φ∧¬Ψ),
Φ→ Ψ ≡ ¬Φ ∨Ψ, and P< θ[ϕ] ≡ ¬P≥ θ[ϕ].

The standard logic operators have their usual meaning. P�� θ[ϕ] asserts that
the probability measure over the set of trajectories satisfying the path formula ϕ
is related to θ according to ��. Path formulae are constructed using the temporal
path operator UI (“until”). The path formula Φ UI Ψ asserts that Ψ becomes
true t ∈ I time units into the future while Φ holds continuously prior to t. The
validity of a UTSL formula is inductively defined as follows:



Error Control for Probabilistic Model Checking 145

M, {〈s0, t0〉, . . . , 〈sk, tk〉} |= x ∼ v if V (sk, x) ∼ v
M, σ≤τ |= ¬Φ ifM, σ≤τ |�= Φ
M, σ≤τ |= Φ ∧Ψ if (M, σ≤τ |= Φ) ∧ (M, σ≤τ |= Ψ)
M, σ≤τ |= P�� θ[ϕ] if μ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) �� θ

M, σ, τ |= Φ UI Ψ if ∃t ∈ I.
(
(M, σ≤τ+t |= Ψ)

∧ ∀t′ ∈ T.
(
(t′ < t)→ (M, σ≤τ+t′ |= Φ)

))
The semantics of Φ UI Ψ requires that Φ holds continuously, i.e. at every

point in time, along a trajectory until Ψ is satisfied. For Markov chains, it is
sufficient to consider time points at which state transitions occur. The semantics
of UTSL therefore coincides with the semantics for Hansson and Jonsson’s [7]
PCTL interpreted over discrete-time Markov chains and Baier et al.’s [3] CSL
interpreted over continuous-time Markov chains. For non-Markovian models,
however, the validity of Φ or Ψ may vary over time in the same state if these
formulae contain probabilistic operators. Because of this, the statistical solution
method for probabilistic model checking presented in this paper is restricted
to Markov chains for properties with nested probabilistic operators. Without
nesting, the method does not rely on this restriction.

We typically want to know whether a property Φ holds for a model M if
execution starts in a specific state s. A model-checking problem 〈M, s,Φ〉 has an
affirmative answer if and only ifM, {s, 0} |= Φ.

2.3 UTSLδ: UTSL with Indifference Regions

Consider the model-checking problem 〈M, s,P�� θ[ϕ]〉 and let p be the probability
measure for the set of trajectories that start in s and satisfy ϕ. If p is “sufficiently
close” to θ, then it is likely to make little difference to a user whether or not
P�� θ[ϕ] is reported to hold by a model-checking algorithm.

To formalize this idea, we introduce UTSLδ as a relaxation of UTSL. With
each formula of the form P�� θ[ϕ], we associate an indifference region centered
around θ with half-width δ. If |p − θ| < δ, then the truth value of P�� θ[ϕ] is
undetermined for UTSLδ; otherwise, it is the same as for UTSL.

The formal semantics of UTSLδ is given by a satisfaction relation |≈δ
� and an

unsatisfaction relation |≈δ
⊥. For standard logic formulae, |≈δ

� replaces |= and |≈δ
⊥

replaces |�=. For probabilistic formulae we have the following rules:

M, σ≤τ |≈δ
� P≥ θ[ϕ] if μ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

� ϕ}) ≥ θ + δ

M, σ≤τ |≈δ
⊥ P≥ θ[ϕ] if μ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

⊥ ϕ}) ≥ 1− (θ − δ)
M, σ≤τ |≈δ

� P≤ θ[ϕ] if μ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ
� ϕ}) ≤ θ − δ

M, σ≤τ |≈δ
⊥ P≤ θ[ϕ] if μ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈δ

⊥ ϕ}) ≤ 1− (θ + δ)

A model-checking problem 〈M, s,Φ〉 may very well belong to neither of the two
relations |≈δ

� and |≈δ
⊥, in which case the problem is considered “too close to call.”
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3 Error Control

This section discusses error control for model-checking algorithms in general
terms. The discussion establishes ideal conditions for the correctness guarantees
of a model-checking algorithm. These conditions are used as a point of refer-
ence in later sections when we discuss error control in practical algorithms for
probabilistic model checking.

Given a model-checking problem 〈M, s,Φ〉 and a model-checking algorithmA,
letM, s '� Φ represent the fact that Φ is accepted as true by A andM, s '⊥ Φ
that Φ is rejected as false by A (for the remainder of the paper we will leave out
M from relations for the sake of brevity). Ideally, we would like the probability
to be low that A produces an incorrect answer. More precisely, the probability
of a false negative should be at most α and the probability of a false positive at
most β, as expressed by the following conditions:

Pr[s '⊥ Φ | s |= Φ] ≤ α (2)
Pr[s '� Φ | s |�= Φ] ≤ β (3)

In addition, the probability should be low that A does not produce a definite
answer. Let s '⊥� Φ denote that A is undecided. We add

Pr[s '⊥� Φ] ≤ γ (4)

to represent this requirement. Finally, A should always terminate with one of
the three possible answers (accept, reject, or undecided):

Pr[(s '� Φ) ∨ (s '⊥ Φ) ∨ (s '⊥� Φ)] = 1 (5)

A model-checking algorithm that satisfies (2) through (5) is guaranteed to
produce a correct answer with probability at least 1− α− γ when Φ holds and
1−β−γ when Φ does not hold. To make these probabilities high, α, β, and γ need
to be low. If all three parameters are zero, then A is a deterministic algorithm
for probabilistic model checking. If both α+ γ and β + γ are less than 0.5, but
non-zero, then A is a randomized algorithm for probabilistic model checking.

Unfortunately, it is generally not possible, in practice, to satisfy all four con-
ditions with low values for all three parameters. Next, we will discuss how these
conditions are relaxed by current solution methods, and then we will present a
new statistical solution method based on an alternative relaxation.

4 Current Solution Methods

Current solution methods, both numerical and statistical, can be seen as relying
on a relaxation of (2) and (3) to become tractable. The reference point for error
is changed from UTSL to UTSLδ semantics, replacing (2) and (3) with:

Pr[s '⊥ Φ | s |≈δ
� Φ] ≤ α (6)

Pr[s '� Φ | s |≈δ
⊥ Φ] ≤ β (7)
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4.1 Statistical Hypothesis Testing

The predominant statistical solution method for verifying P�� θ[ϕ] in a single
state s is based on statistical hypothesis testing. This method was first proposed
by Younes and Simmons [19] and further refined by Younes [17]. The approach
always produces a definite result (γ = 0). This ensures a high probability of a
correct answer when s |≈δ

� Φ or s |≈δ
⊥ Φ holds.

Let Φ be P≥ θ[ϕ], let p be the probability measure of the set of trajectories that
start in s and satisfy ϕ, and let Xi be Bernoulli variates with Pr[Xi = 1] = p. To
verify Φ we test the hypothesis H0 : p ≥ θ+ δ against the alternative hypothesis
H1 : p ≤ θ − δ based on observations of Xi (the result of verifying ϕ over a
sample trajectory starting in s). Note that H0 corresponds to s |≈δ

� Φ and H1
corresponds to s |≈δ

⊥ Φ. If we take acceptance of H0 to mean acceptance of
Φ as true and acceptance of H1 to mean rejection of Φ as false, then we can
use acceptance sampling to verify Φ. Acceptance sampling is a well-established
technique for statistical hypothesis testing. An acceptance sampling test with
strength 〈α, β〉 guarantees that H1 is accepted with probability at most α when
H0 holds and H0 is accepted with probability at most β when H1 holds. Hence,
we can use such a test to satisfy (6) and (7) for the verification of Φ.

Any acceptance sampling test with the prescribed strength can be used. A
straightforward approach is to use a fixed number of observations x1, . . . , xn of
the Bernoulli variates X1, . . . , Xn and pick a constant c. If

∑n
i=1 xi is greater

than c, then H0 is accepted, otherwise H1 is accepted. The pair 〈n, c〉 is called a
single sampling plan [5]. The sum of n Bernoulli variates with parameter p has
a binomial distribution with cumulative distribution function

F (c;n, p) =
c∑

i=0

(
n

i

)
pi(1− p)n−i . (8)

Using a single sampling plan 〈n, c〉 we accept hypothesis H1 with probability
F (c;n, p) and hypothesis H0 with probability 1−F (c;n, p). To achieve strength
〈α, β〉 we need to choose n and c so that F (c;n, θ+δ) ≤ α and 1−F (c;n, θ−δ) ≤
β. For optimal performance we choose n and c so that n is minimized. There
is no closed-form solution for n, in general. Younes [17] describes an algorithm
based on binary search that finds an optimal single sampling plan.

The sample size for a single sampling plan is fixed and therefore independent
of the actual observations made. It is often possible to reduce the expected sam-
ple size required to achieve a desired test strength by taking the observations
into account as they are made. This is called sequential acceptance sampling.
Wald’s [16] sequential probability ratio test (SPRT) is a particularly efficient
sequential test. The reduction in expected sample size, compared to a single
sampling plan, is often substantial, although there is no fixed upper bound on
the sample size. The SPRT is carried out as follows. At the mth stage, i.e. after
making m observations x1, . . . , xm we calculate the quantity

fm =
m∏

i=1

Pr[Xi = xi | p = p1]
Pr[Xi = xi | p = p0]

=
pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

, (9)
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where dm =
∑m

i=1 xi. Hypothesis H0 is accepted if fm ≤ β/(1−α), and hypoth-
esis H1 is accepted if fm ≥ (1 − β)/α. Otherwise, additional observations are
made until either termination condition is satisfied.

4.2 Statistical Estimation

An alternative statistical solution method, based on estimation instead of hy-
pothesis testing, has been developed by Lassaigne and Peyronnet [13]. Hérault
et al. [8] provide more details of this approach.

As before, let Φ be P≥ θ[ϕ] and p the probability measure of the set of trajec-
tories that start in s and satisfy ϕ. This approach uses n observations x1, . . . , xn

to compute an estimate of p: p̃ = 1
n

∑n
i=1 xi. The estimate is such that

Pr
[
|p̃− p| < δ

]
≥ 1− α . (10)

Using a result derived by Hoeffding [10–Theorem 1], it can be shown that

n =
⌈

1
2δ2

log
2
α

⌉
(11)

is sufficient to satisfy (10). If we accept Φ as true when p̃ ≥ θ and reject Φ as false
otherwise, then it follows from (10) that the answer is correct with probability
at least 1 − α if either s |≈δ

� Φ or s |≈δ
⊥ Φ holds. Consequently, the verification

procedure satisfies (6) and (7) with β = α. As with the solution method based
on hypothesis testing, a definite answer is always generated (γ = 0).

To compare the estimation-based approach with the approach based on hy-
pothesis testing, let c = .nθ+ 1/ and d = np̃ =

∑n
i=1 xi. It should be clear that

p̃ ≥ θ ⇐⇒ d > c. This means that the estimation-based approach can be in-
terpreted as a single sampling plan 〈n, c〉. It follows that the approach proposed
by Younes and Simmons [19], when using a single sampling plan, will always
be at least as efficient as the estimation-based approach. Typically, it will be
more efficient because: (i) the sample size is derived using the true underlying
distribution, (ii) c is not restricted to be .nθ + 1/, and (iii) β �= α can be ac-
commodated. The last property, in particular, is important when dealing with
conjunctive and nested probabilistic statements. The advantage of hypothesis
testing is demonstrated in Table 1. Note, also, that the SPRT often can be used
to improve efficiency even further for the approach based on hypothesis testing.

4.3 Numerical Transient Analysis

To verify the formula P�� θ[ϕ] in some state s we can compute p—the probability
measure of the set of trajectories that start in s and satisfy ϕ—numerically and
test if p �� θ holds.

For time-bounded properties (ϕ = Φ U [0,τ ] Ψ), which are the focus of this
paper, such numerical computation is primarily feasible for Markov chains. Let
M be a continuous-time Markov chain. First, as initially proposed by Baier
et al. [2], the problem is reduced to transient analysis of a modified Markov
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Table 1. Sample sizes for estimation and optimal single sampling plan (δ = 10−2)

θ α β nest nopt nest/nopt

0.5 10−2 10−2 26,492 13,527 1.96
0.5 10−8 10−2 95,570 39,379 2.43
0.5 10−8 10−8 95,570 78,725 1.21
0.9 10−2 10−2 26,492 4,861 5.45
0.9 10−8 10−2 95,570 13,982 6.84
0.9 10−8 10−8 95,570 28,280 3.38

chain M′, where all states in M satisfying ¬Φ ∨ Ψ have been made absorbing.
Now, p is equal to the probability of occupying a state satisfying Ψ at time
τ in model M′. This probability can be computed using a technique called
uniformization, originally proposed by Jensen [11]. Let Q be the generator matrix
ofM′, q = maxi−qii, and P = I+ Q/q. Then p can be expressed as follows [3]:

p = �μ0 ·
∞∑

k=0

e−q·τ (q · τ)k

k!
Pk · �χΨ (12)

Here, �μ0 is a 0-1 row vector with a 1 in the column for the initial state s and
�χΨ is a 0-1 column vector with a 1 in each row corresponding to a state that
satisfies Ψ.

In practice, the infinite summation in (12) is truncated by using the techniques
of Fox and Glynn [6], so that the truncation error is bounded by ε. If p̃ is the
computed probability, then p̃ ≤ p ≤ p̃ + ε. It follows that by accepting P�� θ[ϕ]
as true if p̃+ ε/2 �� θ and rejecting the formula as false otherwise, the numerical
solution method satisfies (6) and (7) with δ = ε/2 and α = β = 0. As with
the statistical solution methods, a definite answer is always given (γ = 0). This
shows that numerical and statistical solution methods for probabilistic model
checking can, indeed, be viewed as solving the same problem, i.e. UTSLδ model
checking rather than UTSL model checking. Statistical solution methods are
truly randomized algorithms for UTSLδ model checking.

When using uniformization to verify P≥ θ[Φ U [0,τ ] Ψ], it is actually possible
to know when we cannot make an informed decision. If we accept the formula
as true when p̃ ≥ θ, reject it as false when p̃ + ε < θ, and report “undecided”
otherwise, then (2) and (3) can be satisfied with α = β = 0. This alternative
implementation of the numerical solution method no longer satisfies (4). That
condition is replaced by Pr[s '⊥� Φ | (s |= Φ) ∨ (s |≈δ

⊥ Φ)] = 0, with δ = ε, for
P≥ θ[ϕ] without nested probabilistic operators, and

Pr[s '⊥� Φ | (s |≈δ
� Φ) ∨ (s |≈δ

⊥ Φ)] = 0 (13)

for an arbitrary formula Φ. The use of undecided results with numerical methods
for probabilistic model checking has been suggested by Hermanns et al. [9],
although it is not clear if any tool implements this approach. The leading tool for
probabilistic model checking, PRISM [12], does not produce undecided results.
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5 Statistical Solution Method with Undecided Results

Existing statistical solution methods provide no meaningful error bounds if nei-
ther s |≈δ

� Φ nor s |≈δ
⊥ Φ holds. This section presents a new statistical solution

method that satisfies (2) and (3), so whenever a definite result is given the prob-
ability of error is bounded. We accomplish this by allowing an undecided result
with some probability. The goal is to replace (4) with

Pr[s '⊥� Φ | (s |≈δ
� Φ) ∨ (s |≈δ

⊥ Φ)] ≤ γ . (14)

5.1 Probabilistic Operator Without Nesting

Let Φ be P≥ θ[ϕ] without nested probabilistic operators (P≤ θ[ϕ] is analogous).
To satisfy (2), (3), and (14) simultaneously using a sample of size n we pick two
constants c0 and c1 such that 0 ≤ c1 < c0 < n and the following conditions hold:

F (c1;n, θ) ≤ α (15)
1− F (c1;n, θ − δ) ≤ γ (16)

1− F (c0;n, θ) ≤ β (17)
F (c0;n, θ + δ) ≤ γ (18)

Let d =
∑n

i=1 xi. Formula Φ is accepted as true if d > c0 and rejected as false if
d ≤ c1; otherwise (c1 < d ≤ c0) the result is undecided.

The procedure just given can be interpreted as using two simultaneous accep-
tance sampling tests. The first is used to tests H⊥

0 : p ≥ θ against H⊥
1 : p ≤ θ− δ

with strength 〈α, γ〉. The second is used to testsH�
0 : p ≥ θ+δ againstH�

1 : p ≤ θ
with strength 〈γ, β〉. H�

0 represents acceptance of Φ as true, H⊥
1 represents re-

jection of Φ as false, and the remaining two hypotheses represent an undecided
result. Combining the results from both tests, Φ is accepted as true if both H�

0
and H⊥

0 are accepted, Φ is rejected as false if both H�
1 and H⊥

1 are accepted,
otherwise the result is undecided. Of course, this means that we do not need to
use hypothesis testing with fixed-size samples. We could use any acceptance sam-
pling plans with the prescribed strengths and combine their results as specified.
In particular, we could use the SPRT to reduce the expected sample size.

Graphical representations of two acceptance sampling tests with undecided
results are shown in Fig. 1 for θ = 0.5, δ = 0.1, α = 0.04, β = 0.08, and γ =
0.1. The horizontal axis represents the number of observations and the vertical
axis represents the number of positive observations. Figure 1(a) represents a
sequential version of a single sampling plan with n = 232, c0 = 128, c1 = 102.
The line dm = 129 is the boundary for acceptance of Φ. There is a line for
rejection of Φ and two lines defining the boundary of the region that represents
an undecided result. Figure 1(b) shows the corresponding decision boundaries
for the SPRT.

5.2 Composite Formulae

For a negation ¬Φ we have s '⊥� ¬Φ ⇐⇒ s '⊥� Φ. Hence, if we can satisfy
(14) for Φ, then we have the same bound, γ, on the probability of an undecided
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Fig. 1. Graphical representation of acceptance sampling tests

result for the negation of Φ. The roles of α and β are reversed for negation (cf.
Younes and Simmons [19] and Younes [17]).

For a conjunction Φ∧Ψ we get the following general bound on the probability
of an undecided result:

Pr[s '⊥� Φ ∧Ψ | (s |≈δ
� Φ ∧Ψ) ∨ (s |≈δ

⊥ Φ ∧Ψ)]
≤ max(γΦ + γΨ, γΦ + βΦ, 2γΨ + βΨ) (19)

In practice, the dependence on βΦ and βΨ can be disregarded. We have βΦ in
(19) because Pr[s '� Φ | s |≈δ

⊥ Φ] ≤ Pr[s '� Φ | s |�= Φ] ≤ βΦ (similarly for βΨ),
but Pr[s '� Φ | s |≈δ

⊥ Φ] is typically negligible compared to Pr[s '� Φ | s |�= Φ].
Let γ′ = γΦ = γΨ. Then (19) can, for all practical purposes, be replaced by

Pr[s '⊥� Φ ∧Ψ | (s |≈δ
� Φ ∧Ψ) ∨ (s |≈δ

⊥ Φ ∧Ψ)] ≤ 2γ′ . (20)

Consequently, if we want to ensure at most a γ probability of an undecided result
for Φ ∧Ψ, and we use the same bound for both conjuncts, then we can use γ/2
when verifying Φ and Ψ. For a conjunction of size n, the symmetric bound for
each conjunct could be set to γ/n.

To satisfy (2) we should choose αΦ and αΨ such that αΦ +αΨ ≤ α (cf. Younes
and Simmons [19]1):

Pr[(s '⊥ Φ) ∨ (s '⊥ Ψ) | (s |= Φ) ∧ (s |= Ψ)]
≤ Pr[s '⊥ Φ | s |= Φ] + Pr[s '⊥ Ψ | s |= Ψ] ≤ αΦ + αΨ (21)

Similar to γ, we can use α/n when verifying the parts of a conjunction of size
n. Unlike γ, however, this does not involve any approximation. To satisfy (3), it
suffices to use the same error bound, β, for the individual conjuncts:

Pr[(s '� Φ) ∧ (s '� Ψ) | (s |�= Φ) ∨ (s |�= Ψ)]
≤ max(Pr[s '� Φ | s |�= Φ],Pr[s '� Ψ | s |�= Ψ]) ≤ max(βΦ, βΨ) (22)

1 Younes [17] gives the bound min(αΦ, αΨ), but this is a bound only for each individual
way of rejecting a conjunction as false. The result due to Younes and Simmons [19]
and reproduced here bounds the probability of rejecting a conjunction in any way.
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5.3 Nested Probabilistic Statements

We use acceptance sampling to verify probabilistic statements. The observations
that are used by the acceptance sampling test correspond to the verification of a
path formula, ϕ, over sample trajectories. If ϕ contains probabilistic statements,
then the observations may be incorrect or undecided. We assume that ϕ can be
verified with parameters αϕ, βϕ, and γϕ. This can be accomplished by treating
the path formula as a large disjunction of conjunctions, as described by Younes
and Simmons [19–p. 231] and Younes [17–p. 78].

It remains to show how to use the verification results for ϕ to verify a proba-
bilistic statement, Φ = P≥ θ[ϕ], so that (2), (3), and (14) are satisfied. This can
be accomplished by a single sampling plan with n, c0, and c1 chosen to satisfy
the following conditions:

F (c1;n, θ(1− αϕ)) ≤ α (23)
1− F (c1;n, 1− (1− (θ − δ))(1 − γϕ − βϕ)) ≤ γ (24)

1− F (c0;n, θ + (1− θ)βϕ) ≤ β (25)
F (c0;n, (θ + δ)(1− γϕ − αϕ)) ≤ γ (26)

This assumes that Φ is accepted as true when more than c0 positive observations
are made, Φ is rejected as false when at most c1 observations are non-positive
(i.e., negative or undecided), and the result is undecided otherwise.

Compared to (15) through (18) for acceptance sampling without nested prob-
abilistic operators, the only difference is that the probability thresholds have
been modified. The indifference regions of the two acceptance sampling tests
have been made narrower to account for the possibility of erroneous or unde-
cided observations. We can use the same modification with the SPRT.

It should be noted that αϕ, βϕ and γϕ can be chosen independently of α, β,
and γ. The choice of parameters for the verification of ϕ is restricted only by
the following conditions:

(θ − δ) + (1− (θ − δ))(1− γϕ − βϕ) < θ(1 − αϕ) (27)
θ + (1− θ)βϕ < (θ + δ)(1 − γϕ − αϕ) (28)

The choice of αϕ, βϕ, and γϕ can have a significant impact on performance
(cf. the discussion by Younes [17] regarding the impact of observation error on
performance for the standard statistical solution method).

6 Complexity of Statistical Solution Methods

The time complexity of any statistical solution method for probabilistic model
checking can be understood in terms of two main factors: the sample size and
the length of sample trajectories. The sample size depends on the method used
for verifying probabilistic statements and the desired strength. The length of
trajectories depends on model characteristics and the property that is being
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verified. An additional factor is simulation effort, which can be both model and
implementation dependent.

Consider the formula P�� θ[Φ U [0,τ ] Ψ] without nested probabilistic operators.
Let q be the expected number of state transitions per time unit, let m be the
simulation effort per state transition, and let N be the sample size. The time
complexity of statistical probabilistic model checking for the given formula is
O(q · τ · m · N). The sample size, N , is the only factor that varies between
different statistical solution methods, regardless of implementation details.

If we use a single sampling plan with strength 〈α, β〉 and indifference region
of half-width δ, then N is roughly proportional to logα and log β and inversely
proportional to δ2 [17–p. 23]. We have shown in this paper that the approach
based on statistical estimation described by Hérault et al. [8] never uses a smaller
sample size than a single sampling plan, given the same parameters, and often
uses a much larger sample size. Using the SPRT instead of a single sampling
plan can reduce the expected sample size by orders of magnitude in most cases,
although the SPRT is not guaranteed always to be more efficient (this is well
known in the statistics literature; Younes [17] provides examples of this in the
context of model checking). The new statistical approach presented in this paper,
which can produce undecided results, has the same time complexity as the old
statistical solution method. Given the same α, β, and δ, the new method will
require a larger sample size because it is based on acceptance sampling with
indifference regions of half-width δ/2, instead of δ for the old method.

Results presented by Sen et al. [15] give the impression that single sampling
plans consistently outperform the SPRT. It should be noted, however, that Sen
et al. manually selected the sample sizes for their single sampling plans, guided
by a desire to achieve a low p-value (K. Sen, personal communication, May 20,
2004). The selected sample sizes are not sufficient to achieve the same strength
as used to produce the results for the SPRT reported by Younes et al. [18], on
which they base their comparison. All their empirical evaluation really proves
is that a smaller sample size results in shorter verification time—which should
surprise no one—but the casual reader may be misled into believing that Sen
et al. have devised a more efficient statistical solution method.

7 Empirical Evaluation

The performance of our new statistical solution method is similar to that of the
previous statistical solution method, which has been studied and compared to
the numerical approach by Younes et al. [18]. We limit the empirical evaluation in
this paper to a brief study of the effect that the parameter γ has on performance.

Figure 2 plots the expected sample size, as a function of the (unknown) proba-
bility p that a path formula holds, for the SPRT and a sequential single sampling
plan (SSSP) with different parameter choices (θ = 0.5, δ = 0.1, αΔ = 0.004,
α∇ = 0.04, βΔ = 0.008, β∇ = 0.08, γΔ = 0.01, and γ∇ = 0.1). The expected
sample size is low outside of the indifference region (gray area), especially for the
SPRT, and peaks in the indifference region. Note the drop in expected sample
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size at the threshold θ where an undecided result is given with high probability.
The expected sample size, as a function of p, will be similar for other param-
eter values, with the SPRT almost always outperforming a (sequential) single
sampling plan by a wide margin.

Now, consider the model-checking problem for an n-station symmetric polling
system used by Younes et al. [18]. Each station has a single-message buffer and
the stations are attended by a single server in cyclic order. The server begins by
polling station 1. If there is a message in the buffer of station 1, the server starts
serving that station. Once station i has been served, or if there is no message at
station i when it is polled, the server starts polling station i+1 (or 1 if i = n). We
verify the property m1=1→ P≥ 0.5[� U [0,τ ] poll1], which states that if station 1
is full, then it is polled within τ time units with probability at least 0.5. We do
so in the state where station 1 has just been polled and all buffers are full.

Figure 3 plots the verification time for the symmetric polling system problem
(n = 10), as a function of the formula time bound τ , averaged over 100 runs. The
plot shows the verification time for the new solution method with γ = 10−2 (solid
curve) and the old solution method without undecided results (dashed curve);
2δ = 10−2 and α = β = 10−2 in both cases. The verification time is lower
for the standard statistical solution method, but it produces more erroneous
results. Table 2 shows the number of times a certain result is produced for seven
different values of τ . The new statistical solution method does not produce an
erroneous result in any of the experiments, while the error probability is high for

Table 2. Result distribution with (bottom) and without (top) undecided results

result 14.10 14.15 14.20 14.25 14.30 14.35 14.40
accept 0 3 9 50 88 97 100
reject 100 97 91 50 12 3 0
accept 0 0 0 0 32 99 100
reject 100 99 42 1 0 0 0
undecided 0 1 58 99 68 1 0
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the standard statistical solution method for values of τ close to 14.251 (where
the value of the verified property goes from false to true). Higher reliability in
the results are obtained at the cost of efficiency.

8 Discussion

We have presented a framework for expressing correctness guarantees of model-
checking algorithms. Using this framework, we have shown how current solution
methods for probabilistic model checking are related. In particular, we have
shown that Younes and Simmons’ [19] statistical solution method based on hy-
pothesis testing has clear benefits over Hérault et al.’s [8] estimation-based ap-
proach, and that numerical and statistical solution methods can be interpreted
as solving the same relaxed model-checking problems. In addition, we have pre-
sented a new statistical solution method that bounds the probability of error
under all circumstances. This is accomplished by permitting undecided results,
and we have shown how to guarantee bounds for the probability of getting an
undecided result for any time-bounded formula.
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Abstract. We introduce field constraint analysis, a new technique for verifying
data structure invariants. A field constraint for a field is a formula specifying a
set of objects to which the field can point. Field constraints enable the application
of decidable logics to data structures which were originally beyond the scope of
these logics, by verifying the backbone of the data structure and then verifying
constraints on fields that cross-cut the backbone in arbitrary ways. Previously, such
cross-cutting fields could only be verified when they were uniquely determined by
the backbone, which significantly limits the range of analyzable data structures.

Field constraint analysis permits non-deterministic field constraints on cross-
cutting fields, which allows the verificiation of invariants for data structures such
as skip lists. Non-deterministic field constraints also enable the verification of
invariants between data structures, yielding an expressive generalization of static
type declarations.

The generality of our field constraints requires new techniques. We present
one such technique and prove its soundness. We have implemented this technique
as part of a symbolic shape analysis deployed in the context of the Hob system for
verifying data structure consistency. Using this implementation we were able to
verify data structures that were previously beyond the reach of similar techniques.

1 Introduction

The goal of shape analysis [27, Chapter 4], [6,32,26,2,4,25,5,22] is to verify complex
consistency properties of linked data structures. The verification of such properties is im-
portant in itself, because the correct execution of the program often requires data struc-
ture consistency. In addition, the information computed by shape analysis is important
for verifying other program properties in programs with dynamic memory allocation.

Shape analyses based on expressive decidable logics [26, 14, 12] are interesting for
several reasons. First, the correctness of such analyses is easier to establish than for
approaches based on ad-hoc representations; the use of a decidable logic separates the
problem of generating constraints that imply program properties from the problem of
solving these constraints. Next, such analyses can be used in the context of assume-
guarantee reasoning because logics provide a language for specifying the behaviors of
code fragments. Finally, the decidability of logics leads to completeness properties for
these analyses, eliminating false alarms and making the analyses easier to interact with.
We were able to confirm these observations in the context of Hob system [21, 16] for
analyzing data structure consistency, where we have integrated one such shape analysis
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[26] with other analyses, allowing us to use shape analysis in the context of larger
programs: in particular, Hob enabled us to leverage the power of shape analysis, while
avoiding the associated performance penalty, by applying shape analysis only to those
parts of the program where its extreme precision is necessary.

Our experience with such analyses has also taught us that some of the techniques
that make these analyses predictable also make them inapplicable to many useful data
structures. Among the most striking examples is the restriction on pointer fields in the
Pointer Assertion Logic Engine [26]. This restriction states that all fields of the data
structure that are not part of the data structure’s tree backbone must be functionally
determined by the backbone; that is, such fields must be specified by a formula that
uniquely determines where they point to. Formally, we have

∀x y. f(x)=y ↔ F (x, y) (1)

where f is a function representing the field, and F is the defining formula for f . The
relationship (1) means that, although data structures such as doubly linked lists with
backward pointers can be verified, many other data structures remain beyond the scope
of the analysis. This includes data structures where the exact value of pointer fields
depends on the history of data structure operations, and data structures that use ran-
domness to achieve good average-case performance, such as skip lists [30]. In such
cases, the invariant on the pointer field does not uniquely determine where the field
points to, but merely gives a constraint on the field, of the form

∀x y. f(x)=y → F (x, y) (2)

This constraint is equivalent to ∀x. F (x, f(x)), which states that the function f is a
solution of a given binary predicate. The motivation for this paper is to find a technique
that supports reasoning about constraints of this, more general, form. In a search for
existing approaches, we have considered structure simulation [11,9], which, intuitively,
allows richer logics to be embedded into existing logics that are known to be decidable,
and of which [26] can be viewed as a specific instance. Unfortunately, even the general
structure simulation requires definitions of the form ∀x y. r(x, y) ↔ F (x, y) where
r(x, y) is the relation being simulated. To handle the general case (2), an alternative
approach therefore appears to be necessary.

Field constraint analysis. This paper presents field constraint analysis, our approach
for analyzing fields with general constraints of the form (2). Field constraint analysis
is a proper generalization of the existing approach and reduces to it when the con-
straint formula F is functional. It is based on approximating the occurrences of f with
F , taking into account the polarity of f , and is always sound. It is expressive enough
to verify constraints on pointers in data structures such as two-level skip lists. The ap-
plicability of our field constraint analysis to non-deterministic field constraints is impor-
tant because many complex properties have useful non-deterministic approximations.
Yet despite this fundamentally approximate nature of field constraints, we were able to
prove its completeness for some important special cases. Field constraint analysis natu-
rally combines with structure simulation, as well as with a symbolic approach to shape
analysis [33, 29]. Our presentation and current implementation are in the context of the
monadic second-order logic (MSOL) of trees [13], but our results extend to other log-
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ics. We therefore view field constraint analysis as a useful component of shape analysis
approaches that makes shape analysis applicable to a wider range of data structures.

Contributions. This paper makes the following contributions:

– We introduce an algorithm (Figure 9) that uses field constraints to eliminate de-
rived fields from verification conditions.

– We prove that the algorithm is both sound (Theorem 1) and, in certain cases, com-
plete. The completeness applies not only to deterministic fields (Theorem 2), but
also to the preservation of field constraints themselves over loop-free code (Theo-
rem 3). Theorem 3 implies a complete technique for checking that field constraints
hold, if the programmer adheres to a discipline of maintaining them, for instance at
the beginning of each loop.

– We describe how to combine our algorithm with symbolic shape analysis [33] to
infer loop invariants.

– We describe an implementation and experience in the context of the Hob sys-
tem for verifying data structure consistency. The implementation of field constraint
analysis as part of the Hob system [21, 16] allows us to apply the analysis to mod-
ules of larger applications, with other modules analyzed by more scalable analyses,
such as typestate analysis [20].

Additional details (including proofs of theorems) are in [34].

2 Examples

We next explain our field constraint analysis with a set of examples. Note that our
analysis handles, as a special case, data structures that have back pointers constrained
by deterministic constraints. Such data structures (for instance, doubly linked lists and
trees with parent pointers [34]) have also been analyzed by previous approaches [26].
To illustrate the additional power of our analysis, we first present an example illustrating
inter-data-structure constraints, which are simple and useful for high-level application
properties, but are often nondeterministic. We then present a skip list example, which
shows how non-deterministic field constraints arise within data structures, and illus-
trates how our analysis can synthesize loop invariants.

2.1 Students and Schools

The data structure in our first example contains two linked lists: one containing students
and one containing schools (Figure 2). Each Elem object may represent either a student
or a school; students have a pointer to the school which they attend. Both students and
schools use the next backbone pointer to indicate the next student or school in the
relevant linked list. An invariant of the data structure is that, if an object is in the list of
students, then its attends field points to an object in the schools list; that is, it cannot
be null and it cannot point to an object outside the list of schools. This invariant is an
example of a non-deterministic field constraint: the attends field has a non-trivial
constraint, but the target of the field is not uniquely defined in terms of existing fields;
instead, this field carries important new information about the school that each student
attends.
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We implement our example as a module in the Hob system [21], which allows us
to specify and, using field constraint analysis, verify the desired data structure invari-
ants and interfaces of data structure operations. In general, a module in Hob consists of
three sections: 1) an implementation section (Figure 1) containing declarations of mem-
ory cell formats (in this case Elem) and executable code for data structure operations
(such as addStudent); 2) a specification section (Figure 3) containing declarations of
abstract sets of objects (such as ST for the set of students and SC for the set of schools
in the data structure) and interfaces of data structure operations expressed in terms of
these abstract sets; and 3) the abstraction section, which gives the abstraction function
specifying the definition of sets (SC and ST) and specifies the representation invariants
of the data structure, including field constraints (in this case, on the field attends).

The implementation in Figure 1 states that the addStudent procedure adds a stu-
dent st to the student list and associates it (via the attends field) with an existing
schoolsc, which is expected to be already in the list of schools. Figure 3 presents the set
interface for the addStudents procedure, consisting of a precondition (requires
clause), frame condition (modifies clause), and postcondition (ensures clause).
The precondition states that st must not already be in the list of students ST, and
that sc must be in the list of schools. We represent parameters as sets of cardinality
at most one (the null object is represented as an empty set). Therefore, the conjuncts
card(st)=1 and card(sc)=1 in the precondition indicate that the parameters st
and sc are not null. The modifies clause indicates that only the set of students ST and
not the set of schools SC is modified. The postcondition describes the effect of the pro-
cedure: it states that the set of students ST’ after procedure execution is equal to the
union (denoted +) of the set ST of student objects before procedure execution, and (the
singleton containing) the given student object st.

Our analysis automatically verifies that the data structure operation addStudent
conforms to its interface expressed in terms of abstract sets. Proving the conformance
of a procedure to such a set interface is useful for several reasons. First, the precondi-
tions indicate to data structure clients the conditions under which it is possible to invoke
operations. These preconditions are necessary to prove that the field constraint is main-
tained: if it was not the case that the school parameter sc belonged to the set SC of
schools, the insertion would violate the representation invariant. Similarly, if it was the
case that the student object st was a member of the student list, insertion would intro-
duce cycles in the list and violate the implicit acyclicity invariant of the data structure.
Also, the postcondition of addStudents communicates the fact that st is in the list
after the insertion, preventing clients from executing duplicate calls to addStudents
with the same student object. Finally, the set interface expresses an important partial
correctness property for the addStudent procedure, so that the verification of the
set interface indicates that the procedure is correctly inserting an object into the set of
students.

Note that the interface of the procedure does not reveal the details of procedure
implementation, thanks to the use of abstract set variables. Since the set variables in
the specification are abstract, any verification of a concrete implementation’s confor-
mance to the set interface requires concrete definitions for the abstract variables. The
abstraction section in Figure 4 contains this information. First, the abstraction section
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impl module Students {
format Elem {
attends : Elem;
next : Elem;

}
var students : Elem;
var schools : Elem;

proc addStudent(st:Elem; sc:Elem) {
st.attends = sc;
st.next = students;
students = st;

}
}

Fig. 1. Implementation for students example
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Fig. 2. Students data structure instance

spec module Students {
format Elem;
specvar ST : Elem set;
specvar SC : Elem set;

proc addStudent(st:Elem; sc:Elem)
requires card(st)=1 & card(sc)=1 & (sc in SC) &

(not (st in ST)) & (not (st in SC))
modifies ST
ensures ST’ = ST + st;

}

Fig. 3. Specification for students example

abst module Students {
use plugin "Bohne decaf";

ST = { x : Elem | "rtrancl (% v1 v2. next v1 = v2) students x" };
SC = { x : Elem | "rtrancl (% v1 v2. next v1 = v2) schools x" };

invariant "ALL x y. (attends x = y) -->
(x ˜= null -->
((˜(rtrancl (% v1 v2. next v1 = v2) students x) --> y = null) &
((rtrancl (% v1 v2. next v1 = v2) students x) -->
(rtrancl (% v1 v2. next v1 = v2) schools y))))";

invariant "ALL x.
(x ˜= null & (rtrancl (% v1 v2. next v1 = v2) schools x) -->
˜(rtrancl (% v1 v2. next v1 = v2) students x))";

invariant "ALL x.
(x ˜= null & (rtrancl (% v1 v2. next v1 = v2) students x) -->
˜(rtrancl (% v1 v2. next v1 = v2) schools x))";

...
}

Fig. 4. Abstraction for students example
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indicates which analysis (in this case, Bohne decaf, which implements field con-
straint analysis) is to be used to analyze the module. Next, the abstraction section con-
tains definitions for abstract variables: namely, ST is defined as the set of Elem ob-
jects reachable from the root students through next fields, and SC is the set of
Elem objects reachable from schools. (The function rtrancl is a higher-order
function that accepts a binary predicate on objects and returns the reflexive transitive
closure of the predicate.) The abstraction section also specifies data structure invari-
ants, including field constraints. Field constraints are invariants with syntactic form
ALL x y. (f x = y) --> · · · . A field f for which there is no field constraint
invariant in the abstraction section is considered to be part of the data structure back-
bone, which has an implicit invariant that it is a union of trees. Finally, the abstraction
section may contain additional invariants; our example contains invariants stating dis-
jointness of the lists rooted at students and schools.

Our Bohne analysis verifies the conformance of a procedure to its specification as
follows. It first desugars the modifies clauses into a frame formula and conjoins it with
the ensures clause, then replaces abstract sets in preconditions and postconditions with
their definitions from the abstraction section, obtaining a procedure contract in terms
of the concrete state variables (next and attends). It then conjoins representation
invariants of the data structure to preconditions and postconditions. For a loop-free pro-
cedure such as addStudents, the analysis can then generate a verification condition
whose validity implies that the procedure conforms to its interface.

The generated verification condition for our example cannot directly be solved using
decision procedures such as MONA: it contains the function symbol attends that
violates the tree invariant required by MONA. Section 3 describes how our analysis
uses field constraints in the verification condition to verify the validity of such verifica-
tion conditions. Our analysis can successfully verify the property that for any student,
attends points to some (undetermined) element of the SC set of schools. Note that
this goes beyond the power of previous analyses, which required that the identity of
the school pointed to by the student be functionally determined by the identity of the
student. The example therefore illustrates how our analysis eliminates a key restric-
tion of previous approaches—certain data structures exhibit properties that the logics in
previous approaches were not expressive enough to capture.

2.2 Skip List

We next present the analysis of a two-level skip list. Skip lists [30] support logarithmic
average-time access to elements by augmenting a linked list with sublists that skip over
some of the elements in the list. The two-level skip list is a simplified implementation of
a skip list with only two levels: the list containing all elements, and a sublist of this list.
Figure 5 presents an example two-level skip list. Our implementation uses the next
field to represent the main list, which forms the backbone of the data structure, and uses
the derived nextSub field to represent a sublist of the main list. We focus on the add
procedure, which inserts an element into an appropriate position in the skip list. Figure 6
presents the implementation of add, which first searches throughnextSub links to get
an estimate of the position of the entry, then finds the entry by searching through next
links, and inserts the element into the main next-linked list. Optionally, the procedure
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root next next next next next

nextSub
nextSub

Fig. 5. An instance of a two-level skip list

impl module Skiplist {
format Entry {
v : int;
next, nextSub : Entry;

}
var root : Entry;

proc add(e:Entry) {
assume "e ˜= root";
int v = e.v;
Entry sprev = root, scurrent = root.nextSub;
while ((scurrent != null) && (scurrent.v < v)) {

sprev = scurrent; scurrent = scurrent.nextSub;
}
Entry prev = sprev, current = sprev.next;
while ((current != scurrent) && (current.v < v)) {

prev = current; current = current.next;
}
e.next = current; prev.next = e;
choice { sprev.nextSub = e; e.nextSub = scurrent; }

| { e.nextSub = null; }
}

Fig. 6. Skip list implementation

spec module Skiplist {
format Entry;
specvar S : Entry set;

proc add(e:Entry)
requires card(e) = 1 & not (e in S)
modifies S
ensures S’ = S + e’;

}

Fig. 7. Skip list specification

abst module Skiplist {
use plugin "Bohne";

S = {x : Entry | "rtrancl (% v1 v2. next v1 = v2) (next root) x"};
invariant "ALL x y. (nextSub x = y) --> ((x = null --> y = null) &

(x ˜= null --> rtrancl (% v1 v2. next v1 = v2) (next x) y))";
invariant "root ˜= null";
invariant "ALL x. x ˜= null &

˜(rtrancl (% v1 v2. next v1 = v2) root x) -->
˜(EX y. y ˜= null & next y = x) & (next x = null)";

proc add {
has_pred = {x : Entry | "EX y. next y = x"};
r_current = {x : Entry | "rtrancl (% v1 v2. next v1 = v2) current x"};
r_scurrent = {x : Entry | "rtrancl (% v1 v2. next v1 = v2) scurrent x"};
r_sprev = {x : Entry | "rtrancl (% v1 v2. next v1 = v2) sprev x"};
next_null = {x : Entry | "next x = null"};
sprev_nextSub = {x : Entry | "nextSub sprev = scurrent"};
prev_next = {x : Entry | "next prev = current"};

}
}

Fig. 8. Skip list abstraction (including invariants)
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also inserts the element into nextSub list, which is modelled using a non-deterministic
choice in our language and is an abstraction of the insertion with certain probability in
the original implementation. Figure 7 presents a specification for add, which indicates
that add always inserts the element into the set of elements stored in the list. Figure 8
presents the abstraction section for the two-level skip list. This section defines the ab-
stract set S as the set of nodes reachable from root.next, indicating that root is
used as a header node. The abstraction section contains three invariants. The first in-
variant is the field constraint on the field nextSub, which defines it as a derived field.

Note that the constraint for this derived field is non-deterministic, because it only
states that if x.nextSub==y, then there exists a path of length at least one from x to
y along next fields, without indicating where nextSub points. Indeed, the simplicity
of the skip list implementation stems from the fact that the position of nextSub is
not uniquely given by next; it depends not only on the history of invocations, but
also on the random number generator used to decide when to introduce new nextSub
links. The ability to support such non-deterministic constraints is what distinguishes
our approach from approaches that can only handle deterministic fields.

The last two invariants indicate that root is never null (assuming, for simplicity of
the example, that the state is initialized), and that all objects not reachable from root
are isolated: they have no incoming or outgoing next pointers. These two invariants
allow the analysis to conclude that the object referenced by e in add(e) is not refer-
enced by any node, which, together with the precondition not(e in S), allows our
analysis to prove that objects remain in an acyclic list along the next field.1

Our analysis successfully verifies that add preserves all invariants, including the
non-deterministic field constraint on nextSub. While doing so, the analysis takes ad-
vantage of these invariants as well, as is usual in assume/guarantee reasoning. In this
example, the analysis is able to infer the loop invariants in add. The analysis constructs
these loop invariants as disjunctions of universally quantified boolean combinations of
unary predicates over heap objects, using symbolic shape analysis [33,29]. These unary
predicates correspond to the sets that are supplied in the abstraction section using the
proc keyword.

3 Field Constraint Analysis

This section presents the field constraint analysis algorithm and proves its soundness as
well as, for some important cases, completeness.

We consider a logic L over a signature Σ where Σ consists of unary function sym-
bols f ∈ Fld corresponding to fields in data structures and constant symbols c ∈ Var
corresponding to program variables. We use monadic second-order logic (MSOL) of
trees as our working example, but in general we only require L to support conjunction,
implication, and equality reasoning.

1 The analysis still needs to know that e is not identical to the header node. In this example
we have used an explicit (assume "e �= root") statement to supply this information.
Such assume statements can be automatically generated if the developer specifies the set of
representation objects of a data structure, but this is orthogonal to field constraint analysis
itself.
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A Σ-structure S is a first-order interpretation of symbols in Σ. For a formula F in
L, we denote by Fields(F ) ⊆ Σ the set of all fields occurring in F .

We assume that L is decidable over some set of well-formed structures and we as-
sume that this set of structures is expressible by a formula I in L. We call I the sim-
ulation invariant [11]. For simplicity, we consider the simulation itself to be given by
the restriction of a structure to the fields in Fields(I), i.e. we assume that there exists a
decision procedure for checking validity of implications of the form I → F where F
is a formula such that Fields(F ) ⊆ Fields(I). In our running example, MSOL of trees,
the simulation invariant I states that the fields in Fields(I) span a forest.

We call a field f ∈ Fields(I) a backbone field, and call a field f ∈ Fld \ Fields(I)
a derived field. We refer to the decision procedure for formulas with fields in Fields(I)
over the set of structures defined by the simulation invariant I as the underlying de-
cision procedure. Field constraint analysis enables the use of the underlying decision
procedure to reason about non-deterministically constrained derived fields. We state
invariants on the derived fields using field constraints.

Definition 1 (Field constraints on derived fields). A field constraint Df for a simula-
tion invariant I and a derived field f is a formula of the form

Df ≡ ∀x y. f(x) = y → FCf (x, y)

where FCf is a formula with two free variables such that (1) Fields(FCf ) ⊆ Fields(I),
and (2) FCf is total with respect to I , i.e. I |= ∀x. ∃ y .FCf (x, y). We call the constraint
Df deterministic if FCf is deterministic with respect to I , i.e.

I |= ∀x y z. FCf (x, y)∧FCf (x, z) → y = z .

We write D for the conjunction of Df for all derived fields f .

Note that Definition 1 covers arbitrary constraints on a field, because Df is equivalent
to ∀x. FCf (x, f(x)).

The totality condition (2) is not required for the soundness of our approach, only for
its completeness, and rules out invariants equivalent to “false”. The condition (2) does
not involve derived fields and can therefore be checked automatically using a single call
to the underlying decision procedure.

Our goal is to check validity of formulas of the form I ∧D → G, where G is a
formula with possible occurrences of derived fields. If G does not contain any derived
fields then there is nothing to do, because we can answer the query using the under-
lying decision procedure. To check validity of I ∧D → G, we therefore proceed as
follows. We first obtain a formula G′ from G by eliminating all occurrences of derived
fields in G. Next, we check validity of G′ with respect to I . In the case of a derived
field f that is defined by a deterministic field constraint, occurrences of f in G can be
eliminated by flattening the formula and substituting each term f(x) = y by FCf (x, y).
However, in the general case of non-deterministic field constraints such a substitution
is only sound for negative occurrences of derived fields, since the field constraint gives
an over-approximation of the derived field. Therefore, a more sophisticated elimination
algorithm is needed.
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Eliminating derived fields. Figure 9 presents our algorithm Elim for elimination of
derived fields. Consider a derived field f . The basic idea of Elim is that we can re-
place an occurrenceG(f(x)) of f by a new variable y that satisfies FCf (x, y), yielding
a stronger formula ∀y.FCf (x, y) → G(y). As an improvement, if G contains two
occurrences f(x1) and f(x2), and if x1 and x2 evaluate to the same value, then we at-
tempt to replace f(x1) and f(x2) with the same value. Elim implements this idea using
the set K of triples (x, f, y) to record previously assigned values for f(x). Elim runs
in time O(n2), where n is the size of the formula, and produces an at most quadrati-
cally larger formula. Elim accepts formulas in negation normal form, where all negation
signs apply to atomic formulas. We generally assume that each quantifier Qz binds a
variable z that is distinct from other bound variables and distinct from the free variables
of the entire formula. The algorithm Elim is presented as acting on first-order formulas,
but is also applicable to checking validity of quantifier-free formulas because it only
introduces universal quantifiers which can be replaced by Skolem constants. The algo-
rithm is also applicable to multisorted logics, and, by treating sets of elements as a new
sort, to MSOL. To make the discussion simpler, we consider a deterministic version of
Elim where the non-deterministic choices of variables and terms are resolved by some
arbitrary, but fixed, linear ordering on terms. We write Elim(G) to denote the result of
applying Elim to a formula G.

S − a term or a formula
Terms(S) − terms occurring in S

FV(S) − variables free in S
Ground(S) = {t ∈ Terms(S). FV(t) ⊆ FV(S)}
Derived(S) − derived function symbols in S

proc Elim(G) = elim(G, ∅)
proc elim(G : formula in negation normal form;

K : set of (variable,field,variable) triples):
let T = {f(t) ∈ Ground(G). f ∈ Derived(G) ∧ Derived(t) = ∅}
if T �= ∅ do

choose f(t) ∈ T
choose x, y fresh first-order variables
let F1 = FCf (x, y) ∧ (xi,f,yi)∈K(x = xi → y = yi)
let G1 = G[f(t) := y]
return ∀x. x = t → ∀y. (F1 → elim(G1, K ∪ {(x, f, y)}))

else case G of
| Qx. G1 where Q ∈ {∀, ∃}:

return Qx. elim(G1, K)
| G1 op G2 where op ∈ {∧, ∨}:

return elim(G1, K) op elim(G2, K)
| else return G

Fig. 9. Derived-field elimination algorithm

The correctness of Elim is given by Theorem 1. The proof of Theorem 1 relies on
monotonicity of logical operations and quantifiers in negation normal form of a formula.
(Proofs for the theorems stated here can be found in [34]).
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Theorem 1 (Soundness). The algorithm Elim is sound: if I ∧ D |= Elim(G), then
I ∧D |= G. What is more, I ∧D ∧ Elim(G) |= G.

We now analyze the classes of formulasG for which Elim is complete.

Definition 2 (Completeness). We say that Elim is complete for (D,G) iff
I ∧D |= G implies I ∧D |= Elim(G).

Note that we cannot hope to achieve completeness for arbitrary constraints D. Indeed,
if we let D ≡ true, then D imposes no constraint whatsoever on the derived fields,
and reasoning about the derived fields becomes reasoning about uninterpreted function
symbols, that is, reasoning in unconstrained predicate logic. Such reasoning is undecid-
able not only for monadic second-order logic, but also for much weaker fragments of
first-order logic [7]. Despite these general observations, we have identified two cases
important in practice for which Elim is complete (Theorem 2 and Theorem 3).

Theorem 2 expresses the fact that, in the case where all field constraints are deter-
ministic, Elim is complete (and then it reduces to previous approaches [11, 26] that are
restricted to the deterministic case). The proof of Theorem 2 uses the assumption that
F is total and functional to conclude ∀x y. FCf (x, y) → f(x)= y, and then uses an
inductive argument similar to the proof of Theorem 1.

Theorem 2 (Completeness for deterministic fields). Elim is complete for (D,G)
when each field constraint in D is deterministic. Moreover, I ∧D ∧G |= Elim(G).

We next turn to completeness in the cases that admit non-determinism of derived fields.
Theorem 3 states that our algorithm is complete for derived fields introduced by the
weakest precondition operator to a class of postconditions that includes field constraints.
This result is important in practice: a previous, incomplete, version of our elimination
algorithm was not able to verify the skip list example in Section 2.2. To formalize our
completeness result, we introduce two classes of well-behaved formulas: nice formulas
and pretty nice formulas.

Definition 3 (Nice formulas). A formula G is a nice formula if each occurrence of
each derived field f in G is of the form f(t), where t ∈ Ground(G).

Nice formulas generalize the notion of quantifier-free formulas by disallowing quanti-
fiers only for variables that are used as arguments to derived fields. We can show that
the elimination of derived fields from nice formulas is complete. The intuition behind
this result is that if I ∧D |= G, then for the choice of yi such that FCf (xi, yi) we can
find an interpretation of the function symbol f such that f(xi) = yi, and I ∧D holds,
so G holds as well, and Elim(G) evaluates to the same truth value as G.

Definition 4 (Pretty nice formulas). The set of pretty nice formulas is defined induc-
tively by 1) a nice formula is pretty nice; 2) if G1 andG2 are pretty nice, then G1 ∧G2
and G1 ∨ G2 are pretty nice; 3) if G is pretty nice and x is a first-order variable, then
∀x.G is pretty nice.

Pretty nice formulas therefore additionally admit universal quantification over argu-
ments of derived fields. We define the function skolem, which strips (top-level) uni-
versal quantifiers, as follows: 1) skolem(G1 op G2) = skolem(G1) op skolem(G2)
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where op ∈ {∨,∧}; 2) skolem(∀x.G) = G; and 3) skolem(G) = G, otherwise. Note
that pretty nice formulas are closed under wlp (up to formula equivalence); the closure
property follows from the conjunctivity of the weakest precondition operator.

x ∈ Var − program variables f ∈ Fld − pointer fields
e ∈ Exp ::= x | e.f F − quantifier free formula
c ∈ Com ::= e1 := e2 | assume(F ) | assert(F )

| havoc(x) (non-deterministic assignment to x)
| c1 ; c2 | c1 � c2 (sequential composition and non-deterministic choice)

Fig. 10. Loop-free statements of a guarded command language (see e.g. [1])

Theorem 3 implies that Elim is a complete technique for checking preservation (over
straight-line code) of field constraints, even if they are conjoined with additional pretty
nice formulas. Elimination is also complete for data structure operations with loops as
long as the necessary loop invariants are pretty nice.

Theorem 3 (Completeness for preservation of field constraints). Let G be a pretty
nice formula, D a conjunction of field constraints, and c a guarded command
(Figure 10). Then

I ∧D |= wlp(c,G ∧D) iff I |= Elim(wlp(c, skolem(G ∧D))) .

Example 1. The example in Figure 11 demonstrates the elimination of derived fields
using algorithm Elim. It is inspired by the skip list module from Section 2.

DnextSub ≡ ∀v1 v2. nextSub(v1) = v2 → next+(v1, v2)

G ≡ wlp((e.nextSub := root .nextSub ; e.next := root), DnextSub)
≡ ∀v1 v2. nextSub [e := nextSub(root)](v1) = v2 → (next [e := root ])+(v1, v2)

G′ ≡ skolem(Elim(G)) ≡
x1 = root → next+(x1, y1) →

x2 = v1 → next+[e := y1](x2, y2) ∧ (x2 = x1 → y2 = y1) →
y2 = v2 → (next [e := root ])+(v1, v2)

Fig. 11. Elimination of derived fields from a pretty nice formula. The notation next+ denotes the
irreflexive transitive closure of predicate next(x) = y.

The formula G expresses the preservation of field constraint DnextSub for updates
of fields next and nextSub that insert e in front of root . The formula G is valid un-
der the assumption that ∀x. next(x) �= e. Elim first replaces the inner occurrence
nextSub(root) and then the outer occurrence of nextSub. Theorem 3 implies that the
resulting formula skolem(Elim(G)) is valid under the same assumptions as the original
formulaG.
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Limits of completeness. In our implementation, we have successfully used Elim in
the context of MSOL, where we encode transitive closure using second-order quan-
tification. Unfortunately, formulas that contain transitive closure of derived fields are
often not pretty nice, leading to false alarms after the application of Elim. This behav-
ior is to be expected due to the undecidability of transitive closure logics over general
graphs [10]. On the other hand, unlike approaches based on axiomatizations of tran-
sitive closure in first-order logic, our use of MSOL enables complete reasoning about
reachability over the backbone fields. It is therefore useful to be able to consider a field
as part of a backbone whenever possible. For this purpose, it can be helpful to verify
conjunctions of constraints using different backbones for different conjuncts.

Verifying conjunctions of constraints. In our skip list example, the field nextSub
forms an acyclic (sub-)list. It is therefore possible to verify the conjunction of con-
straints independently, with nextSub a derived field in the first conjunct (as in Sec-
tion 2.2) but a backbone field in the second conjunct. Therefore, although the reasoning
about transitive closure is incomplete in the first conjunct, it is complete in the second
conjunct.

Verifying programs with loop invariants. The technique described so far supports the
following approach for verifying programs annotated with loop invariants:

1. generate verification conditions using loop invariants, pre-, and postconditions;
2. eliminate derived fields from verification conditions using Elim (and skolem);
3. decide the resulting formula using a decision procedure such as MONA [13].

Field constraints specific to program points. Our completeness results also apply
when, instead of having one global field constraint, we introduce different field con-
straints for each program point. This allows the developer to refine data structure in-
variants with information specific to particular program points.

Field constraint analysis and loop invariant inference. Field constraint analysis is not
limited to verification in the presence of loop invariants. In combination with abstract
interpretation [3] it can be used to infer loop invariants automatically. Our implementa-
tion combines field constraint analysis with symbolic shape analysis based on Boolean
heaps [33, 29] to infer loop invariants that are disjunctions of universally quantified
Boolean combinations of unary predicates over heap objects.

Symbolic shape analysis casts the idea of three-valued shape analysis [32] in the
framework of predicate abstraction. It uses the machinery of predicate abstraction to
automatically construct the abstract post operator; this construction proceeds solely by
deductive reasoning. The computation of the abstraction amounts to checking valid-
ity of entailments that are of the form: Γ ∧C → wlp(c, p). Here Γ is an over-
approximation of the reachable states, C is a conjunction of abstraction predicates
and p is a single abstraction predicate. We use field constraint analysis to check va-
lidity of these formulas by augmenting them with the appropriate simulation invariant
I and field constraints D that specify the data structure invariants we want to preserve:
I ∧D∧Γ ∧C → wlp(c, p). The only problem arises from the fact that these ad-
ditional invariants may be temporarily violated during program execution. To ensure
applicability of the analysis, we abstract complete loop free paths in the control flow
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graph of the program at once. This means that we only require that simulation invariants
and field constraints are valid at loop cut points; effectively, these invariants are implicit
conjuncts in each loop invariant. This approach supports the programming model where
violations of invariants are confined to the interior of basic blocks [26].

Amortizing invariant checking in loop invariant inference. A straightforward ap-
proach for combining field constraint analysis with abstract interpretation would do a
well-formedness check for global invariants and field constraints at every step of the
fixed-point computation, invoking a decision procedure at each iteration step. The fol-
lowing insight allows us to use a single well-formedness check per basic block: the
loop invariant synthesized in the presence of well-formedness check is identical to the
loop invariant synthesized by ignoring the well-formedness check. We therefore specu-
latively compute the abstraction of the system under the assumption that both the sim-
ulation invariant and the field constraints are preserved. After the least fixed-point lfp#

of the abstract system has been computed, we generate for every loop free path c with
start point �c a verification condition: I ∧D∧ lfp#

�c
→ wlp(c, I ∧D) where lfp#

�c
is

the projection of lfp# to program location �c. We then use again our Elim algorithm to
eliminate derived fields and check the validity of these verification conditions. If they
are all valid then the analysis is sound and the data structure invariants are preserved.
Note that this approach succeeds whenever the straightforward approach would have
succeeded, so it improves analysis performance without degrading precision. More-
over, when the analysis detects an error, it repeats the fixed-point computation with the
simple approach to obtain an indication of the error trace.

4 Deployment as Modular Analysis Plugin

We have implemented our field constraint analysis and deployed it as the Bohne and
Bohne decaf 2 analysis plugins of our Hob framework [21, 16]. We have successfully
verified singly-linked lists, doubly-linked lists with and without iterators and header
nodes, insertion into a tree with parent pointers, two-level skip lists (Section 2.2), and
our students example from Section 2. When the developer supplies loop invariants,
these benchmarks, including skip list, verify in 1.7 seconds (for the doubly-linked list)
to 8 seconds (for insertion into a tree). Bohne automatically infers loop invariants for
insertion and lookup in the two-level skip list in 30 minutes total. We believe the running
time for loop invariant inference can be reduced using ideas such as lazy predicate
abstraction [8].

Because we have integrated Bohne into the Hob framework, we were able to verify
just the parts of programs which require the power of field constraint analysis with the
Bohne plugin, while using less detailed analyses for the remainder of the program. We
have used the list data structures verified with Bohne as modules of larger examples,
such as the 900-line Minesweeper benchmark and the 1200-line web server benchmark.
Hob’s pluggable analysis approach allowed us to use the typestate plugin [20] and loop
invariant inference techniques to efficiently verify client code, while reserving shape
analysis for the container data structures.

2 Bohne decaf is a simpler version of Bohne that does not do loop invariant inference.
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5 Further Related Work

We are not aware of any previous work that provides completeness guarantees for an-
alyzing tree-like data structures with non-deterministic cross-cutting fields for expres-
sive constraints such as MSOL. TVLA [32, 24] was initially designed as an analysis
framework with user-supplied transfer functions; subsequent work addresses synthesis
of transfer functions using finite differencing [31], which is not guaranteed to be com-
plete. Decision procedures [25,18] are effective at reasoning about local properties, but
are not complete for reasoning about reachability. Promising, although still incomplete,
approaches include [23] as well as [28,19]. Some reachability properties can be reduced
to first-order properties using hints in the form of ghost fields [15, 25]. Completeness
of analysis can be achieved by representing loop invariants or candidate loop invariants
by formulas in a logic that supports transitive closure [26, 36, 17, 35, 37, 33, 29]. These
approaches treat decision procedure as a black box and, when applied to MSOL, inherit
the limitations of structure simulation [11]. Our work can be viewed as a technique
for lifting existing decision procedures into decision procedures that are applicable to
a larger class of structures. Therefore, it can be incorporated into all of these previous
approaches.

6 Conclusion

Historically, the primary challenge in shape analysis was seen to be dealing effectively
with the extremely precise and detailed consistency properties that characterize many
(but by no means all) data structures. Perhaps for this reason, many formalisms were
built on logics that supported only data structures with very precisely defined refer-
encing relationships. This paper presents an analysis that supports both the extreme
precision of previous approaches and the controlled reduction in the precision required
to support a more general class of data structures whose referencing relationships may
be random, depend on the history of the data structure, or vary for some other reason
that places the referencing relationships inherently beyond the ability of previous logics
and analyses to characterize. We have deployed this analysis in the context of the Hob
program analysis and verification system; our results show that it is effective at 1) an-
alyzing individual data structures to 2) verify interfaces that allow other, more scalable
analyses to verify larger-grain data structure consistency properties whose scope spans
larger regions of the program.

In a broader context, we view our result as taking an important step towards the
practical application of shape analysis. By supporting data structures whose backbone
functionally determines the referencing relationships as well as data structures with in-
herently less structured referencing relationships, it promises to be able to successfully
analyze the broad range of data structures that arise in practice. Its integration within the
Hob program analysis and verification framework shows how to leverage this analysis
capability to obtain more scalable analyses that build on the results of shape analysis
to verify important properties that involve larger regions of the program. Ideally, this
research will significantly increase our ability to effectively deploy shape analysis and
other subsequently enabled analyses on important programs of interest to the practicing
software engineer.
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Abstract. A certified program analysis is an analysis whose implemen-
tation is accompanied by a checkable proof of soundness. We present a
framework whose purpose is to simplify the development of certified pro-
gram analyses without compromising the run-time efficiency of the anal-
yses. At the core of the framework is a novel technique for automatically
extracting Coq proof-assistant specifications from ML implementations
of program analyses, while preserving to a large extent the structure of
the implementation. We show that this framework allows developers of
mobile code to provide to the code receivers untrusted code verifiers in
the form of certified program analyses. We demonstrate efficient imple-
mentations in this framework of bytecode verification, typed assembly
language, and proof-carrying code.

1 Introduction

When static analysis or verification tools are used for validating safety-critical
code [6], it becomes important to consider the question of whether the results of
the analyses are trustworthy [22, 3]. This question is becoming more and more
difficult to answer as both the analysis algorithms and their implementations
are becoming increasingly complex in order to improve precision, performance,
and scalability. We describe a framework whose goal is to assist the developers
of program analyses in producing formal proofs that the implementations and
algorithms used are sound with respect to a concrete semantics of the code. We
call such analyses certified since they come with machine-checkable proofs of
their soundness. We also seek soundness assurances that are foundational, that
is, that avoid assumptions or trust relationships that don’t seem fundamental
to the objectives of users. Our contributions deal with making the development
of such analyses more practical, with particular emphasis on not sacrificing the
efficiency of the analysis in the process.

The strong soundness guarantees given by certified program analyzers and
verifiers are important when the potential cost of wrong results is significant.
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Moreover, the ability to check independently that the implementation of the
analysis is sound allows us to construct a mobile-code receiver that allows un-
trusted parties to provide the code verifier. The code verifier is presented as a
certified program analysis whose proof of soundness entails soundness of code
verification.

The main contributions of the framework we propose are the following:

– We describe a methodology for translating automatically implementations
of analyses written in a general-purpose language (currently, ML) into mod-
els and specifications for a proof assistant (currently, Coq). Specifically, we
show how to handle those aspects of a general-purpose language that do not
translate directly to the well-founded logic used by the proof assistant, such
as side-effects and non-primitive recursive functions. We use the framework
of abstract interpretation [12] to derive the soundness theorems that must
be proved for each certified analysis.

– We show a design for a flexible and efficient mobile-code verification protocol,
in which the untrusted code producer has complete freedom in the safety
mechanisms and compilation strategies used for mobile code, as long as it
can provide a code verifier in the form of a certified analysis, whose proof
of soundness witnesses that the analysis enforces the desired code-receiver
safety policy.

In the next section, we describe our program analysis framework and introduce
an example analyzer. Then, in Sect. 3, we present our technique for specification
extraction from code written in a general-purpose language. We then discuss
the program analyzer certification process in Sect. 4. In Sect. 5, we present
an application of certified program analysis to mobile code safety and high-
light its advantages and then describe how to implement in this architecture
(foundational) typed assembly language, Java bytecode verification, and proof-
carrying code in Sect. 6. Finally, we survey related work (Sect. 7) and conclude
(Sect. 8).

2 The Certified Program Analysis Framework

In order to certify a program analysis, one might consider proving directly the
soundness of the implementation of the analysis. This is possible in our frame-
work, but we expect that an alternative strategy is often simpler. For each anal-
ysis to be certified, we write a certifier that runs after the analysis and checks
its results. Then, we prove the soundness of the certifier. This approach has
several important advantages. Often the certifier is simpler than the analysis
itself. For example, it does not need to iterate more than once over each in-
struction, and it does not need all the complicated heuristics that the analysis
itself might use to speed up the convergence to a fixpoint. Thus, we expect the
certifier is easier to prove sound than the analysis itself. The biggest benefit,
however, is that we can use an existing implementation of a program analysis
as a black box, even if it is written in a language that we are not ready to ana-
lyze formally, and even if the analysis algorithm does not fit perfectly with the
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Fig. 1. Our certified verifier architecture with the trusted code base shaded

formalism desired for the certification and its soundness proofs. As an extreme
example, the analysis itself might contain a model checker, while we might want
to do the soundness proof using the formalism of abstract interpretation [28].
In Fig. 1, we diagram this basic architecture for the purpose of mobile-code
safety. We distinguish between “installation time” activity, which occurs once
per analyzer, and “verification time” activity, which occurs once per program to
analyze.

We choose the theory of abstract interpretation [12] as the foundation for the
soundness proofs of certifiers because of its generality and because its soundness
conditions are simple and well understood. We present first the requirements
for the developers of certifiers, and then in Sect. 4, we describe the soundness
verification.

type absval
type abs = { pc : nat; a : absval }
val ainv : abs list
val astep : abs -> result
datatype result = Fail | Succ of abs list

The core of the certifier is an
untrusted custom module con-
taining an implementation of the
abstract transition relation (pro-
vided by the certifier developer).
The custom module of a certifier
must implement the signature given adjacently. The type abs encodes abstract
states, which include a program counter and an abstract value of a type that
can be chosen by the certifier developer. The value ainv consists of the abstract
invariants. They must at a minimum include invariants for the entry points to
the code and for each destination of a jump. The function astep implements
the abstract transition relation: given an abstract state at a particular instruc-
tion, compute the set of successor states, minus the states already part of ainv .
The transition relation may also fail, for example when the abstract state does
not ensure the safe execution of the instruction. We will take advantage of this
possibility to write safety checkers for mobile-code using this framework. In our
implementation and in the examples in this paper, we use the ML language for
implementing custom certifiers.
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fun applyWithTimeout (f: ’a -> ’b, x: ’a) : ’b = ...
fun top (DonePC: nat list, ToDo: abs list) : bool =
case ToDo of

nil => true
| a :: rest =>

if List.member(a.pc, DonePC) then false else
(case applyWithTimeout(astep, a) of

Fail => false
| Succ as => top (a.pc :: DonePC, as @ ToDo))

in
top (nil, ainv)

Fig. 2. The trusted top-level analysis engine. The infix oper-
ators :: and @ are list cons and append, respectively.

In order to exe-
cute such certifiers,
the framework pro-
vides a trusted en-
gine shown in Fig. 2.
The main entry point
is the function top ,
invoked with a list
of program counters
that have been pro-
cessed and a list of
abstract states still
to process. Termina-
tion is ensured using
two mechanisms: each invocation of the untrusted astep is guarded by a time-
out, and each program counter is processed at most once. We use a timeout as a
simple alternative to proving termination of astep. A successful run of the code
shown in Fig. 2 is intended to certify that all of the abstract states given by ainv
(i.e., the properties that we are verifying for a program) are invariant, and that
the astep function succeeds on all reachable instructions. We take advantage of
this latter property to write untrusted code verifiers in this framework (Sect. 5).
We discuss these guarantees more precisely in Sect. 4.

Example: Java Bytecode Verifier. Now we introduce an example program ana-
lyzer that requires the expressivity of a general-purpose programming language
and highlights the challenges in specification extraction. In particular, we con-
sider a certifier in the style of the Java bytecode verifier, but operating on a
simple assembly language instead of bytecodes. Fig. 3 presents a fragment of
this custom verifier. The abstract value is a partial map from registers to class
names, with a missing entry denoting an uninitialized register.1

In the astep function, we show only the case of the memory write instruction.
The framework provides the sel accessor function for partial maps, the instruc-
tion decoder instrAt, the partial function fieldOf that returns the type of a
field at a certain offset, and the partial function super that returns the super
class of a class. This case succeeds only if the destination address is of the form
rdest+ n , with register rdest pointing to an object of class cdest that has
at offset n a field of type c′ , which must be a super class of the type of register
rsrc .

We omit the code for calculatePreconditions, a function that obtains
some preconditions from the meta-data packaged with the .class files, and
then uses an iterative fixed-point algorithm to find a good typing precondition
for each program label. Each such precondition should be satisfied any time
control reaches its label. This kind of algorithm is standard and well studied, in
1 In the actual implementation, registers that hold code pointers (e.g., return ad-

dresses, or dynamic dispatch addresses) are assigned types that specify the abstract
state expected by the destination code block.
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type absval = (reg, class) partialmap
type abs = { pc : nat; a : absval }

fun subClass (c1 : class, c2 : class) = ...
fun calculatePreconditions () : abs list = ...
val ainv: abs list = calculatePreconditions ()

fun astep (a : abs) : result =
case instrAt(a.pc) of

Write(rdest + n, rsrc) =>
(case (sel(a.a, rdest), sel(a.a, rsrc)) of

(SOME cdest, SOME csrc) =>
(case fieldOf(cdest, n) of

SOME cdest’ => if subClass(csrc, cdest’) then
Succ [ { a = a.a, pc = a.pc + 1 } ]

else Fail
| _ => Fail)

| _ => Fail)
| ...

Fig. 3. Skeleton of a verifier in the style of the Java bytecode verifier

the context of the Java Bytecode Verifier and elsewhere, so we omit the details
here. Most importantly, we will not need to reason formally about the correctness
of this algorithm.

3 Specification Extraction

To obtain certified program analyses, we need a methodology for bridging the gap
between an implementation of the analysis and a specification that is suitable for
use in a proof assistant. An attractive technique is to start with the specification
and its proof, and then use program extraction supported by proof assistants such
as Coq or Isabelle [29] to obtain the implementation. This strategy is very proof-
centric and while it does yield a sound implementation, it makes it hard to control
non-soundness related aspects of the code, such as efficiency, instrumentation for
debugging, or interaction with external libraries.

Yet another alternative is based on verification conditions [15, 17], where each
function is first annotated with a pre- and postcondition, and the entire program
is compiled into a single formula whose validity implies that the program satisfies
its specification. Such formulas can make good inputs to automated deduction
tools, but they are usually quite confusing to a human prover. They lose much
of the structure of the original program. Plus, in our experience, most auxiliary
functions in a program analyzer do good jobs of serving as their own specifica-
tions (e.g., the subClass function).

Since it is inevitable that proving soundness will be sufficiently complicated
to require human guidance, we seek an approach that maintains as close of a
correspondence between the implementation and its model as possible. For non-
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fun subClass ( depth : nat, c1 : class, c2 : class) : bool option =
c1 = c2 orelse
(case super c1 of NONE => SOME false
| SOME sup => if depth = O then NONE else subClass’( depth-1, sup,c2))

Fig. 4. Translation of the subClass function. The boxed elements are added by our
translation.

recursive purely functional programs, we can easily achieve the ideal, as the
implementation can reasonably function as its own model in a suitable logic,
such as that of the Coq proof assistant. This suggests that we need a way to
handle imperative features, and a method for dealing with non-primitive re-
cursive functions. In the remainder of this section, we give an overview of our
approach. More detail can be found in the companion technical report [9].

Handling Recursion. We expect that all invocations of the recursive functions
used during certification terminate, although it may be inconvenient to write all
functions in primitive recursive form, as required by Coq. In our framework, we
force termination of all function invocations using timeouts. This means that for
each successful run (i.e., one that does not time out) there is a bound on the
call-stack depth. We use this observation to make all functions primitive recur-
sive on the call-stack depth. When we translate a function definition, we add an
explicit argument depth that is checked and decremented at each function call.
Fig. 4 shows the result of translating a typical implementation of the subClass
function for our running example. The boxed elements are added by the trans-
lation. Note that in order to be able to signal a timeout, the return type of the
function is an option type. Coq will accept this function because it can check
syntactically that it is primitive recursive in the depth argument.

This translation preserves any partial correctness property of the code. For
example, if we can prove about the specification that any invocation of subClass
that yields SOME true implies that two classes are in a subclass relationship, then
the same property holds for the original code whenever it terminates with the
value true.

Handling Imperative Features. The function calculatePreconditions from
Fig. 3 uses I/O operations to read and decode the basic block invariants from
the .class file (as in the KVM [30] version of Java), or must use an intrapro-
cedural fixed-point computation to deduce the basic block preconditions from
the method start precondition (as for standard .class files). In any case, this
function most likely uses a significant number of imperative constructs or even
external libraries. This example demonstrates a situation when the result of
complex computations is used only as a hint, whose exact value is not important
for soundness but only for completeness. We believe that this is often the case
when writing certifiers, which suggests that a monadic [31] style of translation
would unnecessarily complicate the resulting specification.

For such situations we propose a cheaper translation scheme that abstracts
soundly the result of side-effecting operations. We describe this scheme informally,
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fun readu16 ( s: callstate, buff: int array, idx: int) : int =
256 * (freshread1 s) + (freshread2 s)

fun readu32 ( s: callstate, buff: int array, idx: int) : int =
65536 * readu16( freshstate3 s, buff,i) + readu16( freshstate4 s, buff,i+2)

Fig. 5. Translation of a function for reading a 16-bit and 32-bit big-endian
numbers from a class file. Original body of readu16 before translation is
256 ∗ buff[i] + buff[i + 1].

by means of an example of functions that read from a Java .class file 16-bit and
32-bit numbers, respectively, written in big-endian notation, shown in Fig. 5. Each
update to mutable state is ignored. Each syntactic occurrence of a mutable-state
access is replaced with a fresh abstract function (e.g., freshread1) whose argu-
ment is an abstraction of the call-stack state. The call-stack argument is needed
to ensure that no relationship can be deduced between recursive invocations of
the same syntactic state access. Each function whose body reads mutable state,
or calls functions that read mutable state, gets a new parameter s that is the ab-
straction of the call-stack state. Whenever such a function calls another function
that needs a call-stack argument, it uses a fresh transformer (e.g., freshstate3)
to produce the new actual state argument.

This abstraction is sound in the sense that it ensures that nothing can be
proved about results of mutable state accesses, and thus any property that we
can prove about this abstraction also holds for the actual implementation. If we
did not have the call-stack argument, one could prove that each invocation of the
readu16 function produces the same result, and thus all results of the readu32
are multiple of 65,537. This latter example also shows why we cannot use the
depth argument as an abstraction of the call-stack state.

Note that our use of “state” differs from the well-known “explicit state-passing
style” in functional programming, where state is used literally to track all mu-
table aspects of the execution environment. That translation style requires that
each function that updates the state not only take an input state but also produce
an output state that must be passed to the next statement. In our translation
scheme states are only passed down to callers, and the result type of a function
does not change.

The cost for the simplicity of this translation is a loss of completeness. We
are not interested in preserving all the semantics of input programs. Based on
our conjecture that we can refactor programs so that their soundness arguments
do not depend on imperative parts, we can get away with a looser translation.
In particular, we want to be able to prove properties of the input by proving
properties of the translation. We do not need the opposite inclusion to hold.

Soundness of the Specification Extraction. We argue here informally the sound-
ness of the specification extraction for mutable state. In our implementation, the
soundness of the code that implements the extraction procedure is assumed. We
leave for future work the investigation of ways to relax this assumption. First,
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we observe that each syntactic occurrence of a function call has its own unique
freshstate transformer. This means that, in an execution trace of the speci-
fication, each function call has an actual state argument that is obtained by a
unique sequence of applications of freshstate transformers to the initial state.
Furthermore, in any such function invocation all the syntactic occurrences of a
mutable state read use unique freshread access functions, applied to unique
values of the state parameter. This means that in any execution trace of the
specification, each state read value is abstracted as a unique combination of
freshread and freshstate functions. This, in turn, means that for any actual
execution trace of the original program, there is a definition of the freshread
and freshstate parameters that yields the same results as the actual reads.
Since all the freshread and freshstate transformers are left abstract in the
specification, any proof about the specification works with any model for the
transformers, and thus applies to any execution trace of the original program. A
complete formal proof is found in the companion technical report [9].

4 Soundness Certification

We use the techniques described in the previous section to convert the ML data
type abs to a description of the abstract domain A in the logic of the proof-
assistant. Similarly, we convert the ainv value into a set AI ⊆ A . Finally, we
model the transition function astep as an abstract transition relation � ⊆
A× 2A such that a � A whenever astep(a) = Succ A . We will abuse notation
slightly and identify sets and lists where convenient.

We prove soundness of the abstract transition relation with respect to a con-
crete transition relation. Let (C,C0, �→) be a transition system for the concrete
machine. In particular, C is a domain of states; C0 is the set of allowable initial
states; and �→ is a one-step transition relation. These elements are provided in the
proof-assistant logic and are trusted. We build whatever safety policy interests us
into �→ in the usual way; we disallow transitions that would violate the policy, so
that errors are modeled as “being stuck.” This is the precise way in which one can
specify the trusted safety policy for the certified program verifiers (Sect. 5).

To certify the soundness of the program analyzer, the certifier developer needs
to provide additionally (in the form of a Coq definition) a soundness relation
1 ⊆ C × A (written as σ in [13]), such that c 1 a holds if the abstract state
a is a sound abstraction of the concrete state c . To demonstrate 1 is indeed
sound, the author also provides proofs (in Coq) for the following standard, local
soundness properties of abstract interpretations and bi-simulations.

Property 1 (Initialization). For every c ∈ C0 , there exists a ∈ AI such that
c 1 a .

The initialization property assures us that the abstract interpretation includes
an appropriate invariant for every possible concrete initial state.

Property 2 (Progress). For every c ∈ C and a ∈ A such that c 1 a , if there
exists A′ ⊆ A such that a � A′ , then there exists c′ ∈ C such that c �→ c′ .
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Progress guarantees that, whenever an abstract state is not stuck, any corre-
sponding concrete states are also not stuck.

Property 3 (Preservation). For every c ∈ C and a ∈ A such that c 1 a , if there
exists A′ ⊆ A such that a � A′ , then for every c′ ∈ C such that c �→ c′ there
exists a′ ∈ (A′ ∪AI) such that c′ 1 a′ .

Preservation guarantees that, for every step made by the concrete machine,
the resulting concrete state matches one of the successor states of the abstract
machine. Preservation is only required when the abstract machine does not reject
the program. This allows the abstract machine to reject some safe programs, if
it so desires. It is important to notice that, in order to ensure termination, the
astep function (and thus the � relation) only returns those successor abstract
states that are not already part of the initial abstract states ainv . To account
for this aspect, we use AI in the preservation theorem.

Together, these properties imply the global soundness of the certifier that
implements this abstract interpretation [12], stated as following:

Theorem 1 (Certification soundness). For any concrete state c ∈ C reach-
able from an initial state in C0 , the concrete machine can make further progress.
Also, if c has the same program counter as a state a ∈ AI , then c 1 a .

In the technical report [9], we give an idea how these obligations are met in
practice by sketching how the proof goes for the example of the Java bytecode
verifier shown in Fig. 3.

5 Applications to Mobile-Code Safety

Language-based security mechanisms have gained acceptance for enforcing basic
but essential safety properties, such as memory and type safety, for untrusted
mobile code. The most widely deployed solution for mobile code safety is byte-
code verification, as in the Java Virtual Machine (JVM) [25] or the Microsoft
Common Intermediate Language (MS-CIL) [18]. A bytecode verifier uses a form
of abstract interpretation to track the types of machine registers, and to enforce
memory and type safety. The main limitation of this approach is that we must
trust the soundness of the bytecode verifier. In turn, this means that we cannot
easily change the verifier and its enforcement mechanism. This effectively forces
the clients of a code receiver to use a fixed type system and often even a fixed
source language for mobile code. Programs written in other source languages
can be compiled into the trusted intermediate language but often in unnatural
ways with a loss of expressiveness and performance [4, 19, 7].

A good example is the MS-CIL language, which is expressive enough to be the
target of compilers for C#, C and C++. Compilers for C# produce intermediate
code that can be verified, while compilers for C and C++ use intermediate
language instructions that are always rejected by the built-in bytecode verifier.
In this latter case, the code may be accepted if the producer of the code can
provide an explicit proof that the code obeys the required safety policy and the
code receiver uses proof-carrying code [1, 20, 27].
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Existing work on proof-carrying code (PCC) attests to its versatility, but
often fails to address the essential issue of how the proof objects are obtained.
In the Touchstone system [11], proofs are generated by a special theorem prover
with detailed knowledge about Java object layout and compilation strategies.
The Foundational PCC work [1, 20] eliminates the need to hard-code and trust
all such knowledge, but does so at the cost of increasing many times the proof
generation burden. Both these systems also incur the cost of transmitting proofs.
The Open Verifier project [10] proposes to send with the code not per-program
proofs but proof generators to be run at the code receiver end for each incoming
program. The generated proofs are then checked by a trusted proof checker, as
in a standard PCC setup.

Using certified program analyses we can further improve this process. The
producer of the mobile code writes a safety-policy verifier customized for the
exact compilation strategy and safety reasoning used in the generation of the
mobile code. This verifier can be written in the form of a certified program
analysis, whose abstract transition fails whenever it cannot verify the safety
of an instruction. For example, we discuss in Sect. 6 cases when the program
analysis is a typed assembly language checker, a bytecode verifier, or an actual
PCC verification engine relying on annotations accompanying the mobile code.

The key element is the soundness proof that accompanies an analysis, which
can be checked automatically. At verification time, the now-trusted program
analyzer is used to validate the code, with no need to manipulate explicit proof
objects. This simplifies the writing of the validator (as compared with the proof-
generating theorem prover of Touchstone, or the Open Verifier). We also show in
Sect. 6 that this reduces the validation time by more than an order of magnitude.

We point out here that the soundness proof is with respect to the trusted
concrete semantics. By adding additional safety checks in the concrete seman-
tics (for instance, the logical equivalents of dynamic checks that would en-
force a desired safety policy), the code receiver can construct customized safety
policies.

6 Case Studies

In this section, we present case studies of applying certified program analyzers
to mobile code security. We describe experience with verifiers for typed assembly
language, Java bytecode, and proof-carrying code.

We have developed a prototype implementation of the certified program anal-
ysis infrastructure. The concrete language to be analyzed is the Intel x86 assem-
bly language. The specification extractor is built on top of the front-end of the
OCaml compiler, and it supports a large fragment of the ML language. The most
notable features not supported are the object-oriented features. In addition to
the 3000-line extractor, the trusted computing base includes the whole OCaml
compiler and the Coq proof checker, neither of which is designed to be founda-
tionally small. However, our focus here has been on exploring the ease of use
and run-time efficiency of our approach. We leave minimizing the trusted base
for future work.
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Typed Assembly Language. Our first realistic use of this framework involved
Typed Assembly Language. In particular, we developed and proved correct a
verifier for TALx86, as provided in the first release of the TALC tools from
Cornell [26]. This TAL includes several interesting features, including continua-
tion, universal, existential, recursive, product, sum, stack, and array types. Our
implementation handles all of the features used by the test cases distributed
with TALC, with the exception of the modularity features, which we handle by
“hand-linking” multiple-file tests into single files. TALC includes compilers to
an x86 TAL from Popcorn (a safe C dialect) and mini-Scheme. We used these
compilers unchanged in our case study.

We implemented a TALx86 verifier in 1500 lines of ML code. This compares
favorably with the code size of the TALC type checker, which is about 6000
lines of OCaml. One of us developed our verifier over the course of two months,
while simultaneously implementing the certification infrastructure. We expect
that it should be possible to construct new verifiers of comparable complexity
in a week’s time now that the infrastructure is stable.

We also proved the local soundness properties of this implementation in 15,000
lines of Coq definitions and proof scripts. This took about a month, again in-
terleaved with developing the trusted parts of the infrastructure. We re-used
some definitions from a previous TAL formalization [10], but we didn’t re-use
any proofs. It’s likely that we can significantly reduce the effort required for such
proofs by constructing some custom proof tactics based on our experiences. We
don’t believe our formalization to be novel in any fundamental way. It uses ideas
from previous work on foundational TAL [2, 20, 14]. The main difference is that
we prove the same basic theorems about the behavior of an implementation of
the type checker, instead of about the properties of inference rules. This makes
the proofs slightly more cumbersome, but, as we will see, it brings significant
performance improvement. As might be expected, we found and fixed many bugs
in the verifier in the course of proving its soundness. This suggests that our in-
frastructure might be useful even if the developer is only interested in debugging
his analysis.

Conv CPV PCC

Up to 200 (13) 0 0.01 0.07
201-999 (7) 0.01 0.02 0.24

1000 and up (6) 0.04 0.08 1.73

Table 1 presents some verification-time per-
formance results for our implementation, as
average running times for inputs with partic-
ular counts of assembly instructions. We ran a
number of verifiers on the test cases provided
with TALC, which used up to about 9000 as-
sembly instructions. First, the type checker
included with TALC finishes within the res-
olution of our timing technique for all cases,
so we don’t include results for it. While this type checker operates on a special
typed assembly language, the results we give are all for verifying native assembly
programs, with types and macro-instructions used as meta-data. As a result, we
can expect that there should be some inherent slow-down, since some TAL in-
structions must be compiled to multiple real instructions. The experiments were

Table 1. Average verifier running
times (in seconds)
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performed on an Athlon XP 3000+ with 1 GB of RAM, and times are given
in seconds. We give times for “Conventional (Conv),” a thin wrapper around
the TALC type checker to make it work on native assembly code; “CPV,” our
certified program verifier implementation; and “PCC,” our TALx86 verifier im-
plementation from previous work [10], in which explicit proof objects are checked
during verification.

The results show that our CPV verifier performs comparably with the con-
ventional verifier, for which no formal correctness proof exists. It appears our
CPV verifier is within a small constant factor of the conventional verifier. This
constant is likely because we use an inefficient, Lisp-like serialization format for
including meta-data in the current implementation. We expect this would be
replaced by a much faster binary-encoded system in a more elaborate version.

We can also see that the certified verifier performs much better than the PCC
version. The difference in performance is due to the cost required to manipulate
and check explicit proof objects during verification. To provide evidence that
we aren’t comparing against a poorly-constructed straw man, we can look to
other FPCC projects. Wu, Appel, and Stump [32] give some performance re-
sults for their Prolog-based implementation of trustworthy verifiers. They only
present results on input programs of up to 2000 instructions, with a running
time of .206 seconds on a 2.2 GHz Pentium IV. This seems on par with our own
PCC implementation. While their trusted code base is much smaller than ours,
since we require trust in our specification extractor, there is hope that we can
achieve a similarly small checking kernel by using techniques related to certifying
compilation.

Java Bytecode Verification. We have also used our framework to implement
a partial Java Bytecode Verifier (JBV) in about 600 lines of ML. It checks
most of the properties that full JBVs check, mainly excluding exceptions, object
initialization, and subroutines. Our implementation’s structure follows closely
that of our running example from Sect. 2. Its ainv begins by calling an OCaml
function that calculates a fixed point using standard techniques. Like in our
example, the precise code here doesn’t matter, as the purpose of the function
is to populate a hash table of function preconditions and control-flow join point
invariants. With this information, our astep function implements the standard
typing rules for JBVs.

While we have extracted complete proof obligations for the implementation,
we have only begun the process of proving them. However, to make sure we are
on track to an acceptable final product, we have performed some simple bench-
marks against the bytecode verifier included with Blackdown Java for Linux. We
downloaded a few Java-only projects from SourceForge and ran each verifier on
every class in each project.

On the largest that our prototype implementation could handle, MegaMek,
our verifier finishes in 5.5 seconds for checking 668,000 bytecode instructions,
compared to 1 second for the traditional verifier. First, we note that both times
are relatively small in an absolute sense. It probably takes a user considerably
longer to download a software package than to verify it with either method.
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We also see that our verifier is only a small factor away from matching the
traditional approach, whose performance we know empirically that users seem
willing to accept. No doubt further engineering effort could close this gap or
come close to doing so.

Proof-Carrying Code. We can even implement a version of Foundational PCC
in our framework: for each basic block the mobile code contains an invariant
for the start of the block, and a proof that the strongest postcondition of the
start invariant along the block implies the invariant for the successor block. The
abstract state abs of the certifier consists of a predicate written in a suitable
logic, intended to be the strongest postcondition at the given program point.
The ainv is obtained by reading invariants from a data segment accompanying
the mobile code.

fun checkProof (prf: proof) (p: pred) : bool = ...
fun astep (a: abs) : result =
case instrAt a.pc of
RegReg(r1, r2) => Succ [{

pc = a.pc + 1;
a = And(Eq(r1,r2),Exists(x,[x/r1]a.a)) }]

| Jump l =>
let dest = getInvar l in
let prf = fetchProof l in
if checkProof (prf, Imply(a.a, dest)) then
Succ [ ]

else Fail

Fig. 6. A fragment of a certifier for PCC

Fig. 6 shows a
fragment of the code
for astep, which cal-
culates the strongest
postcondition for ev-
ery instruction. At a
jump we fetch the in-
variant for the desti-
nation, a proof, and
then check the proof.
To prove soundness,
we only need to en-
sure that getInvar
returns one of the in-
variants that are part of ainv, and that the checkProof function is sound. More
precisely, whenever the call to checkProof returns true, then any concrete state
that satisfies a.a also satisfies dest. In particular, we do not care at all how
fetchProof works, where it gets the proof from, whether it decrypts or decom-
presses it first, or whether it actually produces the proof itself. This soundness
proof for checkProof is possible and even reasonably straightforward, since we
are writing our meta-proofs in Coq’s more expressive logic.

7 Related Work

Toward Certified Program Analyses. The Rhodium system developed by Lerner
et al. [24] is the most similar with respect to the overall goal of our work—that
of providing a realistic framework for certified program analyses. However, they
focus on simpler compiler analysis problems whose soundness can be proved
by today’s automated methods. We expect that our proofs can similarly be
automated when our framework is used for the kinds of analyses expressible in
Rhodium-style domain specific languages.

Several systems have been developed for specifying program analyses in
domain-specific languages and generating code from these specifications [23].
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Again, the expressiveness of these systems is very limited compared to what is
needed for standard mobile code safety problems.

In the other direction, we have the well-established body of work dealing
with extracting formal verification conditions from programs annotated with
specifications. Especially relevant are the Why [16] and Caduceus [17] tools,
which produce Coq proof obligations as output.

There has been a good amount of work on constructing trustworthy veri-
fiers by extracting their code from constructive proofs of soundness. Cachera et
al. [8] extracted a data-flow analysis from a proof based on a general constraint
framework. Klein and Nipkow [21] and Bertot [5] have built certified Java byte-
code verifiers through program extraction/code generation from programs and
proofs in Isabelle and Coq, respectively. None of these publications present any
performance figures to suggest that their extracted verifiers scale to real input
sizes.

Enforcing Mobile-Code Safety. As alluded to earlier, most prior work in Founda-
tional Proof-Carrying Code has focused on the generality and expressivity of var-
ious formalisms, including the original FPCC project [2], Syntactic FPCC [20],
and Foundational TALT [14]. These projects have given convincing arguments for
their expressiveness, but they have not yet demonstrated a scalable implemen-
tation. Some recent research has looked into efficiency considerations in FPCC
implementations, including work by Wu, Appel, and Stump [32] and our own
work on the Open Verifier [10].

The architecture proposed by Wu, Appel, and Stump is fairly similar to the
architecture we propose, with the restriction that verifiers must be implemented
in Prolog. In essence, while we build in an abstract interpretation engine, Wu et
al. build in a Prolog interpreter. We feel that it is important to support verifiers
developed in more traditional programming languages. Also, the performance
figures provided by Wu et al. have not yet demonstrated scalability.

Our past work on the Open Verifier has heavily influenced the design of the
certified program analysis architecture. Both approaches build an abstract in-
terpretation engine into the trusted base and allow the uploading of customized
verifiers. However, the Open Verifier essentially adheres to a standard PCC ar-
chitecture in that it still involves proof generation and checking for each mobile
program to be verified, and it pays the usual performance price for doing this.

8 Conclusion

We have presented a strategy for simplifying the task of proving soundness not
just of program analysis algorithms, but also of their implementations. We be-
lieve that starting with the implementation and extracting natural proof obliga-
tions will allow developers to fine tune non-functional aspects of the code, such
as performance or debugging instrumentation.

Certified program analyses have immediate applications for developing certi-
fied program verifiers, such that even untrusted parties can customize the verifi-
cation process for untrusted code. We have created a prototype implementation
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and used it to demonstrate that the same infrastructure can support in a very
natural way proof-carrying code, type checking, or data-flow based verification
in the style of bytecode verifiers. Among these, we have completed the soundness
proof of a verifier for x86 Typed Assembly Language. The performance of our
certified verifier is quite on par with that of a traditional, uncertified TALx86
type checker. We believe our results here provide the first published evidence
that a foundational code certification system can scale.
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16. J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research
Report 1366, LRI, Université Paris Sud, March 2003.
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Abstract. This paper presents a novel implementation strategy for lin-
ear temporal logic (LTL) model checking of pushdown systems (PDS).
The model checking problem is formulated intuitively in terms of evalu-
ation of Datalog rules. We use a systematic and fully automated method
to generate a specialized algorithm and data structures directly from the
rules. The generated implementation employs an incremental approach
that considers one fact at a time and uses a combination of linked and
indexed data structures for facts. We provide precise time complexity for
the model checking problem; it is computed automatically and directly
from the rules. We obtain a more precise and simplified complexity analy-
sis, as well as improved algorithm understanding.

1 Introduction

Model checking is a widely used technique for verifying that a property holds for
a system. Systems to be verified can be modeled accurately by pushdown systems
(PDS). Properties can be modeled by linear temporal logic (LTL) formulas. LTL
is a language commonly used to describe properties of systems [12, 13, 21] and
is sufficiently powerful to express many practical properties. Examples include
many dataflow analysis problems and various correctness and security problems
for programs.

This paper focuses on LTL model checking of PDS, specifically on the global
model checking problem [15]. The model checking problem is formulated in terms
of evaluation of a Datalog program [5]. Datalog is a database query language
based on the logic programming paradigm [11, 1]. The Büchi PDS, correspond-
ing to the product of the PDS and the automaton representing the inverse of
the property, is expressed in Datalog facts, and a reach graph — an abstract
representation of the Büchi PDS, is formulated in rules. The method described
in [18] generates specialized algorithms and data structures and complexity for-
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given a set of facts, they compute all facts that can be inferred. The generated
implementation employs an incremental approach that considers one fact at a
time and uses a combination of linked and indexed data structures for facts. The
running time is optimal, in the sense that each combination of instantiations of
hypotheses is considered once in O(1) time.

Our main contributions are:

– A novel implementation strategy for the model checking problem that com-
bines an intuitive definition of the model checking problem in rules [5] and a
systematic method for deriving efficient algorithms and data structures from
the rules[18].

– A precise and automatic time complexity analysis of the model checking
problem. The time complexity is calculated directly from the Datalog rules,
based on a thorough understanding of the algorithms and data structures
generated, reflecting the complexities of implementation back into the rules.

We thus develop a model checker with improved time complexity guarantees
and improved algorithm understanding.

The rest of this paper is organized as follows. Section 2 defines LTL model
checking of PDS. Section 3 expresses the model checking problem by use of
Datalog rules. Section 4 describes the generation of a specialized algorithm and
data structures from the rules and analyzes time complexity of the generated
implementation. Section 5 discusses related work and concludes.

2 Linear Temporal Logic Model Checking of Pushdown
Systems

This section defines the problem of model checking PDS against properties ex-
pressed using LTL formulas, as described in [15].

2.1 Pushdown Systems

A pushdown system (PDS) [14] is a triple (CP , SP , TP ), where CP is a set of
control locations, SP is a set of stack symbols and TP is a set of transitions. A
transition is of the form (c, s) → (c′, w) where c and c′ are control locations, s
is a stack symbol, and w is a sequence of stack symbols; it denotes that if the
PDS is in control location c and symbol s is on top of the stack, the control
location changes to c′, s is popped from the stack, and the symbols in w are
pushed on the stack, one at a time, from left to right. A configuration of a PDS
is a pair (c, w) where c is a control location and w is a sequence of symbols from
the top of the stack. If (c, s)→ (c′, w) ∈ TP then for all v ∈ SP

∗, configuration
(c, sv) is said to be an immediate predecessor of (c′, wv). A run of a PDS is a se-
quence of configurations conf0, conf1, ..., confn such that confi is an immediate
predecessor of confi+1, for i = 0, . . . , n− 1.

We only consider PDSs where each transition (c, s)→ (c′, w) satisfies |w| ≤ 2.
Any given PDS can be transformed to such a PDS. Any transition (c, s) →
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(c′, w), such that |w| > 2, can be rewritten into (c, s)→ (c′, whd s
′) and (c′, s′)→

(c, wtl), where whd is the first symbol in w, wtl is w without its first symbol,
and s′ is a fresh symbol. This step can be repeated until all transitions have
|w| ≤ 2. This replaces each transition (c, s) → (c′, w), where |w| > 2, with
|w| − 1 transitions and introduces |w| − 1 fresh stack symbols.

The procedure calls and returns in a program correspond to a PDS [16].
First, we construct a control flow graph (CFG) [2] of the program. Then, we
set up one control location, say called c. Each CFG vertex is a stack symbol.
Each CFG edge (s, s′) corresponds to a transition (i) (c, s) → (c, ε), where ε
stands for the empty string, if (s, s′) is labeled with a return statement; (ii)
(c, s) → (c, s′f0), if (s, s′) is labeled with a call to procedure f , and f0 is f ’s
entry point; (iii) (c, s)→ (c, s′), otherwise. A run of the program corresponds to
a PDS run.

void m()
   double d = drand48();
   if (d < 0.66):
      s(); plot_right();
      if (d < 0.33): m();

 else:
   else:
      plot_up(); m(); plot_down();

void s()
   if (drand48() < 0.5): return;
   else:
      plot_up(); m(); plot_down();

main()
   srand48(time(NULL)); s();

(a) Example program
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(b) Corresponding CFG

Fig. 1. Example program and corresponding CFG

Figure 1 shows an example program and its CFG [15]. The program creates
random bar graphs using the commands plot up, plot right, and plot down.
The corresponding PDS is:

CP = {c}
SP = {m0,m1,m2,m3,m4,m5,m6,m7,m8,m9, s0, s1, s2, s3, s4, s5,

main0,main1,main2}
TP = {(c,m3)→ (c,m4s0), (c,m6)→ (c,m1m0), (c,m8)→ (c,m9m0),

(c,m1)→ (c, ε), (c, s2)→ (c, ε), (c, s4)→ (c, s5m0),
(c, s1)→ (c, ε), (c,main2)→ (c,main1s0), (c,main1)→ (c, ε)}
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2.2 Linear Temporal Logic Formulas

Linear temporal logic (LTL) formulas [12, 13, 21] are evaluated over infinite se-
quences of symbols. The standard logic operators are available; if f and g are
formulas, then so are ¬f , f ∧g, f ∨g, f → g. The following additional operators
are available: X f : f is true in the next state; F f : f is true in some future
state; G f : f is true globally, i.e. in all future states; g U f : g is true in all future
states until f is true in some future state.

A LTL formula can be translated to a Büchi automaton, a finite state automa-
ton over infinite words. The automaton accepts a word if on reading it a good
state is entered infinitely many times. Formally, a Büchi automaton (BA) is a tu-
ple (CB , LB, TB, C0B, GB) where CB is a set of states, LB is a set of transition la-
bels, TB is a set of transitions,C0B ⊆ CB is a set of starting states, andGB ⊆ CB

is a set of good states. A transition is of the form (c, l, c′), where c, c′ ∈ CB and
l ∈ LB. The label of a transition is a condition that must be met by the current
symbol in the word being read, in order for the transition to be possible. A label
denotes an unconditional transition. An accepting run of a Büchi automaton is an
infinite sequence of transitions (c0, l0, c1), (c1, l1, c2), . . . , (cn−1, ln−1, cn), where
a state ci ∈ GB appears infinitely many times.

To specify a program property using an LTL formula, the program’s CFG
edges are used as atomic propositions. LTL formulas are defined with respect
to infinite runs of the program. The corresponding BA accepts an infinite se-
quence of CFG edges, if on reading it, the automaton enters a good state in-
finitely many times. For example, the property that plotting up is never im-
mediately followed by plotting down is expressed by the LTL formula F =
G(plot up → X(¬plot down)). The BA1 corresponding to ¬F is shown in Fig-
ure 2. In the diagram nodes correspond to states and edges correspond to tran-
sitions of the BA; double circles mark good states and a square marks the start
state.

c1 c2 c3 c4

c5

_

_

_

_

plot_up plot_down

plot_up

Fig. 2. Büchi automaton corresponding to ¬G(plot up → X(¬plot down))

2.3 LTL Model Checking of PDS

Given a system expressed as a PDS P , and a LTL formula F , the formula F
holds for P if it holds for every run of P . We check whether F holds for P as
follows [15]. First, we construct B — the BA corresponding to ¬F . Second, we

1 The Büchi automaton was generated with the tool LBT that translates LTL formulas
to Büchi automata (http://www.tcs.hut.fi/Software/maria/tools/lbt/).
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construct BP — a Büchi PDS that is the product of P and B, and make sure BP
has no accepting run. A Büchi PDS (BPDS) is a tuple (C, S, T, C0, G), where C
is a set of control locations, S is a set of stack symbols, T is a set of transitions,
C0 ⊆ C is the set of starting control locations, G ⊆ C is the set of good control
locations. Transitions are of the form ((C ∗ S) ∗ (C ∗ S∗)). The concepts config-
uration, predecessor, and run of a BPDS are analogous to those of a PDS. An
accepting run of the BPDS is an infinite sequence of configurations in which con-
figurations with control locations in G appear infinitely many times. The product
BPDS BP of P = (CP , SP , TP ) and B = (CB , LB, TB, C0B, GB) is the five-tuple
((CP ∗CB), SBP , TBP , C0BP , GBP ), where (((cP , cB), s), ((c′P , c

′
B), w)) ∈ TBP if

(cP , s) → (c′P , w)∈ TP , and there exists f such that (cB, f, c′B)∈ TB, and f is
true at configuration ((cP , cB), s); (cP , cB) ∈C0BP if cB ∈ C0B; (cP , cB) ∈GBP

if cB ∈ GB.
Next we construct a reach graph — a finite graph that abstracts BP . The

nodes of the graph are configurations of BP . An edge ((c, s), (c′, s′)) in the
reach graph corresponds to a run that takes BP from configuration (c, s) to
configuration (c′, s′). If a good control location in BP is visited in the run cor-
responding to an edge, the edge is said to be good. A path in the reach graph
is a sequence of edges. Cycles in the reach graph correspond to infinite runs of
BP . Paths containing cycles with good edges in them correspond to accepting
runs of BP and are said to be good. If the reach graph corresponding to BP
has no good paths, BP has no accepting runs and F holds for P . Otherwise,
the good paths in the reach graph are counterexamples showing that F does not
hold for P .

3 Specifying the Reach Graph in Rules and Detecting
Good Paths

This section expresses the reach graph using Datalog rules and employs an al-
gorithm for detecting good paths in the reach graph as presented in [5].

A Datalog program is a finite set of relational rules of the form

p1(x11, ..., x1a1) ∧ ... ∧ ph(xh1, ..., xhah
)→ q(x1, ..., xa)

where h is a natural number, each pi (respectively q) is a relation of ai (re-
spectively a) arguments, each xij and xk is either a constant or a variable, and
variables in xk’s must be a subset of the variables in xij ’s. If h = 0, then there
are no pi’s or xij ’s, and xk’s must be constants, in which case q(x1, ..., xa) is
called a fact. The meaning of a set of rules and a set of facts is the smallest set
of facts that contains all the given facts and all the facts that can be inferred,
directly or indirectly, using the rules.

Expressing the Büchi PDS. The BPDS is expressed by the relations loc,
trans0, trans1, and trans2. The loc relation represents the control locations
of the BPDS; its arguments are a control location and a boolean argument
indicating whether the control location is good. One instance of the relation
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exists for each control location. The three relations trans0, trans1, and trans2
express transitions. The facts trans0(c1,s1,c2), trans1(c1,s1,c2,s2), and
trans2(c1,s1,c2,s2,s3), where ci’s are control locations and si’s are stack
symbols, denote transitions of the form of the form ((c, s), (c, w)) such that,
w ∈ S∗

BP and |w| = 0, |w| = 1, and |w| = 2, respectively. or is a relation with
three boolean arguments; in the fact or(x1,x2,r), the argument r is the value
of the logical or of the arguments x1 and x2.

Expressing the edges of the reach graph. The reach graph is expressed by
relations erase and edge. The fact erase(c1,s1,g,c2) denotes a run of BP
from configuration (c1, s1) to configuration (c2, ε). The third element in the tuple
is a boolean value that indicates whether the corresponding run goes through
a good control location. The edge relation represents the reach graph edges.
edge(c1,s1,g,c2,s2) denotes an edge between nodes (c1, s1) and (c2, s2);
g is a boolean argument indicating whether the edge is good. For a BPDS
(CBP , SBP , TBP , C0BP , GBP ), erase and edge are the relation satisfying:

i. (c1, s, g, c2) ∈erase if (c1, s)→ (c2, ε) ∈ TBP , and g = true if c1 ∈ GBP and
false otherwise

ii. (c1, s1, g1∨ g2, c3) ∈erase if (c1, s1)→ (c2, s2) ∈ TBP , and (c2, s2, g2, c3) ∈
erase, and g1 = true if c1 ∈ GBP and false otherwise

iii. (c1, s1, g1∨g2∨g3, c4) ∈erase if (c1, s1)→ (c3, s2s3) ∈ TBP , (c2, s2, g2, c3)
∈erase, and (c3, s3, g3, c4) ∈erase, and g1 = true if c1 ∈ GBP and false
otherwise

and

i. (c1, s1, g, c2, s2) ∈edge if (c1, s1) → (c2, s2) ∈ TBP , and g = true if c1 ∈
GBP and false otherwise

ii. (c1, s1, g, c2, s2) ∈edge if (c1, s1)→ (c2, s2s3) ∈ TBP , g = true if c1 ∈ GBP

and false otherwise
iii. (c1, s1, g1∨g2, c3, s3) ∈edge if (c1, s1)→ (c2, s2s3) ∈ TBP , (c2, s2, g2, c3) ∈

erase, and g = true if c1 ∈ GBP and false otherwise

In model checking of programs, the relation erase summarizes the effects of
procedures. The three parts of the above definition correspond to the program
execution exiting, proceeding within, or entering a procedure.

The definitions of the erase and edge relations can be readily written as
rules. These rules are shown in Figure 3.

Detecting good paths. Checking that the BPDS accepts the empty lan-
guage amounts to checking that the resulting reach graph has no good paths.
To find good paths in the reach graph we use the algorithm presented in
[5,-Figure 4]but ignore consideration of resource labels by the algorithm. The
algorithm uses depth first search and is linear in the number of edges in the
reach graph.
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trans0(c1,s1,c2)∧loc(c1,g)→erase(c1,s1,g,c2)
trans1(c1,s1,c2,s2)∧erase(c2,s2,g2,c3)∧loc(c1,g1)∧or(g1,g2,g)

→erase(c1,s1,g,c3)
trans2(c1,s1,c2,s2,s3)∧erase(c2,s2,g2,c3)∧erase(c3,s3,g3,c4)∧

loc(c1,g1)∧or(g1,g2,g4)∧or(g4,g3,g)→erase(c1,s1,g,c4)
trans1(c1,s1,c2,s2)∧loc(c1,g)→edge(c1,s1,g,c2,s2)
trans2(c1,s1,c2,s2,s3)∧loc(c1,g)→edge(c1,s1,g,c2,s2)
trans2(c1,s1,c2,s2,s3)∧erase(c2,s2,g2,c3)∧loc(c1,g1)∧or(g1,g2,g)

→edge(c1,s1,g,c3,s3)

Fig. 3. Rules corresponding to the erase relation used to construct the reach graph,
and the edge relation of the reach graph

4 Efficient Algorithm for Computing the Reach Graph

This section describes the generation of a specialized algorithm and datastruc-
tures for computing the reach graph from the rules shown in the previous section,
as well as analyzing precisely the time complexity for computing the reach graph
and expressing the complexity in terms of characterizations of the facts—the pa-
rameters characterizing the BPDS.

4.1 Generation of Efficient Algorithms and Data Structures

Transforming the set of rules into an efficient implementation uses the method in
[18]. We first transform each rule with more than two hypotheses into multiple
rules with two hypotheses each and then carry out three key steps. Step 1 trans-
forms the least fixed point (LFP) specification of the rule set to a while-loop.
Step 2 transforms expensive set operations in the loop into incremental opera-
tions. Step 3 designs appropriate data structures for each set, so that operations
on it can be implemented efficiently. These three steps correspond to dominated
convergence [10], finite differencing [20], and real-time simulation [19], respec-
tively, as studied by Paige et al.

Auxiliary relations. For each rule with more than two hypotheses, we trans-
form it to multiple rules with two hypotheses each. The transformation intro-
duces auxiliary relations with necessary arguments to combine two hypothe-
ses at a time. We repeatedly apply the following transformations to each rule
with more than two hypotheses until only rules with at most two hypotheses
are left. We replace any two hypotheses of the rule, say Pi(Xi1, ..., Xiai) and
Pj(Xj1, ..., Xjaj ) by a new hypothesis, Q(X1, ..., Xa), where Q is a fresh rela-
tion, and Xk’s are variables in the arguments of Pi or Pj that occur also in
the arguments of other hypotheses or the conclusion of this rule. We add a new
rule:

Pi(Xi1, ..., Xiai) ∧ Pj(Xj1, ..., Xjaj )→ Q(X1, ..., Xa).

The resulting rule set for constructing the reach graph is shown in Figure 4.
Several auxiliary relations have been introduced. The relations gtrans1 and
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gtrans2 represent transitions like trans1 and trans2 respectively, but an ex-
tra argument indicates whether the transitions start at a good control location.
The relations gtrans1e and gtrans2e, represent runs of the BPDS starting
with a transition trans1 and trans2 respectively, followed by a run repre-
sented as a fact of the erase relation. The facts gtrans1e(c1,s1,c2,g1,g2)
and gtrans2e(c1,s1,s2,c2,g1,g2) represent runs from configuration (c1, s1)
to configurations (c2, ε) and (c2, s2) respectively, where g1 and g2 indicate, re-
spectively, whether the first control location in the run is good and whether
the rest of the run visits a good control location. The relation gtrans2ee rep-
resents runs consisting of one transition and two runs expressed as facts of the
erase relation. The fact gtrans2ee(c1,s1,c2,g1,g2,g3) stands for a run from
configuration (c1, s1) to configuration (c2, ε); the arguments g1, g2, and g3 are
booleans indicating respectively, whether the first control location in the run
is good, and whether the remaining two parts of the run visit a good control
location. The relations gtrans1ee or and gtrans2ee or represents runs like
gtrans1ee and gtrans2ee, except with two boolean arguments combined using
logical or.

1. loc(c1,g)∧trans0(c1,s1,c2)→erase(c1,s1,g,c2)
2. loc(c1,g1)∧trans1(c1,s1,c2,s2)→gtrans1(c1,g1,s1,c2,s2)
3. gtrans1(c1,g1,s1,c2,s2)∧erase(c2,s2,g2,c3)→gtrans1e(c1,s1,c3,g1,g2)
4. gtrans1e(c1,s1,c3,g1,g2)∧or(g1,g2,g)→erase(c1,s1,g,c3)
5. loc(c1,g1)∧trans2(c1,s1,c2,s2,s3)→gtrans2(c1,g1,s1,c2,s2,s3)
6. gtrans2(c1,g1,s1,c2,s2,s3)∧erase(c2,s2,g2,c3)

→gtrans2e(c1,s1,s2,c3,g1,g2)
7. gtrans2e(c1,s1,s2,c3,g1,g2)∧erase(c3,s2,g3,c4)

→gtrans2ee(c1,s1,c4,g1,g2,g3)
8. gtrans2ee(c1,s1,c4,g1,g2,g3)∧or(g1,g2,g4)

→gtrans2ee or(c1,s1,c4,g3,g4)
9. gtrans2ee or(c1,s1,c4,g3,g4)∧or(g4,g3,g)→ erase(c1,s1,g,c4)
10. gtrans1(c1,g,s1,c2,s2)→ edge(c1,s1,g,c2,s2)
11. gtrans2(c1,g,s1,c2,s2,s3)→ edge(c1,s1,g,c2,s2)
12. gtrans2e(c1,s1,s2,c2,g1,g2)∧or(g1,g2,g)→edge(c1,s1,g,c2,s2)

Fig. 4. The reach graph expressed in rules with at most two hypotheses

Fixed-point specification and while-loop. We represent a relation the form
Q(a1, a2, ... , an) using tuples of the form [Q,a1,a2,...,an]. We use S
with X and S less X to mean S ∪ {X} and S − {X}, respectively. We use
the notation {X : Y1 in S1, . . . , Yn in Sn|Z} for set comprehension. Each Yi

enumerates elements of Si; for each combination of Y1, . . . , Yn if the value of
boolean expression Z is true, then the value of expression X forms an element
of the resulting set. If Z is omitted, it is implicitly the constant true.

LFP(S0, F ) denotes the minimum element S, with respect to the subset or-
dering ⊆, that satisfies the condition S0 ⊆ S and F (S) = S. We use standard
control constructs while, for, if, and case, and we use indentation to indicate
scope. We abbreviate X := XopY as Xop:= Y .



198 K. Hristova and Y.A. Liu

We use set bpds for the set of facts representing the BPDS.

rbpds = {[loc,c1,g] : loc(c1,g) in bpds} ∪
{[trans0,c1,s1,c2] : trans0(c1,s1,c2) in bpds} ∪
{[trans1,c1,s1,c2,s2] : trans1(c1,s1,c2,s2) in bpds} ∪
{[trans2,c1,s1,c2,s2,s3] : trans0(c1,s1,c2,s2,s3) in bpds },

Given any set of facts R, and a rule with rule number n and with relation e
in the conclusion, let ne(R), referred to as result set, be the set of all facts that
can be inferred by rule n given the facts in R. For example,

2gtrans1 = {[gtrans c1 s1 g c2 s2] : [loc c1 g] in R and
[trans1 c1 g s1 c2 s2] in R},

10edge = {[edge c1 s1 g c2 s2] : [gtrans1 c1 g s1 c2 s2] in R}.

The meaning of the give facts and the rules used to compute the reach graph
is:

LFP({},F), where F(R) = rbpds ∪ 1erase(R) ∪ 2gtrans1(R) ∪
3gtrans1e(R) ∪ 4erase(R) ∪ 5gtrans2(R) ∪ 6gtrans2e(R) ∪
7gtrans2ee(R) ∪ 8gtrans2ee or(R) ∪ 9erase(R) ∪
10edge(R) ∪ 11edge(R) ∪ 12edge(R).

This least-fixed point specification of computing the reach graph is trans-
formed into the following while-loop:

R := {}; while exists x in F(R) - R
R with := x;

(1)

The idea behind this transformation is to perform small update operations in
each iteration of the while-loop.

Incremental computation. Next we transform expensive set operations in the
loop into incremental operations. The idea is to replace each expensive expression
exp in the loop with a variable, say E, and maintain the invariant E = exp, by
inserting appropriate initializations and updates to E where variables in exp are
initialized and updated, respectively.

The expensive expressions in constructing the reach graph are all result sets,
such as 2grtrans1(R), and F(R)-R. We use fresh variables to hold each of their
respective values and maintain the following invariants:

Ibpds = rbpds, I1erase = 1erase(R),
I2gtrans1 = 2gtrans1(R), I3gtrans1e = 3gtrans1e(R),
I4erase = 4erase(R), I5gtrans2 = 5gtrans2(R),
I6gtrans2e = 6gtrans2e(R), I7gtrans2ee = 7gtrans2ee(R),
I8gtrans2ee or = 8gtrans2ee or(R), I9erase = 9erase(R),
I10edge = 10edge(R), I11edge = 11edge(R), I12edge = 12edge(R),
W = F(R) - R.

W serves as the workset. As an example of incremental maintenance of the
value of an expensive expression, consider maintaining the invariant I2gtrans1.
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I2gtrans1 is the value of the set formed by joining elements from the set
of facts of the loc and trans1 relations. I2gtrans1 can be initialized to {}
with the initialization R = {}. To update Igtrans1 incrementally with update
R with:= x, if x is of the form [loc,c1,g] we consider all matching tuples of
the form [trans1,c1,s1,c2,s2] and add the tuple [gtrans1,c1,g,s1,c2,s2]
to I2gtrans1. To form the tuples to add, we need to efficiently find the appro-
priate values of variables that occur in [trans1,c1,s1,c1,s2] tuples, but not
in [loc,c1,g], i.e. the values of s1,c2, and s2, so we maintain an auxiliary
map that maps [c1] to [s1,c2,s2] in the variable I2gtrans1 trans1 shown
below. Symmetrically, if x is a tuple of [trans1,c1,s1,c2,s2], we need to con-
sider every matching tuple of [loc,c1,g] and add the corresponding tuple of
[gtrans1,c1,g,s1,c2,s2] to I2gtrans1 loc. The first set of elements in aux-
iliar maps is referred to as the anchor and the second set of elements as the
nonanchor.

I2gtrans1 trans1 = {[[c1], [s1,c2,s2]] :
[trans1,c1,s1,c2,s2] in R},

I2gtrans1 loc = {[[c1], [g]] : [loc,c1,g] in R}.

Thus, we are able to directly find only matching tuples and consider only com-
binations of facts that make both hypotheses true simultaneously, as well as
consider each combination only once. Similarly, such auxiliary maps are main-
tained for all invariants that we maintain.

All variables holding the values of expensive computations listed above and
auxiliary maps are initialized together with the assignment R := {} and updated
incrementally together with the assignment R with:= x in each iteration. When
R is {}, Ibpds = rbpds, all auxiliary maps are initialized to {}, and W = Ibpds.
When a fact is added to R in the loop body, the variables are updated. We show
the update for the addition of a fact of relation trans1 only for I2gtrans1
invariant and I2gtrans1 loc auxiliary map , since other facts and updates to
the variables and auxiliary maps are processed in the same way. The notation
E{Ys}, where E = {[Ys,Xs]} is an auxiliary map, is used to access all matching
tuples of E and return all matching values of Xs.

case of x of [loc,c1,g]:
I2gtrans1 +:= {[gtrans1,c1,g,s1,c2,s2]:

[s1,c2,s2] in I2gtrans1 trans1{c1}};
W +:= {[gtrans1,c1,g,s1,c2,s2]: [s1,c2,s2] in I2gtrans1 trans1{c1}

|[gtrans1,c1,g,s1,c2,s2] notin R};
I2gtrans1 loc with:= {[[c1], [g]] : [loc,c1,g] in R};

(2)
Using the above initializations and updates, and replacing all invariant main-

tenance expressions with W, we obtain the following complete code:

initialization; R:={};
while exits x in W:

update; W less:= x; R with:= x;
(3)
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We next eliminate dead code and clean up the code to contain only uniform
operations and set elements for data structure design. We then decompose R
and W into several sets, each corresponding to a single relation that occurs in the
rules. R is decomposed to Rtrans0, Rtrans1, Rtrans2, Rloc, Rerase, Rgtrans1,
Rgtrans1e, Rgtrans2, Rgtrans2e, Rgtrans2ee, Rgtrans2ee or, and Redge. W
is decomposed in the same way. We eliminate relation names from the first
component of tuples and transform the while-clause and case-clause appropri-
ately. Then, we do the following three sets of transformations. We transform
operations on sets into loops that use operations on set elements. Each ad-
dition of a set is transformed to a for-loop that adds the elements one at a
time. For example, I2gtrans1 +:= {[gtrans1,c1,g,s1,c2,s2]: [s1,c2,s2]
in I2gtras1 trans1{c1}} is transformed into:

for [s1,c2,s2] in I2gtras1 trans1{c1}:
I2gtrans1 +:= [c1,g,s1,c2,s2];

We replace tuples and tuple operations with maps and map operations. We
make all element addition and deletion easy by testing membership first.

Data structures. After the above transformations each firing of a rule takes
a constant number of set operations. Since each of these set operations takes
worst case constant time in the generated code, achieved as described below,
each firing of a rule takes worst case constant time. Next we describe how to
guarantee that each set operation takes worst-case constant time. The operations
are of the following kinds: set initialization S := {}, computing image set M(X),
element retrieval for X in S and while exists X in S, membership test X
in S, X notin S, and element addition S with X and deletion S less X . We
use associative access to refer to membership test and computing image set.

A uniform method is used to represent all sets and maps, using arrays for sets
that have associative access, linked lists for sets that are traversed by loops and
both arrays and linked lists when both operations are needed.

The result sets, such as Rtrans0, are represented by nested array structures.
Each of the result sets of, say, a components is represented using an a-level nested
array structure. The first level is an array indexed by values in the domain of
the first component of the result set; the k-th element of the array is null if there
is no tuple of the result set whose first component has value k, and otherwise is
true if a=1, and otherwise is recursively an (a-1)-level nested array structure
for remaining components of tuples of result sets whose first component has
value k.

The worksets, such as Wtrans0, are represented by arrays and linked lists.
Each workset is represented the same as the corresponding resultset with two
additions. First, for each array we add a linked list linking indices of non-null ele-
ments of the array. Second, to each linked list we add a tail pointer. One or more
records are used to put each array, linked list, and tail pointer together. Each
workset is represented simply as a nested queue structure (without the underly-
ing arrays), one level for each workset, linking the elements (which correspond
to indices of the arrays) directly.
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Auxiliary maps, such as I2gtrans1 trans1 and I2gtrans1 loc, are imple-
mented as follows. Each auxiliary map, say E for a relation that appears in a
rule’s conclusion uses a nested array structure as resultsets and worksets do and
additionally linked lists for each component of the non-anchor as worksets do. E
uses a nested array structure only for the anchor, where elements of the arrays
of the last component of the anchor are each a nested linked-list structure for
the non-anchor.

4.2 Complexity Analysis of the Model Checking Problem

We analyze the time complexity of the model checking problem by carefully
bounding the number of facts actually used by the rules. For each rule we de-
termine precisely the number of facts processed by it, avoiding approximations
that use the sizes of individual argument domains.

Calculating time complexity. We first define the size parameters used to
characterize relations and analyze complexity. For a realtion r we refer to the
number of facts of r that are given or can be inferred as r’s size. The pa-
rameters #trans0, #trans1 and #trans2 denote the number of transitions of
the form ((c1, s1), (c2, ε)), ((c1, s1), (c2, s2)), and ((c1, s1), (c2, s2s3)), respec-
tively; #trans denotes the total number of transitions. The parameters #gtrans1
and #gtrans2 denote the number of facts of relations gtrans1 and gtrans2,
where #gtrans1=#trans1 and #gtrans2=#trans2. Parameters #gtrans1e and
#gtrans2e denote the relation sizes — #trans1 ∗ #target loc trans0, and
#trans2 ∗ #target loc trans0, respectively, and #gtrans2ee denotes the cor-
responding relation size equal to #trans2 ∗ #target loc trans02. The para-
meter #erase denotes the number of facts in the erase relation; #erase.4/123
denotes the number of different values the forth argument of erase can take
for each combination of values of the first three arguments. In the worst case,
this is the number of control locations c2 such that a transition of the form
((c1, s1), (c2, ε)) exists in the automaton. We use #target loc trans0 to de-
note this number.

The time complexity for the set of rules is the total number of combinations
of hypotheses considered in evaluating the rules. For each rule r, r.#firedTimes
stands for the number the number of firings for the rule is a count of: (i) for rules
with one hypothesis: the number of facts which make the hypothesis true; (ii)
for rules with two hypotheses: the number of combinations of facts which make
the two hypotheses simultaneously true. The total time complexity is time for
reading the input, i.e. O(#trans + #loc), plus the time for applying each rule,
shown in the second column in the table of Figure 5.

Time complexity of model checking PDS. Time complexity for processing
each of the rules and computing the erase and edge relations is shown in the
second table of Figure 5. After the reach graph has been computed, good cycles
in the reach graph can be detected in time linear in the size of the reach graph,
i.e. O(#edge). Thus, the asymptotic complexity of the model checking problem
is dominated by the time complexity of computing the erase relation.
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rule no time complexity time complexity bound
1 min(#trans0*1,#loc*#trans0.23/1) #trans0
2 min(#loc*#trans1.234/1,#trans1*1) #trans1
3 min(#gtrans1*#erase.4/123, #trans1*#target loc trans0

#erase*#gtrans1.12/34)
4 min(#gtrans1e*1, 1*#gtrans1e) #trans1*#target loc trans0
5 min(#loc*#trans2.2345/1,#trans2*1) #trans2
6 min(#gtrans2*#erase.4/123, #trans2*#target loc trans0

#erase*#gtrans2.12/345)
7 min(#gtrans2e*#erase.4/123, #trans2*#target loc trans02

#erase*#gtrans2e.12/345)
8 min(#gtrans2ee*1,1*#gtrans2ee) #trans2*#target loc trans02

9 min(#gtrans2ee or*1,1*#gtrans2ee or) #trans2*#target loc trans02

10 min(#gtrans2ee or*1,1*#gtrans2ee or) #trans2*#target loc trans02

11 #gtrans1 #trans1
12 #gtrans2 #trans2
13 min(#gtrans2e*1,1*#gtrans2e) #trans2*#target loc trans0

relation time complexity
erase O(#trans0 + #trans1*#target loc trans0 +

#trans2*#target loc trans02)

edge O(#trans1 + #trans2*#target loc trans0)

Fig. 5. Time complexity of computing the reach graph

For a BPDS, product of P = {CP , SP , TP} where |CP | = 1, and B =
{CB, LB, TB, C0B, GB}, #target loc trans0≤|CB|, and #trans2≤|TP | ∗ |TB|.
For such a PDS, O(|TP | ∗ |TB| ∗ |CB |2) is the worst case time complexity of
computing the erase relation and O(|TP | ∗ |TB| ∗ |CB|) is the worst case time
complexity for computing the edge relation. Since only |TP | is dependent on
the size of P, time complexity is linear in the size of the P and cubic in the size
of B.

4.3 Performance

We tested the performance of our reach graph construction algorithm on two
sets of BPDS consisting of BPDS with increasing #trans. BPDS in one set also
had increasing #target loc trans0, while BPDS in the second set had con-
stant #target loc trans0. The time complexity for computing reach graphs
for BPDS in the first set is as shown in Figure 5. However, for automata in the
second set time complexity should be linear — O(#trans). If the PDS corre-
sponds to a program, #target loc trans0 is proportional to the total number
of return points of procedures in the program. Thus, our test data corresponds
to checking if a property holds on programs with an increasing number of state-
ments and procedure calls, and programs with an number of statements, but
constant number of procedures.
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Fig. 6. Results for computing the reach graph for the BPDS

Results of the experiment are shown in Figure 6 and confirm our analysis.
We used generated python code in which each operation on set elements is
guaranteed to be constant time on average using default hashing in python.
Running times are measured in seconds on a 500MHz Sun Blade 100 with 256
Megabytes of RAM, running SunOS 5.8. Running times are the average over ten
runs.

5 Discussion

The problem of LTL model checking of PDS has been extensively researched, es-
pecially model checking PDS induced by CFGs of programs. The model checking
problem for context-free and pushdown processes is explored in [8]. The design
and implementation of Bebop: a symbolic model checker for boolean programs,
is presented in [4]. Burkart and Steffen [9] present a model checking algorithm
for modal mu-calculus formulas. For a PDS with one control state, a modal-mu
calculus formula of alternation depth k can be checked in time O(nk), where
n is the size of the PDS. The works [17, 16, 15, 7] describe efficient algorithms
for model checking PDSs. Alur et al. [3] and Benedikt et al. [6] show that state
machines can be used to model control flow of sequential programs. Both works
describe algorithms for model checking PDS that have time complexity cubic in
size of the BA and linear in size of the PDS; these works combine forward and
backward reachability and obtain complexity estimations by exploiting this mix-
ture. Esparza et al. [15] estimate time complexity of solving the model checking
problem to be O(n*m3) for model checking PDS with one state only, where n is
the size of the PDS and m is the size of the property BA [15]. While this is also
linear in the size of the PDS, our time complexity analysis is more precise and
automatic.

The algorithm derived in this work is essentially the same as the one in [15].
What distinguishes our work is that we use a novel implementation strategy
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for the model checking problem that combines an intuitive definition of the
model checking problem in rules [5] and a systematic method for deriving ef-
ficient algorithms and data structures from the rules [18], and arrives at an
improved complexity analysis. The time complexity is calculated directly from
the Datalog rules, based on a thorough understanding of the algorithms and
data structures generated, reflecting the complexities of implementation back
into the rules.

An implementation of the model checking problem in logical rules is presented
in [5]. The rules are evaluated using the XSB system [23]. Thus, the efficiency
of the computation is highly dependent on the order of hypotheses in the given
rules. Our implementation is drastically different, as it finds the best order of
hypotheses in the rules automatically. We do not employ an evaluation strategy
for Datalog, but generate a specialized algorithm and implementation directly
from the rules.

In this paper, we presented an efficient algorithm for LTL model checking
of PDS. We showed the effectiveness of our approach by using a precise time
complexity analysis, along with experiments. These results show that our model
checking algorithm can help accommodate larger PDS and properties. Our work
is potentially a contribution not only to the model checking problem, since the
idea behind the erase relation and the reach graph is more universal than model
checking PDS. Variants of the erase relation are used in data flow analysis
techniques, as described in [22] and related work. Applications of model checking
in dataflow analysis are presented in [25, 24]. It is a topic of future research to
apply our method to dataflow analysis problems.

Acknowledgment. Thanks to Tom Rothamel for helping debug performance
problems in the implementation.
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Abstract. An important and ubiquitous class of programs are heap-manipulating
programs (HMP), which manipulate unbounded linked data structures by follow-
ing pointers and updating links. Predicate abstraction has proved to be an invalu-
able technique in the field of software model checking; this technique relies on an
efficient decision procedure for the underlying logic. The expression and proof
of many interesting HMP safety properties require transitive closure predicates;
such predicates express that some node can be reached from another node by fol-
lowing a sequence of (zero or more) links in the data structure. Unfortunately,
adding support for transitive closure often yields undecidability, so one must be
careful in defining such a logic. Our primary contributions are the definition of
a simple transitive closure logic for use in predicate abstraction of HMPs, and
a decision procedure for this logic. Through several experimental examples, we
demonstrate that our logic is expressive enough to prove interesting properties
with predicate abstraction, and that our decision procedure provides us with both
a time and space advantage over previous approaches.

1 Introduction

In recent years software model checking has emerged as a vibrant area of formal verifi-
cation research. Much of the success of applying model checking to software has come
from the use of predicate abstraction on the program source [16, 14, 3, 18]. In predicate
abstraction, sets of states of the program and program transitions are over-approximated
using a finite set of predicates over the program variables. These predicates (or boolean
combinations thereof) typically express features of the program under verification such
as its conditionals and relevant propositions about its variables. An integral ingredient in
predicate abstraction is a decision procedure for the logic of the predicates. Since most
approaches involve many queries to this decision procedure, performance is paramount.

An important class of programs are those we call heap-manipulating programs
(HMPs), which are programs that access and modify linked data structures consisting
of an unbounded number of uniform heap nodes. HMPs access the heap nodes through
a finite number of pointers (that we call node variables) and following pointer fields
between nodes. To apply predicate abstraction to HMPs and assert many interesting
correctness properties, one must be able to express the concept of unbounded reacha-
bility (a.k.a. transitive closure) between nodes. This is done through a binary operator
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that takes two node terms x and y, and asserts that the second can be reached from
the first by following zero or more links; in our syntax this is written as f ∗(x,y) ( f is
the name of the link function). For example, f ∗( f (x),x) expresses that x is a node in a
circular linked list.

Several papers have previously identified the importance of transitive closure for
HMPs [30, 31, 5, 19, 2, 23]. Unfortunately, adding support for transitive closure to even
relatively tame logics often yields undecidability [19]. Our first contribution is a frag-
ment of the decidable logics that we show (through several nontrivial experiments) is
still expressive enough to verify properties of interest for HMPs using predicate ab-
straction. Decidability of our logic follows from a small model theorem, akin to that of
Benedikt et al. [5] and Balaban et al. [2], which states that if a set of predicates is satis-
fiable, then it is satisfiable by a heap structure with some bounded number of nodes. A
naive decision procedure can thus enumerate all the (super-factorial but finite) number
of structures of size up to this bound. We do not formally state or prove a small model
theorem in this paper, rather, our second and most important contribution is an efficient
decision procedure for our logic. We show that this procedure, though a worst case ex-
ponential time algorithm, solves the vast majority of queries sent to it during predicate
abstraction very quickly. The result is an approach that can have large time and memory
savings over decision procedures that enumerate all models, even when BDDs are used
for this enumeration, as done by Balaban et al. [2].

The paper is organized as follows. Sect. 2 summarizes other work on verification of
HMPs. Predicate abstraction and our verification framework (based on previous work),
is outlined in Sect. 3. HMPs are introduced in Sect. 4. Sects. 5 and 6 respectively define
our transitive closure logic and the decision procedure. We present experimental results
in Sect. 7. Sect. 8 draws conclusions and discusses several important extensions to our
logic and decision procedure that we believe are possible, but have been left as future
work. Please note that our technical report [6] provides proofs of the theorems, addi-
tional details regarding the decision procedure, pseudocode for the example programs,
and the sets of predicates needed for their verification.

2 Related Work

Balaban et al. [2] present an approach for shape analysis based on predicate abstraction
that is similar to ours. The logic they use for describing properties of heap structures
has slightly richer expressiveness than the logic we define in this paper.1 The major dif-
ference between the two approaches is the way a program abstraction is computed. To
compute the abstraction, they employ a small model theorem, and build BDDs repre-
senting all models up to the small model size. This is a bottleneck in both computation
time and memory, since these BDDs tend to blow-up. The technique of Kesten and
Pnueli [21] for establishing termination employed by Balaban et al. is likely compatible
with our work also.

McPeak and Necula [28] specify heap data structures using local equality axioms,
which constrain only a bounded fragment of the heap around some node. This enables
them to describe a variety of shapes and reason about scalar values without abstracting

1 Whereas our logic is unquantified, they allow restricted universal quantification.
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them, while still preserving decidability. However, they can only approximate reacha-
bility between nodes (though unreachability is precise). When pointer disequalities are
added, their decision procedure becomes incomplete. We handle both reachability and
disequalities, but we can’t describe such a variety of shapes. In addition, we compute an
inductive invariant of a program automatically (given an appropriate set of predicates),
while they require a user to provide loop invariants, which can be a significant burden.

The Pointer Assertion Logic Engine (PALE) [29] specifies heap structures using
graph types [22], which are tree-shaped data structures augmented with extra pointers.
The authors show that many common heap structures can be defined that way, some
of which we cannot express. PALE relies on a decision procedure with non-elementary
complexity, so, there are programs that cannot be verified in practice. Furthermore, loop
invariants must be provided by the user.

The Three Valued Logic Analyzer (TVLA) [32, 25] extends conventional abstract
interpretation with a third “uncertain” logic value, and builds so-called 3-valued log-
ical structures that abstract the reachable states at each program point (a.k.a. canoni-
cal abstraction). The abstract semantics of program statements are defined by abstract
transformers, which can be generated by TVLA or user-defined if necessary. We cannot
handle all heap structures that TVLA can, however, the abstract invariant we compute
is always the most precise w.r.t. the given set of predicates. TVLA does not make such a
guarantee, although some work has been done to make TLVA more precise [33]. TVLA
is also employed by Manevich et al. [27], who observe that the number of shared nodes
in linked lists is bounded and present a novel definition of “uninterrupted list segments”.
This is used to define predicate and canonical abstractions of potentially circular singly
linked lists, and enables them to verify some HMPs that we are not able to verify, though
their properties tend to be simpler than ours (see Sect. 7).

Lahiri and Qadeer [23] define two new predicates to express reachability of heap
nodes in linked lists. To prove properties of HMPs, they use first-order axioms over
those predicates. The given set of axioms is incomplete, and they provide an induction
principle that is used to derive additional axioms when necessary. Because of the purely
first-order axiomatization, they are able to harness the power of available automated
theorem provers; they use UCLID [8] as the underlying inference engine.

Dams and Namjoshi [11] propose an approach based on predicate abstraction and
model checking. They abstract a program by iteratively calculating weakest precondi-
tions of shape predicates, and are able to handle second-order shape properties such
as reachability, cyclicity, and sharing. The algorithm doesn’t use a decision procedure,
and as a consequence, new predicates can be generated in every iteration. Hence, the
algorithm often has to be manually provided with “approximation hints” to converge.

3 Verification Approach

3.1 Predicate Abstraction

Our approach to verifying heap programs is based on predicate abstraction [16], which
is an instance of abstract interpretation [10]. In the framework of abstract interpretation,
a concrete system (in our case an HMP) is verified by constructing a finite-state over-
approximation of the concrete system called the abstract system. Let C (the concrete
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states) be the set of states of the concrete system. Predicate abstraction employs a finite
set of predicates φ1, . . . ,φk in some logic that are assertions about concrete states. Cor-
responding to the predicates respectively are the abstract boolean variables b1, . . . ,bk.
The set of abstract states A will be the set of assignments to the abstract boolean vari-
ables. The abstraction function α : C →A is defined such that α(c)(bi) = true if and
only if c � φi. A set of concrete states C is then abstracted by

α(C) = {α(c) | c ∈C}

Note that since A is finite, α(C) is always finite as well. In contrast, C is often infinite;
in our case the infinitude of concrete states arises from the unboundedness of the heap
in HMPs.

Let R ⊆ C be the set of concrete states that are reachable in the concrete system.
We wish to verify that a property expressed as a state assertion ψ over the concrete
states holds for all members of R, i.e. that the implication R → ψ holds. Predicate
abstraction is used to solve this problem by computing a set Rα ⊆A such that α(R)⊆
Rα . Verification succeeds if one can prove that Rα →ψ . A key difference in the various
approaches to predicate abstraction is how Rα is computed [16, 14, 12, 15, 2, 11]. This
typically involves numerous queries to a decision procedure for the underlying logic
and there are tradeoffs between how accurately Rα approximates α(R) and the number
and complexity of these queries.

Rα is usually computed as a fixpoint of some approximation of the abstract post
image operator post : 2A → 2A , defined as follows. Given a set of abstract states A, let

post(A) =
{

α(c′) | ∃c,c′ ∈ C .(c,c′) ∈ T ∧α(c) ∈ A
}

where T is the transition relation of the concrete system. post(A) is thus the set of
abstract states representing concrete states that are concrete successors of those states
represented by A.

Since predicate abstraction is an incomplete approach, if it fails to verify the prop-
erty, this can either happen because the concrete systems actually violates the property,
or because of the loss of information inherent in the abstraction. Finding the “right” set
of predicates for verification to go through can be tricky business. Many works have
addressed this issue of predicate discovery [13, 4, 18, 11], which falls under the more
general umbrella of abstraction refinement [9]. As in recent papers on this topic [2, 23],
in our current framework, predicates are added by manual inspection of counterexam-
ple behaviors; applying automatic predicate discovery techniques is an important area
of future work.

3.2 Computing post

Our tool computes post precisely; the algorithm can be viewed as an improvement
over the following naive algorithm. Since post distributes over disjunction,2 comput-
ing post(A) is reducible to computing post(ρ) for each cube ρ in some disjunctive
normal form decomposition of A. Here, cube means a partial boolean assignment to

2 Meaning that post(A1∨A2) = post(A1)∨post(A2).
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the abstract variables, and represents all abstract states that agree on this subset of the
abstract variables.3 By using a BDD [7] to represent A, we can easily obtain such a
decomposition. The naive algorithm cycles through all 2k abstract states a, and checks
if a ∈ post(ρ); post(ρ) is then the BDD representing the disjunction of all such a.
Each check of a ∈ post(ρ) involves a call to the decision procedure to determine if the
following formula is satisfiable:

γ(ρ)∧wp(γ(a)) (1)

where γ is the concretization function, and wp is the weakest precondition operator [17].
Intuitively, γ maps a cube to a logic formula that denotes the set of concrete states
represented by the cube. Formally, for a cube μ let P(μ) (resp. N(μ)) denote the set
{i | μ(bi) = true} (resp. {i | μ(bi) = false}). Then define

γ(μ) =
∧

i∈P(μ)

φi ∧
∧

i∈N(μ)

¬φi

The weakest precondition operator wp is a syntactic transformation on logic formulas
that depends on the program statement under consideration [17]. For example, for an
assignment statement x := e, where x is a variable and e is some expression, wp(π) is
constructed by syntactically replacing all occurrences of x with e in the formula π .4 Our
approach applies wp at the granularity of individual program statements when perform-
ing predicate abstraction.

Das et al.’s computation of post that we employ uses several straightforward opti-
mizations over this naive algorithm [14]. First, if (1) contains a syntactic contradiction,
meaning the existence of a predicate and its negation, then clearly the formula is not
satisfiable. In such circumstances there is no need to call the decision procedure. When
computing post(ρ), our implementation initially computes a BDD C representing the
set of all a that won’t yield such a contradiction. Second, rather than enumerating all
a ∈C, we do recursive case-splitting on the abstract variables, which allows for prun-
ing of large portions of C. For example, let μ be the cube that assigns true to b1 and
leaves all other variables unconstrained. Then if γ(ρ)∧wp(γ(μ)) is unsatisfiable, then
so too is γ(ρ)∧wp(γ(a)) for any abstract state a that has b1 equal to true. Hence, our
algorithm would only explore those abstract states having b1 false.

4 Heap-Manipulating Programs

In our framework, the heap consists of an unbounded number of nodes. HMPs allow
for node variables (pointers), data fields for nodes, a link field f for nodes, and all other
variables are modelled (or encoded as) booleans.

In lieu of a formal presentation of HMPs, we give an example called ND-INSERT

in Fig. 1 that captures most of the interesting features. This program takes a node head
and a node item, and inserts item into the linked list pointed to by head at a position

3 A partial boolean assignment maps each variable bi to an element of {true, false,undef}.
4 This only works under the assumption that x cannot be aliased.
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1: procedure ND-INSERT(head, item)
2: assume ¬ f ∗(head, item)∧ f ∗(head,nil)∧¬head =nil∧ f (item)=nil∧ p=head
3: while true do
4: if ND∨ f (p)=nil then
5: f (item) := f (p);
6: f (p) := item;
7: break
8: else
9: p := f (p);

10: end if
11: end while
12: assert f ∗(head, item)∧ f ∗(head,nil)
13: end procedure

Fig. 1. A program that nondeterministically inserts a node item into the list pointed to by head.
Here ND is a boolean value that is nondeterministically true or false.

selected nondeterministically. head is assumed to be non-nil and to point to an acyclic
linked list that does not contain item. These assumptions are formalized by the assume
statement on line 2 of the program. In the assume statement, and also in the assert
statement, the subformulas of the form f ∗(x,y) express that node y is reachable from
node x by following a sequence of f links of any length; we will formally define these
predicates in Sect. 5. The fact that nil is reachable from head enforces the acyclicality
assumption.5

The body of ND-INSERT is straightforward; a pointer p walks the list, and item is
inserted at some point. The loop breaks once the insertion has occurred. The expression
ND represents a nondeterministic boolean value. item is inserted when either ND =
true, or the end of the list is reached (detected by the disjunct f (p)= nil on line 4).
The specification is expressed by the assert statement on line 12, and indicates that
whenever line 12 is reached, head must point to an acyclic list that contains item.

The verification problem we wish to solve can be stated as follows: given an HMP,
determine whether it is the case that all executions that satisfy all assume statements
also satisfy all assert statements. Since the number of nodes in the heap is unbounded,
HMPs are generally infinite state, thus one cannot directly apply finite-state model
checking to this problem without using abstraction.

5 A Simple Transitive Closure Logic

Our logic assumes finite sets of node variables V , boolean variables B, data function
variables D, and a single link function symbol f . The term, atom, and literal syntactic
entities are given in Fig. 2. Literals of the form x = y, ¬x = y, f ∗(x,y), and ¬ f ∗(x,y)
(where x and y are terms) are called equality, inequality, reachability, and unreachabil-
ity literals, respectively. Literals of the form d(x) or ¬d(x), where d ∈D, are called data
literals, while those of the form b or ¬b are called simply boolean variable literals.

5 In our logical framework, nil is modelled simply as a node having f (nil) = nil.
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v ∈ V
d ∈ D
b ∈ B

term ::= v | f (term)
atom ::= f ∗(term, term) | term= term | d(term) | b

literal ::= atom | ¬atom

Fig. 2. The syntax of our simple transitive closure logic

The structures over which the semantics of our logic is defined are called heap struc-
tures. A heap structure H = (N,Θ) involves a finite set of nodes N and a function Θ
that interprets each symbol σ in V ∪B∪D∪{ f} such that

Θ(σ) ∈ N if σ ∈V
Θ(σ) ∈ {true, false} if σ ∈ B
Θ(σ) ∈ N→{true, false} if σ ∈ D
Θ(σ) ∈ N→ N if σ = f

Thus Θ interprets each node variable as a node, each boolean variable as a boolean
value, each data function variable as a function that maps nodes to booleans, and the link
function f is interpreted as a mapping from nodes to nodes. Heap structures naturally
model a linked data structure of nodes, each node having a single pointer to another
node and some finite number of boolean-valued fields. The size of H is defined to be |N|.
The variables of V model program variables that point to nodes in the data structure,
while the variables of B model program variables of boolean type. Clearly, program
variables or node fields of any finite enumerated type can be encoded using the booleans
accommodated by our logic.

We extend Θ to Θ e, which interprets any term or atom in the obvious way, formally
defined here. The interpretation of a term τ is defined inductively by:

Θ e(τ) =
{

Θ(τ) if τ ∈V
Θ( f )(Θ e(τ ′)) if τ has the form f (τ ′) for some term τ ′

Θ e interprets atoms as boolean values. An equality atom τ1=τ2 is interpreted as true by
Θ e iff Θ e(τ1)=Θ e(τ2). A data atom is interpreted by defining Θ e(d(τ))=Θ(d)(Θ e(τ)).
A reachability atom f ∗(τ1,τ2) is interpreted as true iff there exists some n≥ 0 such that
Θ( f )n(Θ e(τ1)) = Θ e(τ2).6 Finally, a literal that is not an atom is of the form ¬φ where
φ is an atom, and we simply define Θ e(¬φ) = ¬Θ e(φ).

Sticking to the usual notation, given a heap structure H = (N,Θ) and a literal φ , we
write H � φ iff Θ e(φ) = true. For a set of literals Φ , we write H � Φ iff H � φ for all
φ ∈Φ .

6 Decision Procedure

The decision problem we aim to solve with our decision procedure is this: given a finite
set of literals Φ , does there exist a heap structure H such that H � Φ ? If there is such an

6 Here, function exponentiation represents iterative application: for a function g and an element
x in its domain, g0(x) = x, and gn(x) = g(gn−1(x)) for all n≥ 1.
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v=v
IDENT

f ∗(v,v)
REFLEX

f (x)=y
f ∗(x,y)

TRANS1

f ∗(x,y) f ∗(y,z)
f ∗(x,z)

TRANS2
f (x)=y f ∗(x,z)

x=z f ∗(y,z)
FUNC

f (x1)=x2 f (x2)=x3 · · · f (xk)=x1 f ∗(x1,y)
y=x1 y=x2 · · · y=xk

CYCLEk

f ∗(x,y) f ∗(y,x) f ∗(x,z)
x=y f ∗(z,x)

SCC
f ∗(x,y) f ∗(x,z)

f ∗(y,z) f ∗(z,y)
TOTAL

f (x)=z f (y)=z f ∗(x,y) f ∗(y,x)
x=y

SHARE

Fig. 3. The set of inference rules. Here x, y, and z range over (not necessarily distinct) terms.
In the rules IDENT and REFLEX, v is restricted to be a variable that is already mentioned; this
restriction prevents either of these rules from introducing new terms. CYCLEk actually defines a
separate rule for each k ≥ 1.

H, then we say that Φ is satisfiable, otherwise Φ is unsatisfiable. Clearly, any algorithm
for this problem can be used to decide the satisfiability of a conjunction-of-literals (1)
by simply taking Φ to be the set of its conjuncts.

Decidability of this problem follows from a small model theorem enjoyed by our
logic, akin to other transitive closure logics [2, 5]. Our small model theorem states that
Φ is satisfiable if and only if there exists H of size at most n such that H � Φ , where
n is the number of distinct terms mentioned in Φ . Hence, a decision procedure can
simply enumerate the finite set of such H, and for each one check if H � Φ . However,
since the number of such heap structures is at least nn, this approach is impractical.
Employing BDDs [7] to represent the set of heap structures that satisfy Φ [2] is also
memory-intensive; building a BDD for the literal f ∗(x,y) over just 8 nodes cannot be
done in 2 GB of memory. This stems from the fact that such a BDD must represent the
multitude of different paths that could exist between the nodes Θ e(x) and Θ e(y).

Our approach has relatively small memory requirements, and is based on a set of
inference rules (IRs) with the property that Φ is satisfiable if and only if their exhaustive
application does not introduce a contradiction. Here contradiction means the inference
of both an atom φ and its negation ¬φ . The IRs are presented in Fig. 3. For an IR r,
the antecedents of r are the literals appearing above the line, while the consequents are
those appearing below the line. We say that an IR r is applicable (to Φ) if there are terms
appearing in Φ such that when these terms are substituted for the term placeholders of
r (i.e. x, y, z, x1, etc.), all of r’s antecedents appear in Φ , and none of r’s consequents
appear in Φ .

We now explain each IR of Fig. 3. IDENT states that each node variable is equal to
itself, while REFLEX enforces that any node variable is reachable from itself. TRANS1
states that the transitive closure f ∗ must extend the function f . TRANS2 simply enforces
that f ∗ is transitive. FUNC asserts that if f (x)=y and z is reachable from x, then z must
also be reachable from y, unless x = z. If there is a cycle of length k ≥ 1 in f , then it
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follows that any node y reachable from a node on the cycle must be on the cycle as
well; this is formalized by CYCLEk. Similar to FUNC is SCC, which states that if x and
y are distinct and mutually reachable from each other, and z is reachable from x, then x
is reachable from z (since x must lie on a cycle of f ). TOTAL requires that if y and z are
both reachable from another node x, then there must exist some reachability relationship
between y and z. The fact that in a cycle of f , no two distinct nodes x and y can have
f (x)= f (y) is captured by SHARE. Given the preceding intuition, it is easy to prove the
following.

Theorem 1. The inference rules of Fig. 3 are sound.

Theorem 1 tells us that if iterative application of the IRs yields a contradiction, then
we can conclude that the original set of literals is unsatisfiable. Conversely, we have
proven our IRs to be complete with respect to sets of literals in a certain normal form,
and Theorem 2 below states that it is sufficient to restrict attention to such sets. Let
Vars(Φ) denote the subset of the node variables V appearing in Φ .

Definition 1 (normal). A set of literals Φ is said to be normal if

1. For each vi ∈ Vars(Φ), there exists
(a) at most one equality literal of the form f (vi) = v j, where v j ∈ Vars(Φ), and
(b) the literal vi = vi.
All equality literals of Φ are required to be of one of the forms (a) or (b).

2. All inequality literals are of the form ¬vi = v j, where vi,v j ∈ Vars(Φ).
3. All reachability literals are of the form f ∗(vi,v j), where vi,v j ∈ Vars(Φ).
4. All unreachability literals are of the form ¬ f ∗(vi,v j), where vi,v j ∈ Vars(Φ).
5. There exist no data or boolean variable literals in Φ .

Theorem 2. There exists a polynomial-time algorithm that transforms any set Φ into
a normal set Φ ′ such that Φ ′ is satisfiable if and only if Φ is satisfiable.

Thanks to Theorem 2, our decision procedure can without loss of generality assume
that Φ is normal. Let us call a set of literals Φ consistent if it does not contain a con-
tradiction, and call Φ closed if none of the IRs of Fig. 3 are applicable. The following
completeness result is the crux of our decision procedure.

Theorem 3. If Φ is consistent, closed, and normal, then Φ is satisfiable.

The proof of Theorem 3 is quite technical, and involves reasoning about the dependen-
cies between digraphs of partial functions and the digraphs of their transitive closures.
For details, please see our technical report [6].

Viewed from a high level, our decision procedure first applies the transformation of
Theorem 2, and then repeatedly searches for an applicable IR, applies it (i.e. adds a con-
sequent to the set), and recurses. The recursion is necessary for those IRs that branch,
i.e. have multiple consequents. If the procedure ever infers a contradiction, it backtracks
to the last branching IR with an unexplored consequent, or returns unsatisfiable if there
is no such IR. If the procedure reaches a point where there are no applicable IRs and no
contradictions, then the inferred set of literals is consistent, closed, and normal. Hence,
by Theorem 3, it may correctly return satisfiable. Our technical report [6] provides a
more formal presentation of the decision procedure. We note that our decision proce-
dure is guaranteed to terminate because none of the IRs introduce new terms.



216 J. Bingham and Z. Rakamarić

6.1 An Extension

In order to handle program assignments that mutate the links in the heap, i.e. modify f ,
we must extend our logic and decision procedure to support simultaneous reference to
f and f ′, which respectively model the link function before and after the assignment.
Such an assignment has the general form f (τ1) := τ2, where τ1 and τ2 are arbitrary
terms. Lines 5 and 6 of the HMP of Fig. 1 are examples of such assignments. The
semantic relationship between f and f ′ can be expressed using the well-known update
operator:7

Θ e( f ′) = update(Θ e( f ),Θ e(τ1),Θ e(τ2)) (2)

Rather than support update as an interpreted second order function symbol in the logic,
we add inference rules that implicitly enforce the constraint (2). For each of the eight
IRs of Fig. 3 that mention f , we add an analogous IR with f replaced with f ′; these
enforce analogous constraints between f ′∗, f ′, and = as are enforced by the unmodified
IRs of Fig. 3 between f ∗, f , and =. Furthermore, to enforce the constraint (2), the seven
IRs of Fig. 4 are also included. The IRs introduce a fresh variable w that is forced to be
equal to f (τ1). This allows us to state that Θ e( f ) = update(Θ e( f ′),Θ e(τ1),Θ e(w)),
and hence the symmetry between the IRs UPDFUNC1 and UPDFUNC2, between UP-
DTRANS1 and UPDTRANS2, and between UPDTRANS3 and UPDTRANS4. Note that
these IRs can introduce new terms, however, given a normal set of literals, the num-
ber of new terms is bounded. This implies that the extended decision procedure always
terminates.

f ′(τ1)=τ2
f (τ1)=w

UPDATE

f (x)=y
x=τ1
y=w

f ′(x)=y UPDFUNC1
f ′(x)=y

x=τ1
y=τ2

f (x)=y UPDFUNC2

f ∗(x,y)
f ′∗(x,τ1)
f ′∗(w,y)

f ′∗(x,y) UPDTRANS1
f ′∗(x,y)

f ∗(x,τ1)
f ∗(τ2,y)

f ∗(x,y) UPDTRANS2

f ∗(x,τ1) f ′∗(x,y)
f ∗(x,y) f ′∗(τ1,y)

UPDTRANS3
f ′∗(x,τ1) f ∗(x,y)

f ′∗(x,y) f ∗(τ1,y)
UPDTRANS4

Fig. 4. The update inference rules, which are used to extend our logic to support a second func-
tion symbol f ′, with the implicit constraint f ′=update( f ,τ1,τ2), where τ1 and τ2 are fixed but
arbitrary terms, and w is a fresh variable used to capture f (τ1). Note that the rule UPDATE can
introduce literals that violate normalcy (Def. 1) in the case that τ1 or τ2 are not variables. How-
ever, this can be remedied by the addition of a new variable and equality literal for each sub-term
of τ1 and τ2.

7 If g is a function, a is an element in g’s domain, and b is an element in g’s codomain, then
update(g,a,b) is defined to be the function λx.(if x = a then b else g(x)).
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Theorem 4. The inference rules of Fig. 4 are sound.

The proof of this theorem is provided in our technical report [6]. We have yet to flesh
out the details of a proof of a conjecture analogous to Theorem 3 stating that this ex-
tended set of IRs is complete. However, we have empirical support for this conjecture:
in conducting our experiments of Sect. 7, we never found any property violations caused
by the extended decision procedure erroneously concluding that a set of literals was sat-
isfiable. Of course, not having such a theorem does not compromise the soundness of
verification by predicate abstraction.

7 Experiments

We have tested our tool on a number of HMP examples and summarized the results in
Table 1. We ran the experiments on a Pentium 4 2.6 GHz machine. The safety properties
we checked (when applicable) at the end of the HMP are:

– no leaks (NL) – all nodes reachable from the head of the list at the beginning of the
program are also reachable at the end of the program.

– insertion (IN) – a distinguished node that is to be inserted into a list is actually
reachable from the head of the list, i.e. the insertion “worked”.

– acyclic (AC) – the final list is acyclic, i.e. nil is reachable from the head of the list.
– cyclic (CY) – list is a singly linked circular list, i.e. the head of the list is reachable

from its successor.
– sorted (SO) – list is a sorted linked list, i.e. each node’s data field is less than or

equal to its successor’s.
– remove elements (RE) – for examples that remove node(s), this states that the

node(s) was (were) actually removed. For the program REMOVE-ELEMENTS, RE
also asserts that the data field of all removed elements is false.

Often, the properties one is interested in verifying for HMPs involve universal quantifi-
cation over the heap nodes. For example, to assert the property NL, we must express
that for all nodes t, if t is reachable from head initially, then t is also reachable from
head (or some other node) at the end of the program. Since our logic doesn’t support
quantification, we use the trick of introducing a Skolem constant t [15, 2] to represent a
universally quantified variable. Here, t is a new node variable that is initially assumed to
satisfy the antecedent of our property, and is otherwise unmodified by the program. For
the example program of Fig. 1, we can express NL by conjoining ¬t =nil∧ f ∗(head, t)
to the assume statement on line 2, and conjoining f ∗(head, t) to the assertion on line 12.
Since t can be any non-nil node reachable from head, if the assertion is never violated,
we have proven NL.

Our example programs are the following:

LIST-REVERSE – a classical HMP example that performs in-place reversal of a linked
list.

LIST-ADD – a linked list is traversed, and the end of the list is reached. Then, a node
is added to the end of the list.

ND-INSERT – pseudocode for this example is given in Fig. 1.
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Table 1. Results of verifying HMPs. “property” specifies the verified property; “CFG edges”
denotes the number of edges in the control-flow graph of the program; “preds” is the number of
predicates required for verification; “time” is the average execution time over five runs to prove
the properties; “DP calls” is the number of decision procedure queries. The largest memory usage
for all these examples was 125 MB.

program property CFG edges preds time (sec) DP calls

LIST-REVERSE NL 6 8 1.1 173
LIST-ADD NL∧AC∧ IN 7 8 0.8 66

ND-INSERT NL∧AC∧ IN 5 13 7.9 258
ND-REMOVE NL∧AC∧RE 5 12 19.3 377

ZIP NL∧AC 20 22 280.7 9185
SORTED-ZIP NL∧SO∧ IN 28 22 249.9 13760

SORTED-INSERT NL∧AC∧SO 10 20 217.6 8476
BUBBLE-SORT NL∧AC 21 24 204.6 5930
BUBBLE-SORT NL∧AC∧SO 21 27 441.0 6324

REMOVE-ELEMENTS NL∧CY∧RE 15 17 1263.7 26721

ND-REMOVE – similar to ND-INSERT, except that instead of inserting a node, a node
is nondeterministically chosen and removed from the list.

ZIP – zips two linked lists, shuffling the elements of both list into one. Then, the tail of
the longer list is appended to the resulting list. This example is taken from a paper
by Jensen et al. [20].

SORTED-ZIP – joins the elements of two sorted lists into one, also sorted. Here the data
elements are simply booleans, so “sorted” means that all nodes with false fields
come before nodes with true fields.

SORTED-INSERT – inserts a node into a sorted linked list so that sortedness is pre-
served. This is a modification of the example from a technical report by Lahiri and
Qadeer [23].8

BUBBLE-SORT – The bubble sort example sorts elements of a linked list using the
bubble sort algorithm. It is taken from a paper by Balaban et al. [2]. The data fields
on which we sort are again booleans.

REMOVE-ELEMENTS – removes from a circular list all elements whose data field is
false.

Our technical report [6] provides pseudocode and lists the required predicates for these
examples.

As Table 1 shows, we were successful in verifying interesting properties of many
examples in reasonable amounts of time. Of special note is our verification of sortedness
for BUBBLE-SORT. This example is from Balaban et al. [2]; because of the BDD blow-
up inherent in their decision procedure, their tool spaced out for the small model bound
necessary for sound verification [1]. In contrast, our trading of space for time appears
to be quite advantageous here.

8 To simplify things, they require that the input list starts with a dummy element whose data field
value has to be less than all possible values of that data field. We don’t have such requirements
in our example, which makes it slightly more complicated.
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Running time of TVLA on the bubble sort example is somewhat faster than ours,
although they are using a slower machine [24]. The recent experimental results of
Manevich et al. [27] are significantly faster, in spite of the fact they were executed
on a slower machine. For most of their examples, however, they only verify the sim-
ple property of no null dereferences (they also verify cyclicity for two examples). We
are verifying more complicated properties, for instance SO. Very recently, Loginov et
al. [26] have used TVLA to fully automatically verify the bubblesort example.

For the two examples in common with Lahiri and Qadeer [23],9 LIST-REVERSE

and SORTED-INSERT, we are significantly faster at verifying the same properties, with
respective speed-ups of 75× and 6×. It should be noted, however, that we used a slightly
faster machine, and also that for SORTED-INSERT, our data fields are merely booleans,
while theirs are the full integers.

8 Future Work and Conclusions

Despite the fact that this work is in its early stages, our experiments demonstrate its
effectiveness for verification of heap-manipulating programs. There are many directions
for future research, which are outlined here.

We have identified the following issues related to the expressiveness of the simple
transitive closure logic presented in this paper:

– This paper only supports a single link function f , yet clearly many heap-
manipulating programs involve multiple link fields.

– We have found that even minimal support for universally quantified variables (as in
the logic of Balaban et al. [2]) would allow expression of common heap structure
attributes. For example, the current logic cannot assert that two terms x and y point
to disjoint linked lists; a single universally quantified variable would allow for this
property (see Nelson [30–page 22]). We found that capturing disjointedness is nec-
essary for verifying that LIST-REVERSE always produces an acyclic list; hence we
were unable to verify this property.

– Another situation that cannot be characterized relates to term ordering in circularly
linked lists. Suppose x, y, and z are terms in such a list; we would like to express that
y does or does not “come between” x and z in the list. Nelson [31] and Manevich et
al. [27] have previously recognized the importance of such properties.

We believe that our decision procedure can be enhanced to handle each of these three
cases. A final expressiveness deficiency, that we see no immediate solution to, is the
expression of more involved heap structure properties, in particular trees. Though our
logic cannot capture “x points to a tree”, we believe that it is possible that an extension
could be used to verify simple properties of programs that manipulate trees, for example
that there are no memory leaks.

We also plan on investigating how existing techniques for predicate discovery and
more advanced predicate abstraction algorithms mesh with our decision procedure. Our
approach appears to be very promising, despite the fact that we have yet to harness the
recent innovations in these areas.

9 We were unable to run our tool on four of Lahiri and Qadeer’s [23] examples because we have
yet to implement support for data field mutations.
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Abstract. Software is being developed from off-the-shelf third party
components. The interface specification of such a component may be
under specified or may not fully match the user requirement. In this
paper, we address the problem of customizing such components to par-
ticular users. We achieve this by constructing a monitor that monitors
the component and detects any bad behaviors.

Construction of such monitors essentially involves synthesizing safety
properties that imply a given property that is obtained from the interface
specifications of the component and the goal specification of the user. We
present various methods for synthesizing such safety properties when the
given property is given by an automaton or a temporal logic formula.
We show that our methods are sound and complete. These results are
extensions of the results given in [11].

1 Introduction

The process of constructing software is undergoing rapid changes. Instead of a
monolithic software development within an organization, increasingly, software
is being assembled using third-party components (e.g., JavaBeans, .NET, etc.).
The developers have little knowledge of, and even less control over, the internals
of the components comprising the overall system.

One obstacle to composing agents is that current formal methods are mainly
concerned with “closed” systems that are built from the ground up. Such systems
are fully under the control of the user. Hence, problems arising from ill-specified
components can be resolved by a close inspection of the systems. When com-
posing agents use “off-the-shelf” ones, this is often no longer the case. Out of
consideration for proprietary information, or in order to simplify presentation,
companies may provide incomplete specifications. Worse, some agents may have
no description at all except one that can be obtained by experimentation. Even
if the component is completely specified, it may not fully satisfy the user require-
ments. Despite either of the cases, i.e., being ill-specified or mismatched-matched,
“off-the-shelf” components might still be attractive enough so that the designer
of a new service may wish to use them. In order to do so safely, the designer must
be able to deal with the possibility that these components may exhibit undesired
or unanticipated behavior, which could potentially compromise the correctness
and security of the new system.
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The main problem addressed in this paper is that of customizing ill-specified
or slightly mismatched off-the-shelf components for a particular user. We assume
that we are given the interface specification ΦI of the off-the-shelf component and
the goal specification Φ which denotes the user requirement. We want to design a
module M which runs in parallel with the off-the-shelf component and monitors
its executions. If the execution violates the user specification Φ then the monitor
M indicates this so that corrective action may be taken. Our customization only
consists of monitoring the executions. (Here we are assuming that violation of
Φ is not catastrophic and can be remedied by some other means provided it is
detected in time; for example, leakage of the credit card number in a business
transaction can be handled by alerting the credit card company.) See [11] for a
motivating example.

Our goal is to obtain a specification φ for the module M so that M composed
with the off-the-shelf component implies Φ. Further more, we want φ to be a
safety property since violations of such properties can be monitored. Once such
a specification φ is obtained as an automaton it is straight forward to construct
the monitor M . Essentially, M would run the automaton on the executions of
the off-the-shelf component and detect violations. Thus, given ΦI and Φ, our
goal is to synthesize a safety property φ so that ΦI ∧ φ → Φ, or equivalently
φ→ (¬ΦI ∨ Φ), is a valid formula.

We considered the above problem in our previous work [11]. In that work,
we concentrated on obtaining φ as a deterministic Büchi automaton. There we
showed that while there is always some safety property φ that guarantees φ→
(¬ΦI ∨ Φ) (e.g., the trivially false property), in general, there is no “maximal”
such safety property. We also synthesized a family of safety properties φk, such
that the higher k is, the more “accurate” and costly to compute φk is. We
also defined a class of, possibly infinite state, deterministic bounded automata,
that accept the desired property φ. For these automata we proved a restricted
completeness result showing that if (¬ΦI ∨ Φ) is specified by a deterministic
Büchi automaton A and L(A) is the language accepted by A then for every
safety property S contained in L(A) there exists a bounded automaton that
accepts the S. (Actually, the paper [11] erroneously stated that this method is
complete in general; however, this was corrected in a revised version [12] claiming
only restricted completeness.)

In this paper we extend these earlier results as follows. We consider the cases
where ¬ΦI ∨ Φ is given as an automaton or as a LTL formula. For the former
case, when ¬ΦI ∨ Φ is described by an automaton, we describe two ways of
synthesizing the safety properties as a Büchi automaton B. The first method
assumes that the given automaton A is a non-deterministic Büchi automaton
and constructs a non-deterministic B from A by associating a counter with
each state. The constructed automaton is much simpler than the one given in
[11]. We also define a class of infinite state automata and show that all these
automata accept safety properties contained in L(A). We also prove a restricted
completeness result for this case.
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In the second method we assume that A is given as a deterministic Streett
automaton. For this case, we give the construction of a class of possibly infi-
nite state automata that accept safety properties contained in L(A). This con-
struction employs a pair of counters for each accepting pair in the accepting
condition of A. We show that this construction is sound and is also complete
when A is deterministic. Since deterministic Streett automata are more powerful
than deterministic Büchi automata, this method is provably more powerful than
the one given in [11]. Also, we can obtain a complete method for synthesizing
safety properties contained in the language of a given non-deterministic Büchi or
Streett automaton by systematically converting it into an equivalent determinis-
tic Streett automaton [14] and by employing the above method on the resulting
automaton.

In the case that ΦI , Φ, and hence ¬ΦI ∨Φ, are given as LTL formulas, we give
semantic and syntactic methods. The semantic method constructs the tableau,
from which it constructs a non-deterministic Büchi automaton that accepts the
desired safety property. The syntactic method converts the formula ¬ΦI ∨Φ into
another formula that specifies a safety property which implies ¬ΦI ∨ Φ.

Outline. Section 2 contains definitions, notation, and outlines some prior results
relevant to this work. Section 3 studies synthesis of safety from specifications
given by non-deterministic Büchi automata and shows a partial completeness
result. Section 4 studies synthesis of safety from specifications given by deter-
ministic Streett automata and shows a completeness result. Section 5 studies
synthesis of safety from specifications given by ltl formulae. Section 6 discusses
related literature, and we conclude in Section 7.

2 Preliminaries

Sequences. Let S be a finite set. Let σ = s0, s1, . . . be a possibly infinite sequence
over S. The length of σ, denoted as |σ|, is defined to be the number of elements
in σ if σ is finite, and ω otherwise. If α1 is a finite sequence and α2 is a either a
finite or a ω-sequence then α1α2 denotes the concatenation of the two sequences
in that order.

For integers i and j such that 0 ≤ i ≤ j < |σ|, σ[i, j] denotes the (finite)
sequence si, . . . sj . A prefix of σ is any σ[0, j] for j < |σ|. We denote the set of
σ’s prefixes by Pref (σ). Given an integer i, 0 ≤ i < |σ|, we denote by σ(i) the
suffix of σ that starts with si.

For an infinite sequence σ : s0, . . ., we denote by inf(σ) the set of S-elements
that occur in σ infinitely many times, i.e., inf(σ) = {s : si = s for infinitely
many i’s}.
Languages. A language L over a finite alphabet Σ is a set of finite or infinite
sequences over σ. When L consists only of infinite strings (sequences), we some-
times refer to it as an ω-language. For a language L, we denote the set of prefixes
of L by Pref (L), i.e.,

Pref (L) =
⋃

σ∈L

Pref (σ)
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Following [6, 2], an ω-language L is a safety property if for every σ ∈ Σ∞:

Pref (σ) ⊆ Pref (L) =⇒ σ ∈ L
i.e., L is a safety property if it is limit closed – for every ω-string σ, if every
prefix of σ is a prefix of some L-string, then σ must be an L-string.

Büchi Automata. A Büchi automaton (NBA for short) A on infinite strings is
described by a quintuple (Q,Σ, δ, q0, F ) where:

– Q is a finite set of states;
– Σ is a finite alphabet of symbols;
– δ : Q×Σ → 2Q is a transition function;
– q0 ∈ Q is an initial state;
– F ⊆ Q is a set of accepting states.

The generalized transition function δ∗ : Q × Σ∗ → 2Q is defined in the usual
way, i.e., for every state q, δ∗(q, ε) = {q}, and for any σ ∈ Σ∗ and a ∈ Σ,
δ∗(q, σa) = ∪q′∈δ∗(q,σ)δ(q′, a).

If for every (q, a) ∈ Q×Σ, |δ(q, a)| = 1, then A is called a deterministic Büchi
automaton (or DBA for short).

Let σ : a1, . . . be an infinite sequence over σ. A run r of A on σ is an infinite
sequence q0, . . . over Q such that:
– q0 = q0;
– for every i > 0, qi ∈ δ(qi−1, ai);

A run r on a Büchi automaton is accepting if inf(r) ∩ F �= ∅. The automaton A
accepts the ω-string σ if it has an accepting run over σ (for the case of DBAs,
the automaton has a single run over σ). The language accepted by A, denoted by
L(A), is the set of ω-strings that A accepts. A language L′ is called ω-regular if
it is an ω-language that is accepted by some (possibly non-deterministic) Büchi
automaton.

A Büchi automaton A can also be used to define a regular automaton that
is just like A, only the acceptance condition of a run r is that its last state is
accepting. We denote the regular language accepted by the regular version of A
by Lf (A).

Infinite-state. Büchi automata are defined just like Büchi automata, only that
set of states may be infinite. We denote infinite-state DBAs by iDBAs, and
infinite-state NBAs by iNBAs.

Streett Automata. A Streett automaton S on infinite strings is described by a
quintuple (Q,Σ, δ, q0, F ) where Q, Σ, δ, and q0 are just like in Büchi automata,
and F is of the form ∪m

i=1(Ui, Vi) where each Ui, Vi ⊆ Q. A run r of S on
σ = a1, . . . is defined just like in the case of Büchi automaton. The run is
accepting if, for every i = 1, . . . ,m, if inf(r) ∩ Ui �= ∅ then inf(r) ∩ Vi �= ∅, i.e.,
if some Ui states appears infinitely often in r, then some Vi states should also
appear infinitely often in r.

Every Büchi automaton can be converted into a deterministic Streett automa-
ton that recognizes the same ω-language ([14]).
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Linear-time Temporal Logic. We consider ltl formulae over a set of atomic propo-
sitionsΠ using the boolean connectives and the temporal operators© (next), U
(until), and W (weak until or unless). Let Σ = 2Π . We define a satisfiability re-
lation |= between infinite sequences over Σ by:

For a proposition p ∈ Π , σ |= p iff p ∈ σ0

σ |= φ ∨ ψ iff σ |= φ or σ |= ψ
σ |= ¬φ iff σ �|= φ

σ |=© φ1 iff σ(1) |= φ1

σ |= φ1 U φ2 iff for some i ≥ 0, σ(i) |= φ2,
and for all j, 0 ≤ j < i, σ(j) |= φ1

σ |= φ1 W φ2 iff for some i ≥ 0, σ(i) |= φ1 ∧ φ2,
and for all j, 0 ≤ j < i, σ(j) |= φ1

Note that the semantics of the unless operator is slightly different than the
usual one, in requiring the φ1 to hold on the state where φ2 is first encountered.

For every ltl formula φ, we denote the set of atomic propositions that appear
in φ by Prop(φ), and the ω-language that φ defines, i.e., the set of infinite
sequences (models) that satisfy φ by L(φ).

Let φ be an ltl formula. We define the closure of φ, denoted by cl(φ) to
be the minimal set of formulae that is closed under negation and includes φ,
every subformula of φ, and for every subformula φ1 W φ2 of φ the formula
¬φ2 U ¬φ1. The atoms of φ, denoted by at(φ), is a subset of 2cl(φ)−∅ such that
each atom A ∈ at(φ) is a maximally consistent subset of cl(φ) where for every
ψ = φ1 W φ2 ∈ cl(φ), ψ ∈ A iff (¬φ2 U ¬φ1) �∈ A. An initial atom is any atom
that contains φ. The tableau of φ, tab(φ), is a graph (at(φ), R) whose nodes are
at(φ), and a (A1, A2) ∈ R iff the following all hold:

For every © ψ ∈ cl(φ), © ψ ∈ A1 iff ψ ∈ A2
For every ψ1 U ψ2 ∈ cl(φ), ψ1 U ψ2 ∈ A1 iff ψ2 ∈ A1 or

ψ1 ∈ A1 and ψ1 U ψ2 ∈ A2
For every ψ1 W ψ2 ∈ cl(φ), ψ1 W ψ2 ∈ A1 iff ψ1, ψ2 ∈ A1 or

ψ1, ψ1 W ψ2 ∈ A2

It is known (e.g., [9]) that φ is satisfiable iff tab(φ) contains a path leading
from an initial atom into a maximally strongly connected component (MSCC)
C such that for every ψ1 U ψ2 ∈ A ∈ C, there is an atom B ∈ C such that
ψ2 ∈ B.(Such MSCCs are called “fulfilling.”) Similarly, it is also known (see,
e.g., [18, 3]) how to construct a NBA (and, consequently, a deterministic Streett
automaton) that recognizes L(φ).

3 Synthesizing Safety from Büchi Automata

In this section we study synthesis of safety properties from a given NBA. We fix
a (possibly non-deterministic) Büchi automaton A = (QA, Σ, δA, q

0
A, FA). As

shown in [11], unless L(A) is already safety, there is no maximal safety property
that is contained in L(A) which is Büchi recognizable. We first show an infinite
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chain of safety properties that are all Büchi recognizable, each contained in the
next. We then present bounded Büchi automaton, an infinite-state version of
NBAs, and show that each accepts a safety property in L(A). We also show a
partial completeness result, namely, that if A is deterministic then each safety
property contained in L(A) is accepted by some bounded automata.

Both constructions, of the chain of Büchi automata and the bounded au-
tomata, are much simplified versions of their counterparts described in [11].

3.1 Synthesis of Safety into Büchi Automata

We define a chain of safety properties {Lk(A)}k>0 such that for every k, Lk(A) ⊆
L(A) and Lk(A) ⊆ Lk+1(A).

Let k > 0 be an integer. The ω-language Lk(A) is a subset of L(A), where
every string has an accepting A-run with the first accepting (FA) state appearing
within the first k states of the run, and any successive accepting states in the
run are separated by at most k states. Formally, w ∈ Lk(A) iff there exists an
accepting A run r0, . . . such that the set of indices I = {i ≥ 0 : ri ∈ FA} on w
satisfying the following condition: for some � < k, � ∈ I, and for every i ∈ I,
there is some j ∈ I such that i < j < i+ k.

For k ≥ 0, let Bk : (Qk , Σ , δk , 〈q0A, k − 1〉 , Qk) be a NBA where:

– Qk = QA × {0, 1, · · · , k − 1}
– 〈q′, i′〉 ∈ δk(〈q, i〉, a) iff
• i > 0, q �∈ FA, and i′ = i− 1;
• i ≥ 0, q ∈ FA, and i′ = k − 1.

The automaton Bk simulates the possible runs of A on the input and uses
a modulo k counter to maintain the number of steps within which an accept-
ing state should be reached. Note that, when q �∈ FA, there are no outgoing
transitions from the state 〈q, 0〉. Since all Bk-states are accepting states, L(Bk)
is a safety property. Also, from the construction it immediately follows that
L(Bk) = Lk(A). We therefore conclude:

Lemma 1. Lk(A) is a safety property, and L(Bk) = Lk(A).

3.2 Synthesis of Safety into Bounded Automata

The construction of the previous section is not complete in the sense that there
are always safety properties in L(A) that are not recognized by Ak. We introduce
bounded automata, a new type of Büchi automata, and show that (1) they only
recognize safety properties in L(A), and (2) when A is deterministic, they can
recognize every safety property contained in L(A).

Assume some (possible infinite) set Y . A bounded automaton over A using Y
is a (i)NBA described by a tuple N : (QN , Σ, δN , q

0
N , FN ) where:

– QN ⊆ Y ×QA × (N ∪ {∞}). Given a state qN = 〈r, q, i〉 ∈ QN , we refer to
r as the Y component of qN , to q as the A − state of qN , and to i as the
counter of qN ;
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– For every 〈r, q, i〉 ∈ QN , if (q′, r′, i′) ∈ δN (〈q, r, i〉, a) then the following all
hold:
• q′ ∈ δA(q, a);
• If i =∞ then i′ =∞;
• If q �∈ FA, then i′ < i or i′ =∞;

– q0N is in Y × {q0A} × N;
– FN = Y ×QA × N.

Note that there are no outgoing from a state whose A-state is not in FA and
whose counter is 0. Also, once a run reaches a state with counter value ∞, it
remains in such states. Since the counters of states with non-accepting A-states
either decrease or become ∞, it follows that once a run reaches a rejecting state
(i.e., a state in QN \ FN ), it remains there. It thus follows from [16] that L(N )
is a safety property. Consider an accepting N run. Since the counters of states
can only decrease finitely many times from non-accepting A-states, it follows
that the run has infinitely many accepting A-states. Thus, its projection on the
A-states is an accepting A-run. We can therefore conclude:

Lemma 2. For a bounded automaton N over A, L(N ) is a safety property in
L(A).

Lemma 2 shows that bounded automata over A accept only safety properties
that are contained in L(A). We next identify the safety properties in L(A) that
bounded automata accept.

Recall that for a Büchi automaton A, Lf (A) is the regular language defined
by the regular version of A. Let S ⊆ L(A) be a safety property. Similarly to [11],
we define:

– For a sequence σ ∈ S and α ∈ Pref (σ), let min idx(σ, α) = min{|β| :
αβ ∈ Lf(A) ∩ Pref (σ)};

– For any α ∈ Σ∗, let Z(α, S) = {min idx(σ, α) : σ ∈ S ∧ α ∈ Pref (σ)}

Note that if α ∈ Lf(A) ∩ Pref (σ), then min idx(α, a) = 0 and Z(α, S) = {0}.
Similarly, if α �∈ Pref (S), then Z(α, S) = ∅. It is shown in [11] that for every
α ∈ Σ∗, Z(α, S) is finite.

For any α ∈ Σ∗, we define

idx (α, S) =
{

maxi∈Z(α,S){i} Z(α, S) �= ∅
∞ otherwise

Thus, idx (α, S) ∈ N iff α ∈ Pref (S).
Let S ⊆ L(A) be a safety property. A bounded S-automaton over A is a

bounded automaton overA usingΣ∗, of the formD : (QD, Σ, δD, q
0
D, FD), where:

– QD = {〈α, q, i〉 : α ∈ Σ∗, q ∈ QA, i ∈ {idx (α, S)∞}};
– For every q �∈ FA, if 〈α′, q′, i′〉 ∈ δD(〈α, q i〉, a) then the following all hold:

1. α′ = αa;
2. q′ ∈ δA(q, a);
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3. i′ =
{

idx (α a, S) if i �=∞ and idx (α a, S) < i
∞ otherwise

– q0D = 〈ε, q0A, idx(ε, S)〉.
– FD = Σ∗ ×QA × N

Theorem 1 (Partial Completeness). For a safety property S ⊆ L(A),
L(D) ⊆ S, and if A is a deterministic automaton then L(D) = S.

Proof. For (1), We show that for any σ ∈ Σω, if σ �∈ S, then σ �∈ L(D). Assume
σ ∈ Σω \ S. Since S is a safety property, there exists an integer i such that
every prefix α ≺ σ, of length i or more, α �∈ Pref (S). Consider such a prefix α.
Obviously, idx (α, S) = ∞. Hence, in any run, after reading α, the counter of
the state reached is ∞. It follows that σ �∈ L(D).

For (2), assume that σ ∈ S. Define a sequence {pi}i≥0 over Σ∗ such that
p0 = ε and for every i > 0, pi = σ[0, i − 1], i.e., {pi}i≥0 is the sequence of σ’s
prefices. Since S ⊆ L(A), there exists an accepting A-run r0A, · · · of A on σ.
Consider now the sequence of D states α = {〈pj, r

A
j , idx (pj , S)}j≥0. The first

element in α is q0D. Consider now the case that A is deterministic. When the A
state of an α-state is A-accepting, its counter is 0; otherwise, the counter of the
next α-state is lower. Thus, α is a D-run. Finally, since σ ∈ S, every counter in
α is non-∞, thus D is accepting. ��
To see why the method is incomplete for general NBAs, consider the NBA A
described in Figure 1. Obviously, L(A) = L1 ∪ L2 where L1 = {aibΣω : i >
0} ∪ {aω} and L2 = {Σicω : i ≥ 0}. Note that L1 is generated by the sub-
automaton consisting of {q0, q1, q2, q3} and L2 is generated by the sub-automaton
consisting of {q0, q4, q5}. The language L1 is clearly a safety property, however,
the above method cannot generate L1, since any bounded automaton where the
value of the counter in the initial state is k can only accept the L1 strings of the
form {aibΣω : 0 < i ≤ k} ∪ {aω}.

a,b,c q

q qq

q q
0

25

4

3

1

c a a,b,c

a,b,c a

b

cc aa

Fig. 1. Automaton A

4 Synthesizing Safety from Streett Automata

In this section, we generalize the construction of the bounded automata of the
previous section into extended bounded automata for synthesizing safety proper-
ties contained in the language of a given Streett automaton (SA). We show that
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this construction is sound, and it is complete when the given automaton is a de-
terministic Streett Automaton (DSA). Since NBAs and SAs can be determinized
into an equivalent deterministic Streett automata (DSAs) [14], the construction
given in this section can be used to synthesize any safety property contained in
the language accepted by a given NBA or SA, thus giving a complete system for
these automata also.

Let A = (QA, Σ, δA, q
0
A, FA) be a SA. Assume that FA = ∪m

i=1{(Ui, Vi)}.
Without loss of generality, assume that for every i = 1, . . . ,m, Ui ∩ Vi = ∅. (If
Ui∩Vi �= ∅, then Ui can be replaced by Ui \Vi without impacting the recognized
language.)

Let Y be some (possibly infinite) set. An extended bounded automaton E over
A using Y is a (i)NBA (QE , Σ, δE, q

0
E , FE) where:

– QE ⊆ Y ×QA × (N ∪ {∞})(2m);
– For every R = 〈r, q, i1, j1, . . . , im, jm〉 ∈ QE and a ∈ Σ, if R′ ∈ δE(R, a)

where R′ = 〈r′, q′, i′1, j′1, . . . , i′m, j′m〉 the following all hold:
• q′ ∈ δA(q, a);
• For every k = 1, . . . ,m:

1. If ik =∞ then i′k =∞ and if jk =∞ then j′k =∞;
2. if q′ ∈ Uk then, if ik > 0 then i′k < ik, and if ik = 0 then i′k = 0 and
j′k < jk.

3. q′ �∈ (Uk ∪ Vk) then,if ik > 0 then i′k ≤ ik, and if ik = 0 then i′k = 0
and j′k ≤ jk.

– q0E ∈ Y × {q0A} × N(2m);
– FE = Y ×QA × N(2m).

Extended bounded automata are similar to bounded automata. However, states
of extended bounded automata associate a pair of counters (ik, jk) for each ac-
cepting pair (Uk, Vk) in FA, and the transition function is different. Just like in
the case of bounded automata, when an extended automaton enters a reject-
ing state, it cannot re-enter an accepting state. It thus follows from [16] that
extended bonded automata can only recognize safety properties.

Consider an accepting run ρ = R1, . . . of E , where for every k ≥ 0, Rk =
〈rk, qk, ik,1, jk,1, . . . , ik,m, jk,m〉. For Q′ ⊆ QA and k ≥ 0, we say that a Q′-state
appears in Rk if qk ∈ Q′. Assume that for some � = [1..m], U� appears infinitely
many times in ρ’s states, and let k ≥ 0. Consider now the sequence of ik′,� for
k′ ≥ k. Since ρ is accepting, and there are infinitely many Rk′ where a U�-state
appears, ik′,� never increases until some V�-state appears, and decreases with
each appearance of of a U�-state. Once ik′,� becomes zero, the value of jk′,�
decrease with each appearance of a U�-state. Thus, a V� state must appear in
ρ after Rk. It thus follows that R, projected onto its QA-states, is an accepting
run of A. We can therefore conclude:

Theorem 2 (Soundness). For every extended bounded automaton E over A,
the language recognized by E is a safety property that is contained in L(A).

We now turn to prove completeness, i.e., we show that if A is deterministic
then every safety property in L(A) is recognized by some extended bounded
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automaton. We fix some safety property S ∈ L(A) and show it is recognized by
some extended bounded automaton.

For the proof we define and prove some properties of (finitely branching) infi-
nite labeled trees. For details on the definition and proofs see the complete ver-
sion of this paper in [15]. For space reasons, we only outline the main ideas here.

A tree is finitely branching if each node has finitely many children. Consider
a finitely branching tree T with a labeling function � from T ’s nodes that labels
each nodes with one of three (mutually disjoint) labels, lab1, lab2, and lab3.
An infinite path in T is acceptable with respect to � over (lab1, lab2, lab3) if
it either contains only finitely many nodes with lab1-labels (lab1-nodes), or
it contains infinitely many nodes with lab2 labels (lab2-nodes). The tree T is
acceptable with respect to � if each of its infinite paths is, and it is acceptable if
it is acceptable with respect to some labeling function as above.

A ranking function on T is a function associating each node with a non-
negative integer. Pair (ρ1, ρ2) of ranking functions is good if for every two nodes
n and n′ in T such that n is the parent of n′, the following hold:

1. If n′ is a lab1-node and ρ1(n) > 0 then ρ1(n) > ρ1(n′).
2. If n′ is a lab1-node and ρ1(n) = 0 then ρ1(n′) = 0 and ρ2(n) > ρ2(n′).
3. If n′ is a lab3-node and ρ1(n) > 0 then ρ1(n) ≥ ρ1(n′).
4. If n′ is a lab3-node and ρ1(n) = 0 then ρ1(n′) = 0 and ρ2(n) ≥ ρ2(n′).

Theorem 3. [15] A labeled finitely-branching tree T is acceptable iff there is a
good pair of ranking functions for it.

We can now prove the completeness theorem:

Theorem 4. LetA be a deterministic Streett automaton and S ⊆ L(A) be a safety
property. There exists an extended bounded automaton B such that L(B) = S.

Proof. Consider the finitely branching tree T whose set of nodes is {(α, q) : α ∈
Pref (S), q = δ∗A(q0A, α)}, its root is (ε, q0A), and for any two nodes n = (α, q)
and n′ = (α′, q′), n′ is a child of n iff for some a ∈ Σ, α′ = α a and q′ ∈ δA(q, a).
Then, for an infinite path π starting from the root, its projection on its second
component is an accepting run of A on the string which is the limit of its first
projection (on Pref (S)).

For every k = 1, . . . ,m, let �k be a labeling of T by the labels u, v, and n
such that every Uk node in T (i.e., a node whose second component is in Uk)
is labeled with u, every Vk node is labeled with v, and every node that is in
neither Uk or Vk is labeled with n. It follows that T is acceptable with respect
to the labeling �k over (u,v,n).

It follows from Theorem 3 that for every k = 1, . . . ,m, there exists a pair
(ρk,1, ρk,2) of ranking functions such that for every two nodes n = (α, q) and
n′ = (α′, q′) such that n is the parent of n′, the following all hold:

– If n′ is a Uk node then
• If ρk,1(n) > 0 then ρk,1(n′) < ρk,1(n);
• If ρk,1(n) = 0 then ρk,1(n′) = 0 and ρk,2(n′) < ρk,2(n);
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– If n′ is neither a Uk nor a Vk node, then
• If ρk,1(n) > 0 then ρk,1(n′) ≤ ρk,1(n);
• If ρk,1(n) = 0 then ρk,1(n′) = 0 and ρk,2(n′) ≤ ρk,2(n);

We now define an extended bounded automaton E = (QE , Σ, δE, q
0
E , FE) where:

– For every (α, q, i1, j1, ..., im, jm) ∈ QE,
1. q = δ∗A(q0A, α);
2. If (α, q) ∈ T then, for each k = 1, . . . ,m, ik = ρk,1((α, q)) and jk =
ρk,2((α, q));

3. If (α, q) /∈ T then, for each k = 1, . . . ,m, ik = jk = ∞. Note that this
definition guarantees that for every finite string α and A-state q, there
is a unique E-state whose first two coordinates are α and q.

– For every state R = (α, q, . . .) ∈ QE and symbol a ∈ Σ, δE(R, a) is the
unique QE state whose first two coordinates are α a and δA(q, a);

– q0E , the initial state of E , is the unique state whose first two coordinates are
ε and q0A;

– FE is the set of states such that for each k = 1, . . . ,m, ik, jk �=∞.

From the properties of the ranking functions it now follows that L(E) = S. ��

5 Synthesizing Safety from Temporal Formulae

In Sections 3 and 4 we describe how to synthesize safety properties from NBAs
and SAs. In this section we discuss how to directly synthesize a safety property
from an ltl formula.

Let φ be a ltl formula. As discussed in Section 2, one can construct tab(φ) and
then an NBA, or a DSA, that recognizes L(φ), from which any of the approaches
described in Section 3 can be used. However, such approaches may drastically
alter tab(φ). In this section we describe two methods to obtain safety properties
from tab(φ) while preserving its structure. The first is semantics based, and
consists of augmentation to tab(φ). The second is syntactic based, and uses
tab(φ) for monitoring purposes.

5.1 A Semantic Approach

Let φ be an ltl formula and consider tab(φ) = (at(φ), R). We construct an
expanded version of the tableau. We outline the construction here and defer
formal description to the full version of the paper:

With each formula ψ = ψ1 U ψ2 ∈ cl(φ) we associate a counter cψ that can
be “active” or “inactive”. (Thus, we split atoms into new states, each containing
the atoms and the counters.) If (A1, A2) ∈ R, then in the new structure, if the
counter associated with ψ in A1 is non-zero and active, and ψ2 �∈ A2, then the
counter is decremented; if ψ2 ∈ A2, the counter becomes inactive. If the value
of the counter is zero, the transition is disabled. If the counter is inactive and
ψ ∈ A2, then the counter becomes active and is replenished to some constant k.



Monitoring Off-the-Shelf Components 233

An initial node of the expanded tableau is one which corresponds to an initial
atom, where only counters of U formulae that are in the node are active (and
set to k) and the others inactive. Obviously, a “good” path in the new structure
is one that starts at an initial node, and for every U formula in cl(φ), either the
counter of the formula is infinitely many often inactive, or it is infinitely often
equal to k.

In the full version of the paper we will show how the new structure defines a
NBA that accepts safety properties in L(φ).

5.2 A Syntactic Approach

Let φ be an ltl formula where all negations are at the level of propositions.
This is achieved by the following rewriting rules:

¬(ψ1 ∨ ψ2) =⇒ (¬ψ1 ∧ ¬ψ2) ¬(ψ1 ∧ ψ2) =⇒ (¬ψ1 ∨ ¬ψ2)
¬© ψ =⇒©¬ψ ¬(ψ1 U ψ2) =⇒ (¬ψ2 W ¬ψ1)

¬(ψ1 W ψ2) =⇒ (¬ψ2 U ¬ψ1)

Let k be a positive integer. We construct an ltl formula φk by replacing each
sub-formula of the form ψ1 U ψ2 appearing φ with ψ1 U≤k ψ1 where U≤k is
the bounded until operator (i.e., U≤k guarantees its right-hand-side within k
steps.) The following theorem, which gives a syntactic method for synthesizing
safety properties, can be proven by induction on the length of φ. The monitor
for φk can thenb be built by obtaining its tableau.

Theorem 5. Let φ be a temporal formula, let k be positive integer, and let φk

be as defined above. Then L(φk) is a safety property which implies φ.

6 Related Work

As indicated in the introduction, in [11, 12] we studied the problem of synthe-
sizing safety from Büchi specifications and presented a solution that satisfies
restricted completeness in the sense that not all safety property can be syn-
thesized. The work here presents a solution that is both simpler and complete,
namely, given a NBA A, the construction here generates any safety property
that is in L(A). In addition, the work here presents synthesis of safety property
directly from ltl properties. These methods are much simpler than the ones
given in [11].

Similar in motivation to ours, but much different in the approach, is the work
in [13]. There, the interaction between the module and the interface is viewed as
a 2-player game, where the interface has a winning strategy if it can guarantee
that no matter what the module does, Φ is met while maintaining ΦI . The
work there only considers determinisic Büchi automata. The approach here is
to synthesize the interface behavior, expressed by (possibly) non-determinisic
automata, before constructing the module.

Some of the techniques we employ are somewhat reminiscent of techniques
used for verifying that a safety property described by a state machine satisfies a
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correctness specification given by an automaton or temporal logic. For example,
simulation relations/state-functions together with well-founded mappings [5, 1,
17] have been proposed in the literature for this purpose. Our bounded automata
use a form of well-founded mappings in the form of positive integer values that
are components of each state. (This is as it should be, since we need to use some
counters to ensure that an accepting state eventually appears.) However, here we
are not trying to establish the correctness of a given safety property defined by
a state machine, but rather, we are deriving safety properties that are contained
in the language of an automaton.

In [7, 8] Larsen et al propose a method for turning an implicit specification of
a component into an explicit one, i.e., given a context specification (there, a pro-
cess algebraic expression with a hole, where the desired components needs to be
plugged in) and an overall specification, they fully automatically derive a tempo-
ral safety property characterizing the set of all implementations which, together
with the given context, satisfy the overall specification. While this technique
has been developed for component synthesis, it can also be used for synthesiz-
ing optimal monitors in a setting where the interface specification ΦI and the
goal specification Φ are both safety properties. In this paper, we do not make
any assumptions on ΦI and Φ. They can be arbitrary properties specified in
temporal logic or by automata. We are aiming at exploiting liveness guarantees
of external components (contexts), in order to establish liveness properties of
the overall system under certain additional safety assumptions, which we can
run time check (monitor). This allows us to guarantee that the overall system
is as live as the context, as long as the constructed monitor does not cause an
alarm.

There has been much on monitoring violations of safety properties in dis-
tributed systems. In these works, the safety property is typically explicitly spec-
ified by the user. Our work is more on deriving safety properties from component
specifications than developing algorithms for monitoring given safety properties.
In this sense, the approach to use safety properties for monitoring that have been
automatically derived by observation using techniques adapted from automata
learning (see [4]) is closer in spirit to the technique here. Much attention has
since been spent in optimizing the automatic learning of the monitors [10]. How-
ever, the learned monitors play a different role: whereas the learned monitors
are good, but by no means complete, sensors for detecting unexpected anoma-
lies, the monitors derived with the techniques of this paper imply the specifying
property as long as the guarantees of the component provider are true.

7 Conclusions and Discussion

In this paper, we considered the problem of customizing a given, off-the-shelf,
reactive component to user requirements. In this process, we assume that the
reactive module’s external behavior is specified by a formula ΦI and the desired
goal specifications is given by a formula Φ. We presented methods for obtaining
a safety specification φ so that φ→ (¬ΦI ∨Φ) by synthesizing (possibly infinite-
state) NBAs for monitoring off-the-shelf components.
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More specifically, we considered three different cases. The first one is when
(¬ΦI ∨ Φ) is given as a non-deterministic Büchi automaton. For this case, the
synthesized safety property is also given as a non-deterministic automaton. This
method is shown to to be sound and complete when the given automaton is
deterministic. This method is simpler than the one given in [11]. The second
case is when (¬ΦI ∨Φ) is given as a Streett automaton. In this case also, we gave
a sound method for synthesizing safety properties contained in the language of
the automaton, The method is also shown to be complete if the given automaton
is a deterministic Streett Automaton. Since every Büchi automaton and Streett
automaton can be converted algorithmically into an equivalent deterministic
Streett automaton, this method gives us a complete system for synthesizing
any safety property contained in the language of a given Büchi automaton or
Streett automaton. The last case is when ¬ΦI ∨ Φ is a LTL formula. In this
case, we outlined a semantic method that works directly with tableux associated
with formulae, without converting the tableux into automata. We also gave a
syntactic method for this.

For our automata to be useful, they should be recursive, i.e., their set of states
and their transition functions should be recursive functions. For monitoring pur-
poses we need not explicitly compute the automaton and keep it in memmory,
rather, we only need to maintain its current state and, whenever a new input
arrives, we can use the transition function to compute the next state. For a
non-dterministic automaton, we need to maintain the set of reachable states.
Because of finite non-determinism, this set will be finite and is also computed
on-the-fly after each input.

It is to be noted that the counters that are used only count down after occur-
rence of some input symbols. If the off-the-shelf component never responds, the
autoamton remains in its current (good) state and permits such computations.
This problem can be overcome by assuming that clock ticks are inputs to the
automaton as well, and allowing a counter to count down with (some or all)
clockticks. There are also other possible solutions to this problem.

We implemented a preliminary version of the method given in Section 3.
It will be interesting to implement the general version given in Section 4 and
apply it to practical problems. It will also be interesting to investigate how the
counter values, given in these constructions, can be computed as functions of
the history seen thus far. Real-time implementation of such systems need to be
further investigated.
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Abstract. In this paper we present Parallel External A*, a parallel vari-
ant of external memory directed model checking. As a model scales up,
its successors generation becomes complex and, in turn, starts to impact
the running time of the model checker. Probings of our external memory
model checker IO-HSF-SPIN revealed that in some of the cases about 70%
of the whole running time was consumed in the internal processing. Em-
ploying a multiprocessor machine or a cluster of workstations, we can dis-
tribute the internal working load of the algorithm on multiple processors.

Moreover, assuming a sufficient number of processors and number of
open file pointers per process, the I/O complexity is reduced to linear by
exploiting a hash-function based state space partition scheme.

1 Introduction

In explicit-state model checking software [3], state descriptors are often so large,
so that main memory is often not sufficient for a lossless storage of the set of
reachable states during the exploration even if all available reduction techniques,
like symmetry or partial-order reduction [20, 24] have been applied. Besides ad-
vanced implicit storage structures for the set of states [19] three different options
have been proposed to overcome the internal space limitations for this so-called
state explosion problem, namely, directed, external and parallel search.

Directed or heuristic search [23] guides the search process into the direction of
the goal states, which in model checking safety properties is the set of software
errors. The main observation is that using this guidance, the number of explored
states needed to establish an error is smaller than with blind search. Moreover,
directed model checking [29, 7] often reduces the length of the counter-example,
which in turn eases the interpretation of the bug.

External search algorithms [26] store and explore the state space via hard disk
access. States are flushed to and retrieved from disk. As virtual memory already
can exceed main memory capacity, it can result in a slow-down of speed due to
excessive page-faults if the algorithm lacks locality. Hence, the major challenge in
a good design for an external algorithm is to control the locality of the file access,
where block-transfers are in favor to random accesses. Since hashing has a bad
reputation for preserving locality, in external model checking [27, 11] duplicate
elimination is delayed by applying a subsequent external sorting and scanning
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phase of the state set to be refined. During the algorithm only a part of the graph
can be processed at a time; the remainder is stored on a disk. However, hard
disk operations are about a 105 − 106 times slower than main memory accesses.
More severely, this latency gap rises dramatically. According to recent estimates,
technological progress yields about annual rates of 40-60 percent increase in
processor speeds, while disk transfers only improve by 7 to 10%. Moreover, the
costs for large amount of disk space has considerably decreased. At the time of
writing, 500 gigabytes can be obtained at the cost of 300-400 US dollars.

Parallel or distributed search algorithms1 are designed to solve algorithmic
problems by using many processors / computers. An efficient solution can only
be obtained, if the organization between the different tasks can be optimized
and distributed in a way that the working power is effectively used. Distributed
model checking [28] tackles with the state explosion problem by profiting from the
amount of resources provided by parallel environments. A speedup is expected if
the load is distributed uniformly with a low inter-processes communication cost.

In large-scale parallel breadth-first search [14], the state space is fully enumer-
ated for increasing depth. Using this approach a complete exploration for the
Fifteen-Puzzle with 16!/2 states has been executed on six disks using a maxi-
mum of 1.4 terabytes of disk storage. In model checking such an algorithm is
important to verify safety properties in large state spaces. In [11], the authors
presented an external memory directed model checker that utilizes hard disk
to store the explored states. It utilizes heuristics estimates to guide the search
towards the error state.

In LTL model checking, as models scale up, the density of edges in the com-
bined state space also increases. This in turn, effects the complexity of successors
generation. Probing our external directed model checker IO-HSF-SPIN [11] re-
vealed some bottlenecks in its running time. Surprisingly, in a disk-based model
checker internal processing such as successor generations and state comparisons
were sometimes dominating even the disk access times.

In this paper we present a parallel variant of external memory directed model
checking algorithm that improves on our earlier algorithm in two ways. Firstly,
the internal workload is divided among different processors that can either be
residing on the same machine or on different machines. Secondly, we suggest an
improved parallel duplicate detection scheme based on multiple processors and
multiple hard disks. We show that under some realistic assumptions, we achieve
a number of I/Os that is linear to the explored size of the model.

The paper is structured as follows. First we review large-scale parallel breadth-
first search, the combined approach of external and parallel breadth-first search.
Then, we turn to directed model checking and the heuristics used in model

1 As it refers to related work, even for this text terminology is not consistent. In AI
literature, the term parallel search is preferred, while in model checking research,
the term distributed search is commonly chosen. In theory, parallel algorithms com-
monly refers to a synchronous scenario (mostly according a fixed architecture), while
distributed algorithms are preferably used in an asynchronous setting. In this sense,
the paper considers the less restricted distributed scenario.
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checking. Next, we recall External A*, the external version of the A* algorithm
that serves as a basis to include heuristics to the search. Afterwards, we propose
Parallel External A* and provide algorithmic details for large-scale parallel A*
search. Subsequently, we discuss some of the complexity aspects of the algorithm.
Its application to distributed and external model checking domains is considered
in the experimental part, where we have successfully extended the state-of-the-
art model checker SPIN to include directed, external and parallel search. The
paper closes with further links to related work.

2 Large-Scale Parallel Breadth-First Search

In large-scale parallel breadth-first search [14], the entire search space is parti-
tioned into different files. The hash address is used to distribute and to locate
states in those files. As the considered state spaces like the Fifteen-Puzzle are
regular permutation games, each state can be perfectly hashed to a unique in-
dex. Since all state spaces are undirected, in order to avoid regenerating explored
states, frontier search [15] stores, with each node, its used operators in form of a
bit-vector in the size of the operator labels available. This allows to distinguish
neighboring states that have already been explored from those that have not,
and, in turn to omit the list of already explored states.

Hash-based delayed duplicate detection uses two orthogonal hash functions.
When a state is explored, its children are written to a particular file based on the
first hash value. In cases like the sliding-tile puzzle, the filename correspond to
parts of state vector. For space efficiency it is favorable to perfectly hash the rest
of the state vector to obtain a compressed representation. The representation as a
permutation index can be computed in linear time w.r.t. the length of the vector.

Figure 1 depicts the layered exploration on the external partition of the state
space. Even on a single processor, multi-threading is important to maximize
the performance of disk-based algorithms. The reason is that a single-threaded
implementation will run until it has to read from or write to disk. At that point it
will block until the I/O operation has completed. Moreover hash-based delayed
duplicate detection is well-suited to be distributed. Within an iteration, most
file expansions and merges can be performed independently.

child files

parent files

Fig. 1. Externally stored state space with parent and child files
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To realize parallel processing a work queue is maintained, which contains
parent files waiting to be expanded, and child files waiting to be merged. At
the start of each iteration, the queue is initialized to contain all parent files.
Once all the neighbors of a child file are finalized, it is inserted in the queue
for merging. Each thread works as follows. It first locks the work queue. Two
parent files conflict if they can generate states that hash to the same child file.
The algorithm checks whether the first parent file conflicts with any other file
currently being expanded. If so, it scans the queue for a parent file with no
conflicts. It swaps the position of that file with the one at the head of the queue,
grabs the non-conflicting file, unlocks the queue, and expands the file. For each
child file it generates, it checks to see if all of its parents have been expanded. If
so, it puts the child file to the queue for merging, and then returns to the queue
for more work. If there is no more work in the queue, any idle threads wait for
the current iteration to complete. At the end of each iteration the work queue
is initialized to contain all parent files for the next iteration.

3 Directed Model Checking

Directed model checking [7] incorporates heuristic search algorithms like A* [23]
to enhance the bug-finding capability of model checkers, by accelerating the
search for errors and finding (near to) minimal counterexamples. In that man-
ner we can mitigate the state explosion problem and the long counterexamples
provided by some algorithms like depth-first search, which is often applied in
explicit state model checking.

One can distinguish different classes of evaluation functions based on the
information they try to exploit. Property specific heuristics [7] analyze the error
description as the negation of the correctness specification. In some cases the
underlying methods are only applicable to special kinds of errors. A heuristic
that prioritizes transitions that block a higher number of processes focuses on
deadlock detection. In other cases the approaches are applicable to a wider range
of errors. For instance, there are heuristics for invariant checking that extract
information from the invariant specification and heuristics that base on already
given errors states. The second class has been denoted as being structural [9], in
the sense that source code metrics govern the search. This class includes coverage
metrics (such as branch count) as well as concurrency measures (such as thread
preference and thread interleaving). Next there is the class of user heuristics
that inherit guidance from the system designer in form of source annotations,
yielding preference and pruning rules for the model checker.

4 External A*

External A* [6] maintains the search horizon on disk. The priority queue data
structure is represented as a list of buckets. In the course of the algorithm
(cf. Figure 2), each bucket (i, j) will contain all states u with path length g(u) = i
and heuristic estimate h(u) = j. As similar states have same heuristic estimates,
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h
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g

Fig. 2. Exploration in External A*

it is easy to restrict duplicate detection to buckets of the same h-value. By an as-
sumed undirected state space problem graph structure, we can restrict aspirants
for duplicate detection furthermore. If all duplicates of a state with g-value i are
removed with respect to the levels i, i− 1 and i− 2, then no duplicate state will
remain for the entire search process. For breadth-first-search in explicit graphs,
this is in fact the algorithm of [22]. We consider each bucket as a different file
that has an individual internal buffer. A bucket is active if some of its states are
currently expanded or generated. If a buffer becomes full, then it is flushed to
disk. The algorithm maintains the two values gmin and fmin to address the cor-
rect buckets. The buckets of fmin are traversed for increasing gmin-value unless
the gmin exceeds fmin. Due to the increase of the gmin-value in the fmin bucket,
a bucket is finalized when all its successors have been generated. Given fmin and
gmin, the corresponding h-value is determined by hmax = fmin− gmin. According
to their different h-values, successors are arranged into different horizon lists.
Duplicate elimination is delayed.

Since External A* simulates A* and changes only the order of elements to
be expanded that have the same f -value, completeness and optimality are in-
herited from the properties of A*. The I/O complexity for External A* in an
implicit unweighted and undirected graph with monotone heuristic is bounded
by O(sort(|E|) + scan(|V |)), where |V | and |E| are the number of nodes and
edges in the explored subgraph of the state space problem graph, and scan(n)
(sort(n)) are the number of I/Os needed to externally scan (sort) n elements.

For challenging exploration problems, external algorithms operate in terms of
days and weeks. For improving fault-tolerance, we have added a stop-and-resume
option on top of the algorithm, which allows the continuation of the exploration
in case of a user interrupt. An interrupt causes all open buffers to be flushed and
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the exploration can continue with the active buffer at the additionally stored file
pointer position. In this case, we only have to redo at most one state expansion.
As duplicates are eliminated, generating a successor twice does not harm the
correctness and optimality of the algorithm. As we flush all open buffers when
a bucket is finished, in case of severe failures e.g. to the power supply of the
computer we have to re-run the exploration for at most one bucket.

I/O Efficient Directed Model Checking [11] applies variants of External A*
to the validation of communication protocols. The tool IO-HSF-SPIN accepts
large fractions of the Promela input language of the SPIN model checker. The
paper extends External A* to weighted, directed graphs, with non-monotone
cost functions as apparent in explicit state model checking and studies the scope
for delayed duplicate within protocol verification domains.

5 Parallel External A*

The distributed version of External A* Parallel External A* is based on the
observation that the internal work in each individual bucket can be parallelized
among different processors. Due to the dynamic allocation of new objects in
software model checking, our approach is also compatible with state vectors of
varying length. We first discuss our method of disk-based queues to distribute
the work load among different processes. Our approach is applicable to both a
client-server based environment or a single machine with multiple processors.

5.1 Disk-Based Queues

To organize the communication between the processors a working queue is main-
tained on disk. The working queue contains the requests for exploring parts of
a (g, h) bucket together with the part of the file that has to be considered2. For
improving the efficiency, we assume a distributed environment with one master
and several slave processes3. Our approach applies to both the cases when each
slave has its own hard disk or if they work together on one hard disk residing on
the master. Message passing between the master and slave processes is purely
done on files, so that all processes can run independently. For our algorithm,
master and slave work fully autonomously. We do not use spawning of child pro-
cesses. Even if slave processes are killed, their work can be re-done by any other
idle process that is available.

One file that we call the expand-queue, contains all current requests for ex-
ploring a state set that is contained in a file. The filename consists of the current
2 As processors may have different computational power and processes can dynami-

cally join and leave the exploration, the number of state space parts under considera-
tion do not necessarily have to match the number of processors. By utilizing a queue,
one also may expect a processor to access a bucket multiple times. However, for the
ease of a first understanding, it is simpler to assume that the jobs are distributed
uniformly among the processors.

3 In our current implementation the master is in fact an ordinary process defined as
the one that finalized the work for a bucket.
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g and h value. In case of larger files, file-pointers for processing parts of a file
are provided, to allow for better load balancing. There are different strategies
to split a file into equi-distance parts or into chunks depending on the number
and performance of logged-on slaves. As we want to keep the exploration process
distributed, we select the file pointer windows into equidistant parts of a fixed
number of C bytes for the states to be expanded. For improved I/O, number C
is supposed to divide the system’s block size B. As concurrent read operations
are allowed for most operating systems, multiple processes reading the same file
impose no concurrency conflicts.

The expand-queue is generated by the master process and is initialized with
the first block to be expanded. Additionally we maintain a total count on the
number of requests, i.e., the size of the queue, and the current count of satisfied
requests. Any logged-on slave reads a requests and increases the count once it
finishes. During the expansion process, in a subdirectory indexed by the slave’s
name it generates different files that are indexed by the g and h value of the
successor states.

The other queue is the refine-queue also generated by the master process once
all processes are done. It is organized in a similar fashion as the expand queue
and allows slaves to request work. The refine-queue contains filenames that have
been generated above, namely the slave-name (that does not have to match with
the one of the current process), the block number, and the g and h value. For
a suitable processing the master process will move the files from subdirectories
indexed by the slave’s name to ones that are indexed by the block number. As
this is a sequential operation executed by the master thread, we require that
changing the file locations is fast in practice, an assumption that is fulfilled in
all modern operating systems.

In order to avoid redundant work, each processor eliminates the requests
from the queue. Moreover, after finishing the job, it will write an acknowledge
to an associated file, so that each process can access the current status of the
exploration, and determine if a bucket has been completely explored or sorted.

Since all communication between different processes is done through shared
files, proper mechanism for mutual exclusion is necessary. We utilized a rather
simple but efficient method to avoid concurrent writes accesses to the files. When
ever a process has to write on a shared file, e.g., to the expand-queue to deque
the request, it issues an operating system move (mv) command to rename the
file into <process ID>.expand-queue, where process ID is a unique number that
is automatically assigned to every process that enters the pool. If the command
fails, it implies that the file is currently being used by another process. Since
the granularity of a kernel-level command is much finer than any other program
implemented on top of it, the above technique performed remarkably well.

5.2 Sorting and Merging

For each bucket that is under consideration, we establish four stages in the
algorithm. These phases are visualized in Figure 3 (top to bottom). The zig-zag
curves visualize the sorting order of the states sequentially stored in the files.
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The sorting criteria is defined by the state’s hash key, which dominates low-level
state comparison based on the compressed state descriptor.

In the exploration stage, each processor p flushes the successors with a partic-
ular g and h value to its own file (g, h, p). Each process has its own hash table
and eliminates some duplicates already in main memory. The hash table is based
on chaining, with chains sorted along the state comparison function. However,
if the output buffer exceeds memory capacity it writes the entire hash table to
disk. By the use of the sorting criteria as given above, this can be done using a
mere scan of the hash table.

In the first sorting stage, each processor sorts its own file. In a serial set-
ting, such sorting has a limited effect on I/O when using external merge-sort
afterwards. In a distributed setting, however, we exploit the advantage that the
files can be sorted in parallel. Moreover, the number of file pointers needed is
restricted by the number of flushed buffers, which is illustrated by the number of
peaks in the figure. Based on this restriction, we only need to perform a merge
of different sorted buffers - an operation in linear I/O.

In the distribution stage, a single processor distributes all states in the pre-
sorted files into different files according to the hash value’s range. This is a
parallel scan with a number of file pointers that is equivalent to the number of
files that have been generated. As all input files are pre-sorted this is a mere
scan. No all-including file is generated, keeping the individual file sizes small.
This is of course a bottleneck to the parallel execution, as all processes have to
wait until the distribution stage is completed. However, if we expect the files to
be on different hard drives, traffic for file copying is needed anyway.

In the second sorting stage, processors sort the files with buffers pre-sorted
w.r.t the hash value’s range, to find further duplicates. The number of peaks in
each individual file is limited by the number of input files (= number of proces-
sors), and the number of output files is determined by the selected partitioning of
the hash index range. The output of this phase are sorted and partitioned buffers.
Using the hash index as the sorting key we establish that the concatenation of
files is in fact totally sorted.

Fig. 3. Stages of bucket expansions in Parallel External A*
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6 Complexity

The complexity of external memory algorithm is usually measured in terms
of I/Os, which assumes an unlimited amount of disk space. Using the com-
plexity measurement [6] shows that in general it is not possible to exceed the
external sorting barrier i.e., delayed duplicate detection. The lower bound for
the I/O complexity for delayed duplicate bucket elimination in an implicit un-
weighted and undirected graph A* search with consistent estimates is at least
Ω(sort(|E|)), where E is the set of explored edges in the search graph. Fewer
I/Os can only be expected if structural state properties can be exploited. We
will see, that by assuming a sufficient number of processors and file pointers,
the I/O complexity is reduced to linear (i.e. Ω(scan(|E|)) = |E|/|B| I/Os) by
exploiting a hash-function based state space partition scheme. We assume that
the hash function provides a uniform partitioning of the state space.

Recall that, the complexity in the external memory model assumes no restric-
tion to the capacity of the external device. In practice, however, we have certain
restrictions, e.g on the number of open file pointers per process.

We may, however, assume that the number of processes is smaller than the
number of file pointers. Moreover, by the given main memory capacity, we can
also assume that the number of flushed buffers (the number of peaks w.r.t. the
sorted order of the file) is also smaller than the number of file pointers.

Using this we can achieve in fact a linear number of I/O for delayed duplicate
elimination. The proof is rather simple. The number of peaks k in each individual
file is bounded either by the number of flushed buffers or by the number of
processes, so that a simple scan with k-file pointers suffices to finalize the sorting.

An important observation is that the more processors we invest, the finer the
partitioning of the state space, and the smaller the individual file sizes in a parti-
tioned representation. Therefore, a side effect on having more processors at hand is
an improvement in I/O performance based on existing hardware resource bounds.

7 Experiments

We have implemented a slightly reduced version of Parallel External A* in our
extension to the model checker SPIN. Our tool, entitled IO-HSF-SPIN and first
introduced in [11], is in fact an extension of the model checker HSF-SPIN devel-
oped by [18]. Instead of implementing all four stages for the bucket exploration,
we restricted to three stages and use one server processor to merge the sorted
outcome of the others. A drawback is that all processors have to wait for a final-
ized merge phase. Moreover, the size of the resulting file is not partitioned and,
therefore, larger. Given that the time complexity is in fact hidden during the
exploration of states, so far these aspects are not a severe limitation. As all input
files are pre-sorted the stated I/O complexity of the algorithm is still linear.

We chose two characteristics protocols for our experiments, the CORBA-
GIOP protocol as introduced by [12], and the Optical Telegraph protocol that
comes with SPIN distribution. The CORBA-GIOP can be scaled according to
two different parameters, the number of servers and the number of clients. We
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selected three settings: a) 3 clients and 2 servers, b) 4 clients and 1 server, and c)
4 clients and 2 servers. For the Optical Telegraph, we chose one instance with 9
stations. CORBA-GIOP protocol has a longer state vector that puts much load
on the I/O. On the other hand, the Optical Telegraph has a smaller state vector
but takes a longer time to be computed which puts more load on the internal
processing. Moreover, the number of duplicates generated in Optical Telegraph
is much more than in CORBA-GIOP.

To evaluate the potential of the algorithm, we tested it on two different (rather
small) infrastructures. In the first setting we used two 1 GHz Sun Solaris Work-
stations equipped with 512 megabyte RAM and a NFS mounted hard disk space.
For the second setting we chose a Sun Enterprise System with four 750 MHz pro-
cessors working with 8 gigabyte RAM and 30 gigabyte shared hard disk space. In
both cases, we worked with a single hard disk, so that no form of disk parallelism
was exploited. Throughout our experiments the sizes of individual processes re-
mained less than 5% of the total space requirement.

Moreover, we used the system time command to calculate the CPU running
times. The compiler used is GCC v2.95.3 with default optimizations and -g and
-pg options turned on for debugging and profiling information. In all of the
test cases, we searched for the deadlock using number of active processes as the
heuristic estimate. We depict all three parameters provided by the system: real
(the total elapsed time), user (total number of CPU-seconds that the process
spent in user mode) and system (total number of CPU-seconds that the process
spent in kernel mode). The speedup in the columns is calculated by dividing the
time taken by a serial execution by the time taken by the parallel execution.

In the first set of experiments, the multi-processor machine is used. Table 1
and 2 depict the times4 for three different runs consisting of single process, 2
processes, and 3 processes. The space requirements by a run of our algorithm
is approx. 2.1 GB, 5.2 GB, 21 GB, and 4.3 GB for GIOP 3-2, 4-1, 4-2, and
Optical-9, respectively. For GIOP 4-1, we see a gain by a factor of 1.75 for two
processors and 2.12 for three processors in the total elapsed time. For Optical
Telegraph, this gain went up to 2.41, which was expected due to its complex
internal processing.

In actual CPU-time (user), we see an almost linear speedup that depicts the
uniform distribution of internal workload and, hence, highlighting the potential
of the presented approach.

Tables 3 and 4 show our results in the scenario of two machines connected
together via NFS. In GIOP 3-2, we observe a small speed-up of a factor of 1.08. In
GIOP 4-1, this gain increased to about a factor of 1.3. When tracing this limited
gain, we found that the CPUs were not used at full speed. The bottleneck turned
out to be the underlying NFS layer that was limiting the disk accesses to only
about 5 Megabytes/sec. This bottleneck can be removed by utilizing local hard
disk space for successors generation and then sending the files to the file server
using secure copy (scp) that allows a transfer rate of 50 Megabytes/sec.

4 The smallest given CPU time always corresponds to the process that established the
error in the protocol first.
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Table 1. CPU time for Parallel External A* in GIOP on a multiprocessor machine

GIOP 3-2 1 process 2 processes Speedup 3 processes Speedup
real 25m 59s 17m 30s 17m 29s 1.48 15m 55s 16m 6s 15m 58s 1.64
user 18m 20s 9m 49s 9m 44s 1.89 7m 32s 7m 28s 7m 22s 2.44
system 4m 22s 4m 19s 4m 24s 0.98 4m 45s 4m 37s 4m 55s 0.92
GIOP 4-1 1 process 2 processes Speedup 3 processes Speedup
real 73m 10s 41m 42s 41m 38s 1.75 37m 24s 34m 27s 37m 20s 2.12
user 52m 50s 25m 56s 25m 49s 2.04 18m 8s 18m 11s 18m 20s 2.91
system 10m 20s 9m 6s 9m 15s 1.12 9m 22s 9m 8s 9m 0s 1.13
GIOP 4-2 1 process 2 processes Speedup 3 processes Speedup
real 269m 9s 165m 25s 165m 25s 1.62 151m 6s 151m 3s 151m 5s 1.78
user 186m 12s 91m 10s 90m 32s 2.04 63m 12s 63m 35s 63m 59s 2.93
system 37m 21s 29m 44s 30m 30s 1.25 30m 19s 30m 14s 29m 50s 1.24

Table 2. CPU time for Parallel External A* in Optical Telegraph on a multiprocessor
machine

Optical-9 1 process 2 processes Speedup 3 processes Speedup
real 55m 53s 31m 43s 31m 36s 1.76 23m 32s 23m 17s 23m 10s 2.41
user 43m 26s 22m 46s 22m 58s 1.89 15m 20s 14m 24s 14m 25s 3.01
system 5m 47s 4m 43s 4m 18s 1.34 3m 46s 4m 45s 4m 40s 1.22

Table 3. CPU time for Parallel External A* in GIOP on two computers and NFS

GIOP 3-2 1 process 2 processes Speedup
real 35m 39s 32m 52s 33m 0s 1.08
user 11m 38s 6m 35s 6m 34s 1.76
system 3m 56s 4m 16s 4m 23s 0.91
GIOP 4-1 1 process 2 processes Speedup
real 100m 27s 76m 38s 76m 39s 1.3
user 31m 6s 15m 52s 15m 31s 1.96
system 8m 59s 8m 30s 8m 36s 1.05

Table 4. CPU time for Parallel External A* in Optical Telegraph on two computers
and NFS

Optical-9 1 process 2 processes Speedup
real 76m 33s 54m 20s 54m 6s 1.41
user 26m 37s 14m 11s 14m 12s 1.87
system 4m 33s 3m 56s 3m 38s 1.26

In the Optical Telegraph, we see a bigger reduction of about a factor of 1.41
because of complex but small state vector and more dependency on internal
computation. As in the former setting, the total CPU-seconds consumed by a
process (user) in 1-process mode is reduced to almost half in 2-processes mode.
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8 Related Work

There is much work on external search in explicit graphs that are fully specified
with its adjacency list on disk. In model checking software the graph are implicit.
There is no major difference in the exposition of the algorithm of Munagala and
Ranade [22] for explicit and implicit graphs. However, the precomputation and
access efforts are by far larger for the explicit graph representation. The breadth-
first search algorithm has been improved by [21].

Even for implicit search, the body of literature is rising at a large pace.
Edelkamp and Schrödl [8] consider external route-planning graphs that are natu-
rally embedded into the plane. This yields a spatial partitioning that is exploited
to trade state exploration count for improved local access. Zhou and Hansen [30]
impose a projection function to have buckets to control the expansion process
in best-first search. The projection preserves the duplicate scope or locality of
the state space graph, so that states that are outside the locality scope do not
need to be stored. Korf [13] highlights different options to combine A*, frontier
and external search. His proposal is limited as only any two options were com-
patible. Edelkamp [5] extends the External A* with BDDs to perform a external
symbolic BFS in abstract space, followed by an external symbolic A* search in
original space that take the former result as a lower bound to guide the search.
Zhou and Hansen [31] propose structure preserving state space projections to
have a reduced state space to be controlled on disk. They also propose external
construction of pattern databases. The drawback of their approach is that it
applies only to the state spaces that have a very regular structure - something
that is not available in model checking.

In Stern and Dill’s initial paper on external model checking in the Murφ Veri-
fier variants of external breadth-first search are considered. In Bao and Jones [1],
we see another faster variant of Murφ Verifier with magnetic disk. They propose
two techniques: one is based on partitioned hash tables, and the other on chained
hash table. They targeted to reduce the delayed duplicate detection time by par-
titioning the state space that, in turn, diminishes the size of the set to be checked.
They claim their technique to be inherently serial having less room for a dis-
tributed variant. In the approach of Kristensen and Mailund [16] repeated scans
over the search space in a geometric scan-line approach with states that are ar-
ranged in the plane wrt. some progress measure based on a given partial order.
The scan over the entire state space is memory efficient, as it only needs to store
the states that participate in the transitions that cross the current scan posi-
tion. These states are marked visited and the scan over the entire state space
is repeated to cope with states that are not reachable with respect to earlier
scans. Their dependeny on a good progress measure hinders its applicability to
model checking in general. They have applied it mainly to Petri nets based model
checking where the notion of time is used as a progress measure.

While some approaches to parallel and distributed model checking are lim-
ited to the verification of safety properties [2, 10, 17], other work propose methods
for checking liveness properties expressed in linear temporal logic (LTL) [4, 18].
Recall that LTL model checking mainly entails finding accepting cycles in a
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state space, which is performed with the nested depth-first search algorithm.
The correctness of this algorithm depends on the depth-first traversal of the
state space. Since depth-first search is inherently sequential [25], additional data
structures and synchronization mechanisms have to be added to the algorithm.
These requirements can waste the resources offered by the distributed environ-
ment. Moreover, formally proving the correctness of the resulting algorithms is
not easy. It is possible, however, to avoid these problems by using partition func-
tions that localize cycles within equivalence classes. The above described meth-
ods for defining partitions can used for this purpose, leading to a distributed
algorithm that performs the second search in parallel. The main limitation fac-
tor is that scalability and load distribution depend on the structure of the model
and the specification.

Brim et. al. [4] discusses one such approach where the SPIN model checker
has been extended to perform nested depth-first search in a distributed manner.
They proposed to maintain a dependency structure for all the accepting states
visited. The nested parts for these accepting states are then started as sepa-
rate procedures based on the order dictated by the dependeny structure. Lluch-
Laufente [18] improves on the idea of nested depth-first search. The proposed
idea is to divide the state space in strongly connected components by exploiting
the structure of the never claim automaton of the specification property. The
nested search is then restricted only to the corresponding component. If during
exploration, a node that belongs to some other component is encountered, it is
inserted in the visited list of its corresponding component. Unfortunately, there
is little or almost no room externalize the above two approaches. Depth-first
search lacks locality and hence not suited to be externalize. Stern and Dill [28]
propose a parallel version of the Murφ model checker. They also use a scheme
based on run-time partitioning of the state space and assigning different parti-
tions to different processors. The partitioning is done by using a universal hash
function that uniformly distributes the newly generated states.

9 Conclusion

Enhancing directed model checking is essential to improve error detection in soft-
ware. The paper contributes the first study of combining external, directed and
parallel search to mitigate the state-explosion problem in model checking. We
have shown a successful approach to extend the external A* exploration in a dis-
tributed environment, as apparent in multi-processor machines and workstation
clusters. Exploration and delayed duplicate detection are parallelized without
concurrent write access, which is often not available.

Error trails provided by depth-first search exploration engines are often ex-
ceedingly lengthy. Employed with a lower-bound heuristic, the proposed algo-
rithm yields counter-examples of optimal length, and is, therefore, an important
step to ease error comprehension for the programmer / software designer. Under
reasonable assumptions on the number of file pointers per process, the number
of I/Os is linear in the size of the model, by means the external work of exploring
the model matches the complexity of scanning it.
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The approach is implemented on top of the model checker IO-HSF-SPIN and
the savings for the single disk model are very encouraging. We see an almost
linear speedup in the CPU-time and significant gain in the total elapsed time.
Compared to the potential of external search, the models that we have looked at
are considerably small. In near future, we expect to implement the multiple-disk
version of the algorithm as mentioned in this text. To conduct empirical ob-
servations for external exploration algorithm is a time-consuming task. In very
large state spaces algorithms can run for weeks. For example the complete explo-
ration of the Fifteen Puzzle consumed more than three weeks. Given more time,
we expect larger models to be analyzed. We also expect further fine-tuning to
increase the speed-up that we have obtained. Moreover, the approach presented
is particular to model checking only, and can be applied to other areas where
searching in a large state space is required.

Acknowledgments. The authors wish to thank Mathias Weiss for helpful dis-
cussions and technical support that made running of the presented experiments
possible.
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8. S. Edelkamp and S. Schrödl. Localizing A*. In National Conference on Artificial
Intelligence (AAAI), pages 885–890, 2000.

9. A. Groce and W. Visser. Heuristic model checking for java programs. International
Journal on Software Tools for Technology Transfer, 6(4), 2004.

10. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability in
parallel reachability analysis of very large circuits. In International Conference on
Computer-Aided Verification (CAV), pages 20–35, 2000.

11. S. Jabbar and S. Edelkamp. I/O efficient directed model checking. In Verification,
Model Checking and Abstract Interpretation (VMCAI), volume 3385, pages 313–
329, 2005.



Parallel External Directed Model Checking with Linear I/O 251

12. M. Kamel and S. Leue. Formalization and validation of the General Inter-ORB
Protocol (GIOP) using PROMELA and SPIN. International Journal on Software
Tools for Technology Transfer, 2(4):394–409, 2000.

13. R. Korf. Best-first frontier search with delayed duplicate detection. In National
Conference on Artificial Intelligence (AAAI), pages 650–657, 2004.

14. R. E. Korf and P. Schultze. Large-scale parallel breadth-first search. In National
Conference on Artificial Intelligence (AAAI), pages 1380–1385, 2005.

15. R. E. Korf and W. Zhang. Divide-and-conquer frontier search applied to optimal
sequence allignment. In National Conference on Artificial Intelligence (AAAI),
pages 910–916, 2000.

16. L. M. Kristensen and T. Mailund. Path finding with the sweep-line method using
external storage. In International Conference on Formal Engineering Methods
(ICFEM), pages 319–337, 2003.

17. F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Work-
shop on Software Model Checking (SPIN), 1999.

18. A. Lluch-Lafuente. Directed Search for the Verification of Communication Proto-
cols. PhD thesis, University of Freiburg, 2003.

19. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Press, 1993.
20. K. L. McMillan. Symmetry and model checking. In M. K. Inan and R. P. Kurshan,

editors, Verification of Digital and Hybrid Systems, pages 117–137. Springer-Verlag,
1998.

21. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear
I/O. In European Symposium on Algorithms (ESA), pages 723–735, 2002.

22. K. Munagala and A. Ranade. I/O-complexity of graph algorithms. In Symposium
on Discrete Algorithms (SODA), pages 87–88, 2001.

23. J. Pearl. Heuristics. Addison-Wesley, 1985.
24. D. A. Peled. Ten years of partial order reduction. In Computer-Aided Verification

(CAV), volume 1427, pages 17–28, 1998.
25. J. H. Reif. Depth-first search is inherently sequential. Information Processing

Letters, 20:229–234, 1985.
26. P. Sanders, U. Meyer, and J. F. Sibeyn. Algorithms for Memory Hierarchies.

Springer, 2002.
27. U. Stern and D. Dill. Using magnetic disk instead of main memory in the murphi

verifier. In International Conference on Computer Aided Verification (CAV), pages
172–183, 1998.

28. U. Stern and D. L. Dill. Parallelizing the Murphi verifier. In International Con-
ference on Computer-Aided Verification (CAV), pages 256–278, 1997.

29. C. H. Yang and D. L. Dill. Validation with guided search of the state space. In
Conference on Design Automation (DAC), pages 599–604, 1998.

30. R. Zhou and E. Hansen. Structured duplicate detection in external-memory graph
search. In National Conference on Artificial Intelligence (AAAI), 2004. 683–689.

31. R. Zhou and E. Hansen. External-memory pattern databases using delayed du-
plicate detection. In National Conference on Artificial Intelligence (AAAI), pages
1398–1405, 2005.



Piecewise FIFO Channels Are Analyzable
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Abstract. FIFO systems consisting of several components that commu-
nicate via unbounded perfect FIFO channels arise naturally in modeling
distributed systems. Despite well-known difficulties in analyzing such sys-
tems, they are of significant interest as they can describe a wide range of
Internet-based communication protocols. Previous work has shown that
the piecewise languages play important roles in the study of FIFO sys-
tems. In this paper, we show that FIFO systems composed of piecewise
components can in fact be analyzed algorithmically. We demonstrate that
any FIFO system composed of piecewise components can be described by
a finite state, abridged structure, representing an expressive abstraction
of the system. We present a procedure for building the abridged model
and prove that this procedure terminates. We show that we can ana-
lyze the infinite computations of the more concrete model by analyzing
the computations of the finite, abridged model. This enables us to check
properties of the FIFO systems including safety properties of the compo-
nents as well as a general class of end-to-end system properties. Finally,
we apply our analysis method to an IP-telecommunication architecture
to demonstrate the utility of our approach.

1 Introduction

Finite state machines that communicate over unbounded channels are used as
a model of computation in the analysis of distributed protocols (cf. for example
[10, 6, 1, 19, 12]). While unboundedness of communication channels simplifies the
modeling of the protocols, it complicates their analysis. Since one unbounded
channel is sufficient to simulate the tape of a Turing machine, most interest-
ing verification problems for this class of protocols are undecidable. However, a
substantial effort has gone into identifying subclasses for which the verification
problem is decidable because this analysis is crucial in the design of safety-critical
distributed systems (cf. [1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 19]).

In this paper, we show that by restricting attention to systems composed
of a class of ‘well-designed’ components, automated system analysis is possible
even when the components communicate over unbounded perfect FIFO channels.
This work was inspired by studying real world examples of distributed protocols,
such as IP-telecommunication protocols [7]. In those protocols, it is particularly
desirable that communication between peers (or components) be well-behaved.
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And in fact, many descriptions of components with well-behaved communication
can be expressed by a subclass of regular languages known as the piecewise
languages (cf. [17, 7, 15, 25]).

Piecewise regular languages play important roles in the study of communica-
tion protocols (cf. [9, 17]). Intuitively, a language is piecewise if it is the union
of sets of strings, where each set is given by a regular expression of the form
M∗

0 a0M
∗
1 . . . M

∗
n−1an−1M

∗
n, in which each Mi is a subset of an alphabet Σ and

each ai is an element of Σ. Surprisingly, these relatively straightforward expres-
sions can be used to capture important system properties.

In this paper, we show that in fact FIFO systems composed of communicating
piecewise components are amenable to algorithmic analysis. It was shown in [17]
that the limit language of the channel contents of such systems is regular. A
method was also presented for calculating the limit language of systems with only
a single channel and a certain class of multiple channel systems. Yet, calculating
the limit language of general multiple channel systems remains an open problem.
However, the strings that represent the contents of the channels may be too long
to be calculated exactly. Thus, a method of abridging channel contents (without
losing key information) is required.

First, we present a procedure to calculate, for each channel, a superset of
the channel language associated with specific component states. We then use
these supersets in calculating representations of the system computations. We
note that, in general, limit languages do not represent system computations but
rather the reachable state sets. Further, we show that our procedure is applicable
to all FIFO systems composed of piecewise components. It is worth mentioning
that while a string in the superset may not ever occur in a reachable system
state, for the analysis technique presented in the current work, reachability of
component states is exact.

We present a procedure that translates an n process distributed state machine
(DSM(n)) composed of piecewise components communicating over FIFO chan-
nels into an abridged distributed state machine (ADSM(n)). The ADSM(n) is
closely related to DSM(n); however, it differs in that the contents of the un-
bounded channels are represented by piecewise regular expressions. We establish
the finiteness of the abridged model by proving that the calculation procedure
terminates. Furthermore, we show that a global, component state, composed of
the local states of the processes, is reachable in ADSM(n), if and only if, the
same component state is reachable in the corresponding DSM(n). The repre-
sentation of channel contents by piecewise regular expressions in the context of
global system transitions has allowed us to group together sets of actions that
may be executed by one process from a given global state.

The main reason for abridging DSM(n) is to be able to reason about its
infinite behavior by analyzing the behavior of the finite ADSM(n). We con-
sider system properties expressed by a restricted, but expressive, class of Büchi
automata. Here, the states of the Büchi automata represent the finite set of com-
ponent states and we require that the language of the automata be stuttering
closed. We can then show that there is a computation of ADSM(n) that satisfies
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the automaton, if and only if, there is a computation of DSM(n) that satisfies
the automaton. This procedure allows one to check properties of the DSM(n)
including both local and global reachability properties as well as a general class
of end-to-end system properties, thus showing that piecewise FIFO channels are
analyzable.

1.1 Motivation

IP-telecommunication protocols are often prone to subtle errors because of inde-
terminacy in the scheduling of concurrent processes and communication latency.
These errors can easily go undetected in testing and simulation due to their
infrequency yet they can cause major destruction when they occur. Thus, it is
desirable to formally verify that the protocols meet their specifications in all
circumstances (cf. [1, 2, 5, 7, 12, 14, 19]). IP-telecommunication protocols can in
many cases be effectively modeled as finite state machines communicating via
unbounded channels, with enough generality to examine the concurrency issues
involved.

ECLIPSE, now called BoxOS, is the next generation telecommunication ser-
vices over IP infrastructure developed at AT&T Labs (see [7, 15, 25] and [17]
for related work). Essentially, a telephone call is represented by a list (or more
generally, a graph) of boxes, while communication between neighboring boxes
is handled by perfect FIFO channels. At a sufficient level of abstraction, boxes
may all be viewed as finite state transducers. Importantly, the language of the
automata that model the communication behavior of these boxes is naturally
a piecewise regular language. Communication in these protocols begins with an
initiator trying to reach a given destination. A call is built recursively. The cur-
rent endpoint begins the call initiation protocol with a chosen neighbor, the
callee. If this initiation results in a stable connection, the callee becomes the
new endpoint and the call construction continues. Call termination is required
to proceed in a reverse order and in general required to begin at a call endpoint.

Here, our focus is on an important class of properties that involve several
boxes; for instance, that particular messages sent from a local box eventually
reach a distant box. While communication with multiple neighbors significantly
complicates the description of the box, the languages of box inputs, box outputs,
and sequences of box states can each be given by piecewise expressions.

1.2 Previous Work

FIFO systems have played key roles in the description of distributed systems.
A complete description of prior work is given in [17]. Brand and Zafiropulo [10]
first showed that many important questions regarding FIFO channels are unde-
cidable. Despite this, Pachl [19] described several scenarios that are tractable.
In [10], Brand and Zafiropulo also defined a number of minimal properties that
well-formed protocols are expected to satisfy and showed to what extent these
properties can be ensured. The work of [3] addresses the problem of automati-
cally validating protocols based on algorithms that can detect violations of such
minimal properties.
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FIFO nets, a generalization of FIFO systems, are described in a survey [14]
along with several decidability results that depend on the use of bounded lan-
guages. The work of [13] considers the use of semilinear regular expressions to
represent bounded languages. We note that piecewise languages are not required
to be bounded.

Several important decidability results have been given in the context of lossy
channel systems [1, 2, 12]. For lossy systems, messages may be lost arbitrarily.
Simple regular expressions are considered in [1] in the study of lossy channels.
In contrast, our model is not lossy; some messages may be duplicated but they
may not be lost.

The recent work on regular model checking [8, 16] (see also [9]) has been
focused on the analysis of parameterized systems, whereas in this paper, we have
provided automated analysis techniques applicable to specific FIFO systems.

Surprisingly, Boigelot and Godefroid [5] were able to show BDD-based sym-
bolic methods could be used to calculate the limit language of channel contents
for many important programs. Further, [4] extends their work to consider sets of
operations on channel contents, while [6] considers sequences of channel opera-
tions that preserve the regularity of channel languages. We have instead focused
on the reachability of component states for a specific class of protocols that allow
conditional write operations; it is these conditional operations that increase the
expressiveness of our model.

Piecewise regular languages are strictly more expressive than the piecewise
testable languages of [23]. Further, piecewise languages have been described as
Alphabetic Pattern Constraints [9]. These languages have also been considered
in [20] and [21]. However, these works did not consider use of piecewise languages
in the analysis of FIFO systems.

2 Piecewise Languages

Let Σ be a finite alphabet, denote the set of natural numbers, and λ the
empty string. Given two strings r1 and r2, concatenation of the elements of r1
and r2 is denoted by r1r2. If r∗ represents the Kleene closure of r, then r+ = rr∗.
Let a ∈ Σ, l ∈ , for i ∈ [0..l], ai ∈ Σ. In the sequel, a1 + a2 denotes the non-
deterministic choice between a1 and a2. By 〈+ai | P(ai)〉, we denote the regular
expression (a1 + . . .+ am) consisting of the ai’s that satisfy P.

Definition 1. [17] Thin piecewise regular (tpr) expressions are defined by the
following grammar r ::= λ | a | (a1 + . . .+ al)+ | r1r2.

For example, (a+ b)+ac is a tpr expression but (ab)+c is not. We consider tpr’s
of the form λ, a, and (a1 + . . .+ al)+ to be atomic.

Definition 2. [17] Piecewise regular (pr) expressions generalize tpr expressions
allowing the inclusion of the + operator.

For example, given thin piecewise regular expressions r1 and r2, r1 + r2 is a pr.
It should be noted that (ab)+c is not in fact piecewise.
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Proposition 1. (cf. [17, 9]) Piecewise languages are star-free; they are closed
under finite unions, finite intersections, concatenation, shuffle, projections (de-
fined by letter-to-letter mappings), and inverse homomorphisms, but not under
complementation and substitutions.

Definition 3. (cf. [17]) A piecewise automaton A = ((Σ,Q, δ, q0, F ),≤) is de-
fined as follows: Q is a finite set of states; q0 ∈ Q is the initial state; ≤ is a
partial order on Q; δ : Q×Σ → 2Q is a non-deterministic transition relation and
if q′ ∈ δ(q, a) then q ≤ q′; F ⊆ Q is the set of accepting states. We sometimes
omit F , in which case it is understood that F = Q.

Given q ∈ Q and w ∈ Σ∗, δ(q, w) is defined as usual: δ(q, λ) = {q} and δ(q, wa) =
{p | for some state r ∈ δ(q, w), p ∈ δ(r, a)}. For w ∈ Σ∗ we say that the piecewise
automaton A accepts w iff δ(q0, w) contains a state in F . The language of A is
defined as L(A) = {w ∈ Σ∗ | δ(q0, w) contains a state in F}.

Proposition 2. [17] For every piecewise automaton A, there is a piecewise reg-
ular expression r such that L(A) = r, and for every piecewise regular expression
r, there is a piecewise automaton A such that L(A) = r.

3 FIFO Channel Systems

In this section, we define DSM(n) and its abridged model, ADSM(n). Then we
present a procedure to construct ADSM(n) from a given DSM(n) description
and we prove that this procedure terminates. We also show the relationship
between the computations of ADSM(n) and DSM(n).

In the sequel, the Ai’s are piecewise automata, Ai = ((Σi, Qi, δi, q
0
i ),≤i).

These automata may read from a single incoming channel, write on a single
outgoing channel, or conditionally, read from a single incoming channel and
write on a single outgoing channel. A distributed state machine with n piecewise
automata is an asynchronous system with n2 − n channels and is defined as
follows.

Definition 4. For a set of piecewise automata {Ai}i∈[0..n−1], the DSM(n) =
(Q,C,Σ, R, q0, δ) is given by:

– Q = ×iQi is the component state set.
– C = {c0,1, . . . , cn−1,n−2} is a set of channels, ci,j is the channel from process
i to process j.

– Σ = ∪c∈CΣc, Σc is the alphabet of channel c.
– R = ×c∈CΣ

∗
c is the set of possible channel descriptions.

– q0 is the initial state.
– δ is the transition relation:

δ ⊆ Q×
( ⋃

c,c′∈C

{c?a, c!b, c?a→ c′!d | a, b ∈ Σc and d ∈ Σc′}
)
×Q

and is given below.
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Intuitively, the transition relation δ is built up from the transition relations
of the piecewise Ai’s such that every transition in δ consists of exactly one
transition in δi. Then δ is a set of triples (q, op, q′), where q and q′ are in Q and
op is a read, write, or a conditional operation. Thus, a transition of the form
(q, c?a, q′) represents a change of the component state q to q′ while removing
an a from the head of channel c. The channel content must be of the form aw
for this operation to be enabled. A transition of the form (q, c!b, q′) represents
a change of the component state q to q′ while transforming the content of the
channel c from w to wb. A transition of the form (q, c?a→ c′!d, q′) represents a
change of the component state q to q′ while removing a from the head of channel
c and appending d to the tail of channel c′. Since every transition in δ consists of
exactly one transition in δi, we may abuse the notation by using (qi, op, q′i) ∈ δ
instead of (q, op, q′) ∈ δ where qi and q′i are in Qi.

A global state of DSM(n) is composed of two parts: component state, which
presents the local states of the processes, and the contents of the channels.

Definition 5. A global state of DSM(n) is a tuple ψ = (q0, . . . , qn−1, r0,1, . . . ,
rn−1,n−2) with qi ∈ Qi and ri,j ∈ Σ∗

i,j. The initial global state is q0 = (q00 , . . . ,
q0n−1, λ, . . . , λ).

We use the following notation to refer to the elements of a global state: ψ(i) =
qi and ψ(i, j) = ri,j . We assume that the alphabets of the different channels
are pairwise disjoint. Thus, δi(qi, a) is a read transition if a ∈ Σj,i or a write
transition if a ∈ Σi,j .

The global transition relation of DSM(n) = (Q,C,Σ, R, q0, δ) is a set G of
triples (ψ, op, ψ′), where ψ and ψ′ are global states. We will write ψ

op−→ ψ′ to
denote that ψ′ is a successor of ψ and (ψ, op, ψ′) ∈ G is given below:

– if (qi, ck,i?a, q′i) ∈ δ, then ψ
ck,i?a−→ ψ′ provided that ψ(i) = qi, ψ′(i) = q′i,

ψ(k, i) = aψ′(k, i), for all j �= i, ψ′(j) = ψ(j), and for all (l,m) �= (k, i),
ψ′(l,m) = ψ(l,m).

– if (qi, ci,k!b, q′i) ∈ δ, then ψ
ci,k!b−→ ψ′ provided that ψ(i) = qi, ψ′(i) = q′i,

ψ′(i, k) = ψ(i, k)b, for all j �= i, ψ′(j) = ψ(j), and for all (m, l) �= (i, k),
ψ′(m, l) = ψ(m, l).

– if (qi, ck,i?a → ci,j !d, q′i) ∈ δ, then ψ
ck,i?a→ci,j !d−→ ψ′ provided that ψ(i) = qi,

ψ′(i) = q′i, ψ(k, i) = aψ′(k, i), ψ′(i, j) = ψ(i, j)d, for all u �= i, ψ′(u) = ψ(u),
and for all (l,m) �= (k, i) and (l,m) �= (i, j), ψ′(l,m) = ψ(l,m).

We write ψ → ψ′ when we do not distinguish the specific operation that causes
the change of global states from ψ to ψ′.

Definition 6. A computation path in DSM(n) is a finite or infinite sequence
denoted ψ = ψ0 → ψ1 → . . . where ψ0 = q0 and for all i, ψi → ψi+1 ∈ G.

All the computation paths in DSM(n) are acceptable. Then L∗(DSM(n)) is a
subset of (Q × R)∗ and consists of all the finite computations in DSM(n) and
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Lω(DSM(n)) is a subset of (Q × R)ω and consists of all the infinite computa-
tions in DSM(n). The language of DSM(n), denoted L(DSM(n)), is equal to
L∗(DSM(n)) ∪ Lω(DSM(n)).

3.1 Construction of ADSM(n)

We give a definition for ADSM(n) that contains a procedural definition of its
transition relation. This procedural definition describes how to build ADSM(n)
in an automated way from the syntactic description of DSM(n).
ADSM(n) is closely related to DSM(n). Its component state set is the

same as the component state set of DSM(n). However, the channel contents
in DSM(n) are replaced by tpr expressions in ADSM(n).

Let tpr(Σc) denote the set of tpr’s over the alphabet Σc. Given a DSM(n),
the ADSM(n) is defined as follows.

Definition 7. For a given DSM(n) = (Q,C,Σ,R, q0, δ), the ADSM(n) =
(Q, T, q0, η, Φ) where

– Q = ×iQi is the component state set.
– T = ×c∈C tpr(Σc) is the set of possible channel descriptions.
– q0 is the initial state.
– η ⊆ (Q× T )× (Q× T ) is the transition relation and is given below.
– Φ denotes a fairness constraint on the transitions.

The fairness constraint requires that a transition that only reads from a channel
should not be allowed to read an empty channel: for all processes, if process i
infinitely often reads a from channel cj,i, then process j must infinitely often
writes a on channel cj,i.

Definition 8. A global state of ADSM(n) is a tuple ξ = (q0, . . . , qn−1, t0,1, . . . ,
tn−1,n−2) with qi ∈ Qi and ti,j ∈ tpr(Σi,j). The initial global state is q0 =
(q00 , . . . , q

0
n−1, λ, . . . , λ).

In order to motivate the definition of transition relation in ADSM(n), we first
explain how the contents of the channels are updated by a single transition. If
there is a write self loop operation (c!a) on a state of a process, we cannot say in
advance how many times this transition is executed. However, here the assump-
tion is that the c!a is executed at least once. Thus, we represent the set of all write
transitions (c!a) in DSM(n) by a single transition in ADSM(n) that writes a+

on the channel. Now, assume another process has a self loop read operation c?a.
Again, we do not know in advance how many times this transition may be ex-
ecuted. Thus, the corresponding ADSM(n) also accepts an infeasible computa-
tion in which there are more read operations than the number of a’s in the chan-
nel. However, this does not cause any problems since ADSM(n) also accepts a
similar computation in which the number of read and write operations are equal.

Example: ADSM(n) Transition Relation. Consider the ith process in
DSM(n), Ai. Assume Ai, on state s, has only one self loop transition with
a conditional operation cj,i?a → ci,k!b. Let ξ = (. . . , si, . . . , tj,i, ti,k, . . .) be a
global state of the corresponding ADSM(n). Let ξ′ = (. . . , s′i, . . . , t

′
j,i, t

′
i,k, . . .)

be a possible next global state of ξ that corresponds to the self loop conditional
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transition cj,i?a→ ci,k!b on state s of Ai. It is clear that s′i = si. The following
shows how the contents of channel cj,i and ci,k are updated in ξ′.

channel ci,k:

– If ti,k = wb+, then there will be no change in the content of ci,k; thus
t′i,k = ti,k.

– If ti,k �= wb+, then b+ is appended to the tail of ci,k; thus t′i,k = ti,kb
+.

channel cj,i:

– If tj,i = aw, then a gets read and the content of cj,i transforms to w.
– If tj,i = (a+ a1 + . . .+ am)+w, then there are four possible values for t′j,i:
• The head of tj,i may represent a string that starts with a followed by

another a. Thus, by reading one a the content of the channel cj,i still
can be represented by (a+ a1 + . . .+ am)+w. As a result t′j,i = tj,i.
• The head of tj,i may represent a string with length one, a. Thus, by

reading one a the content of the channel cj,i transforms to w.
• The head of tj,i may represent a string that starts with a followed by a

string that does not contain any a’s. Thus, the content of cj,i transforms
to (a1 + . . .+ am)+w.
• The head of tj,i may represent a string that starts with a, followed by

a string that consists of letters from the set {a1, . . . , am}, followed by a
string that contains a’s. Thus, the content of channel cj,i transforms to
(a1 + . . .+ am)+(a+ a1 + . . .+ am)+w.

End of Example.

The representation of channel contents by thin piecewise regular expressions
in the context of global system transitions allows us to group together sets of
transitions that may be executed by one process from a given global state.

For the sake of clarity, we present the read and write transitions in the format
of conditional transitions. Thus, a write transition is presented as a conditional
transition that reads a dummy message from any of the incoming channels. A
read transition is presented as a conditional transition that writes a dummy
message on an outgoing channel.

Let αj denote the head of channel cj,i. Let βj,k ⊆ αj be a set of letters at the
head of channel cj,i that enables a set of self loop conditional transitions that
writes on ci,k at state q of process Ai: βj,k = {bji ∈ Σj,i | there is an e ∈ Σi,k

and q ∈ δi(q, (bji, e))}. Let β′
j,k ⊆ αj be a set of letters at the head of channel cj,i

that enables a set of conditional transitions to other states that writes on ci,k at
state q of Ai: β′

j,k = {b′ji ∈ Σj,i | there is an e ∈ Σi,k and q′ ∈ δi(q, (b′ji, e)) and
q′ �= q}. Let βi,k = ∪jβj,k, β′

i,k = ∪jβ
′
j,k and βj,i = ∪kβj,k.

In the sequel, let {eik} be a set of letters that may be written on ci,k due to a
set of enabled self loop conditional transitions at state q ofAi and εk = 〈+eik | for
some b ∈ βi,k and q ∈ δi(q, (b, eik))〉. Let {e′ik} be a set of letters that may be
written on ci,k due to a set of enabled conditional transitions to other states at
state q of Ai and ε′k = 〈+e′ik | for some b′ ∈ β′

i,k, q′ ∈ δi(q, (b′, e′ik)) and q′ �= q〉.
The transition relation η is defined as follows: ξ → ξ′ ∈ η iff for some i ∈

[0..n− 1], for all l �= i, ξ(l) = ξ′(l), and for all k �= l, k �= i, ξ(l, k) = ξ′(l, k), and
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– ξ′(i) �= ξ(i), and a single incoming channel is updated by removal of a single
letter and for a single outgoing channel such as ci,k, e′ik is added to the tail of
ξ(i, k). The following shows how the contents of an incoming channel, such
as cj,i, are updated:
• if a ∈ β′

j,k then a ξ′(j, i) = ξ(j, i), or
• if a ∈ β′

j,k, r ∈ tpr(Σj,i), and ξ(j, i) = (a + a1 + . . . + am)+r, then
ξ′(j, i) = ξ(j, i), or

• if a ∈ β′
j,k, r ∈ tpr(Σj,i), and ξ(j, i) = (a + a1 + . . . + am)+r, then

ξ′(j, i) = r, or
• if a ∈ β′

j,k, r ∈ tpr(Σj,i), and ξ(j, i) = (a + a1 + . . . + am)+r, then
ξ′(j, i) = (a1 + . . .+ am)+r, or
• if a ∈ β′

j,k, r ∈ tpr(Σj,i), and ξ(j, i) = (a + a1 + . . . + am)+r, then
ξ′(j, i) = (a1 + . . .+ am)+(a+ a1 + . . .+ am)+r.

or
– ξ′(i) = ξ(i), and a set of incoming channels is updated by removal of a

set of letters, and a set of outgoing channels, such as ci,k, is updated by
writing the corresponding letters; for t ∈ tpr(Σi,k), if ξ(i, k) �= t(εk)+, then
ξ′(i, k) = ξ(i, k) (εk)+, otherwise ξ′(i, k) = ξ(i, k). The following shows how
the contents of incoming channels, such as cj,i, are updated:
• if b ∈ βj,i, r ∈ tpr(Σj,i), and ξ(j, i) = b r, then ξ′(j, i) = r, or
• if r ∈ tpr(Σj,i), ξ(j, i) = (b1 + . . . + bu)+r, and βj,i ∩ {b1, . . . , bu} �= ∅,

then ξ′(j, i) = ξ(j, i), or
• if r ∈ tpr(Σj,i), ξ(j, i) = (b1 + . . . + bu)+r, and βj,i ∩ {b1, . . . , bu} �= ∅,

then ξ′(j, i) = r, or
• if r ∈ tpr(Σj,i), ξ(j, i) = (b1 + . . . + bu)+r, and {b1, . . . , bu} \ βj,i =
{d1, . . . , dv}, then ξ(j, i) = (d1 + . . .+ dv)+r, or
• if r ∈ tpr(Σj,i), ξ(j, i) = (b1 + . . . + bu)+r, and {b1, . . . , bu} \ βj,i =
{d1, . . . , dv}, then ξ(j, i) = (d1 + . . .+ dv)+(b1 + . . .+ bu)+r.

Definition 9. A computation path in ADSM(n) is a finite or infinite sequence
denoted ξ = ξ0 → ξ1 → . . . where ξ0 = q0 and for all i, ξi → ξi+1 ∈ η.

The L∗(ADSM(n)) is a subset of (Q× T )∗ and consists of all the finite compu-
tations in ADSM(n) and Lω(ADSM(n)) is a subset of (Q×T )ω and consists of
all the infinite and fair computations in ADSM(n). The language of ADSM(n),
denoted by L(ADSM(n)), is equal to L∗(ADSM(n)) ∪ Lω(ADSM(n)).

Example: Two Automata with Two Channels. This example illustrates
how the tpr’s are updated in the calculation of the abridged model of a DSM(2)
when there are no changes in the component states.

Let A1 = ((Σ,P, δ1, p0),≤1) and A2 = ((Σ,Q, δ2, q0),≤2) be two piecewise
automata. Let Σ = Σ1,2 ∪Σ2,1. The composite system of the two automata A1
and A2 with two channels is defined as DSM(2) = (P ×Q, {c1,2, c2,1}, Σ,Σ∗

1,2×
Σ∗

2,1, (p0, q0, λ, λ), δ). For i ∈ [1..u], assume on the states from which process A1
and A2 do not have any transitions to other states there are a set of self loop
conditional transitions in A1: c2,1?di → c1,2!ai and a set of self loop read and
write transitions in A2: c1,2?bi and c2,1!ei, respectively.
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(p , - , -), q

(p, q, a+, -)

(p, q, -, e+)

(p, q, a+, e+)
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A2

A2

A2

A2

A1

A1

A1
A1

Fig. 1. Partial representation of global states in ADSM(2) if α = β and γ = ζ

Consider the computation path (p0, q0, r0, s0) → (p1, q1, r1, s1) → . . . in
ADSM(2) where ri ∈ tpr(Σ1,2) and si ∈ tpr(Σ2,1). Because of the ordering
relations on P and Q, for some i and for all j, i < j, pj = pi and qj = qi.

Let α = {a ∈ Σ1,2 | for some d ∈ Σ2,1, δ1(pi, (d, a)) = pi} = {a1, . . . , ak},
and β = {b ∈ Σ1,2 | δ2(qi, b) = qi} = {b1, . . . , bl}, γ = {d ∈ Σ2,1 | for some
a ∈ Σ1,2, δ1(pi, (d, a)) = pi} = {d1, . . . , dm}, and ζ = {e ∈ Σ2,1 | δ2(qi, e) =
qi} = {e1, . . . , en}. First assume ri = λ and si = λ. Let a = 〈+α〉, b = 〈+β〉,
d = 〈+γ〉, and e = 〈+ζ〉. Figure 1 shows the possible transitions in the mentioned
path starting from (pi, qi, λ, λ) supposing α = β and γ = ζ. Since the component
state (pi, qi) stays the same, the superscript i is not shown in the figure. Symbol
λ is also shown by ‘−’ symbol.

As the figure shows, according to the transition relation of ADSM(n), a
write operation performed by process A2 causes a transition from global state
(p, q, λ, λ) to (p, q, λ, e+). Process A2 can continue writing on channel c2,1 or
process A1 can read from c2,1 and write on c1,2. In the latter case, channel
c2,1 may become empty after some reads, depicted by a transition to state
(p, q, a+, λ), or it may still contain some letters, depicted by a transition to
state (p, q, a+, e+). Figure 2 illustrates the possible transitions supposing β ⊂ α,
α − β = ε, and γ = ζ. Let f = 〈+ε〉. The state machine corresponding to the
case where γ ⊂ ζ can be constructed similarly. If si �= λ then there are only two
cases to consider. A2 can only add at most one atomic expression to si, namely
(e1 + . . .+ en)+. Furthermore, A1 can only decrease the length of si, whether to
λ or not. In both cases there are only a finite number of ancestors.
End of Example.

For the global state (q0, . . . , qn−1, t0,1, . . . , tn−1,n−2) we use notation (q, t) in or-
der to represent its component state and channel contents. The following lemma
shows that the next state relation of ADSM(n) is finite.

Lemma 1. If DSM(n) = (Q,C,Σ,R, q0, δ) and ADSM(n) = (Q, T, q0, η, Φ)
is the abridged model of DSM(n), given (q, t) ∈ Q×T , the set of (q′, t′) ∈ Q×T
such that (q, t)→ (q′, t′) ∈ η is finite.

Proof: This follows from the finiteness of the Ai’s, Σ, and the definition of the
transition relation η. �



262 N. Ghafari and R. Trefler

(p, q, - , -) (p, q, f+, -) (p, q, a+f+, -)

(p, q, -, e+)
(p, q, a+, e+) (p, q, f+, e+) (p, q, a+f+, e+)

A2

A1

(p, q, a+ , -)

A2

A2

A2

A2

A2

A2

A2

A2

A2

A2

A2

A2

A1

A1

A1

A1

A1

A1

A1

A1

A1

Fig. 2. Partial representation of global states in ADSM(2) if β ⊂ α and γ = ζ

Given DSM(n), its abridged model, ADSM(n), is constructed recursively: for
each global state such as ξ we calculate the set {ξ′ | ξ → ξ′ ∈ η}. LetG be the cur-
rent set of global states {ξ} of ADSM(n) plus the transition connections between
them. G represents that portion of ADSM(n) that has been calculated so far.

Create Z which will consist of the component states of G plus sets of letters
replacing the tpr’s of G. Set Z is used as a test of termination for the procedure
of calculating G, i.e. it helps to determine whether in the further calculation of G
a global state with a new component state is going to appear or not. Create the
initial set of letters from a tpr as follows: start at the head of the tpr representing
the content of channel ci,j . Include in this set, all those letters in the head of the
tpr for which Aj has a transition. If the tpr has no such letters then stop — Aj

has no more inputs from channel ci,j . As long as Aj has a transition for some
letters in the head of the tpr, remove the head of the tpr and continue calculating
the set of letters from the now shorter tpr. This process clearly terminates, either
because the tpr is now empty or there is a limit on the different possible reads
that can be performed from that channel by Aj .

Apply the above process for all channels and component states. Then update
Z according to the transition relation of DSM(n). If a conditional transition is
triggered, e.g. Ai reads an a and then writes b, record this by adding b to the ap-
propriate outgoing channel. If any of these transitions result in a new component
state, then stop. The calculation of ADSM(n) is not finished yet — destroy Z
and continue calculating G, i.e. continue calculating ADSM(n). Otherwise, con-
tinue to calculate Z. This process terminates since no letters are ever removed
from the set associated to the tpr representing the contents of the channels for
any given component state of Z. Therefore, these sets will stop growing after a
finite number of updates.

If in the process of updating Z none of the transitions result in a new compo-
nent state and the sets of letters stop growing, it is implicit that no more global
states with new component states will appear in the further calculation of G.

Theorem 1. If DSM(n) = (Q,C,Σ,R, q0, δ), the procedure for generating the
abridged model ADSM(n) = (Q, T, q0, η, Φ) terminates.

Proof: In order to prove the termination of the procedure of generating
ADSM (n), we have to prove that the process of calculating G terminates.
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A new Z is only created if any of the transitions result in a new component
state. This only happens a finite number of times since there are only so many
component state configurations, given that the states of any single piecewise
automaton come with a partial order that is respected by the transition relation
of DSM(n) and therefore of ADSM(n). Thus, termination of the calculation of
Z implies that the calculation of G has reached a point from which there are no
more global states with new component states left to be explored. �
In the procedure of calculating ADSM(n), after calculating all the global states
with distinct component states, any new global state is only created through
updates to tpr’s that represent the contents of the channels. Consider channel
ck,i. Assume state s is a state from which process Ak does not have any transi-
tions to other states. Let εi = 〈+eki | for some b at the head of Ak’s incoming
channels, s ∈ δk(s, (b, eki))〉. Process Ak can only update the contents of ck,i by
appending εi to the tail of its associated tpr. Since there is a limit on the different
possible (conditional) writes on ck,i that can be performed by Ak, there will be
a finite number of εi’s. Process Ai can only decrease the length of the tpr that
represents the contents of the channel ck,i. This only happens a finite number of
times. Thus, there will be a finite number of updates to the tpr’s in the further
calculation of the global states of ADSM(n). This was also illustrated in the
previous example.

Let ψ = ψ0 → ψ1 → . . . be a computation in DSM(n) and ξ = ξ0 → ξ1 → . . .
be a computation in ADSM(n). ξ and ψ are two corresponding computations if
for all i, ψ0(i) = ξ0(i) and for every global state with distinct component state in
ψ, such as ψk, there exists a corresponding global state in ξ, ξg, such that for all i,
ψk(i) = ξg(i). In other words, the component states of the corresponding global
states should be identical. In addition, the order of the appearance of the corre-
sponding global states in two corresponding computations should be the same.

Lemma 2. For every computation in DSM(n), there exists a corresponding
computation in its abridged model, ADSM(n), and for every computation in
ADSM(n), there exists a set of corresponding computations in DSM(n).

4 Automated Analysis

The main reason for abridging DSM(n) is to be able to reason about its infinite
computations by analyzing the computations of the finite ADSM(n). According
to the construction procedure of ADSM(n), all the appropriate channel contents
in DSM(n) are represented by a set of tpr ’s in ADSM(n). If ψk and ξg are two
corresponding global states of DSM(n) and ADSM(n) respectively, and the
channel contents are given by r = (ψk(0, 1), ψk(0, 2), . . . , ψk(n − 1, n − 2)) and
t = (ξg(0, 1), ξg(0, 2), . . . , ξg(n− 1, n− 2)), then r ∈ t denotes that each ψk(i, j)
is contained in ξg(i, j).

Lemma 3. For every reachable state in DSM(n), (q, r), there exists a reach-
able state in ADSM(n), (q, t), where r ∈ t and for every reachable state in
ADSM(n), (q, t), there exists a reachable state in DSM(n), (q, r), where r ∈ t.
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As explained, the component states in the global states of ADSM(n) are com-
posed of the reachable component states in DSM(n). Since ADSM(n) is a finite
state system, the reachability analysis can be performed by an exhaustive search
of its state space.

The computations of ADSM(n) satisfy property S if and only if there is no
computation x of ADSM(n) such that ADSM(n), x |= ¬S.

We use a standard automata theoretic technique to decide this problem [24].
The technique consists of creating an automaton, B¬S, on infinite strings, cf.
[11] and [18], which accepts only those strings that satisfy the property ¬S.
We combine the structure ADSM(n) with B¬S to form the product automaton
ADSM(n) × B¬S . This is an automaton on infinite strings whose language is
empty if and only if the computations of ADSM(n) satisfy the property S.

A Büchi automaton is an automaton that recognizes infinite strings. A Büchi
automaton over the alphabet Σ is of the form B = (Q, q0, Δ, F ) with finite state
set Q, initial state q0 ∈ Q, transition relationΔ ⊆ Q×Σ×Q, and a set F ⊆ Q of
accepting states. A run of B on a ω-word α = α(0)α(1) . . . from Σω is a sequence
σ(0)σ(1) . . . such that σ(0) = q0 and (σ(i), α(i), σ(i + 1)) ∈ Δ for i ≥ 0. The
run is called accepting if it satisfies the fairness constraint F , i.e. some state of
F occurs infinitely often on the run. B accepts α if there is an accepting run of
B on α. The ω-language recognized by B is denoted as L(B) = {α ∈ Σω | B
accepts α}.

We consider system properties expressed by a restricted class of Büchi au-
tomata. Here, a Büchi automaton for DSM(n) has a fixed set of possible states,
at most one for each component state in DSM(n). Since the set of computations
in ADSM(n) is a superset of the set of computations in DSM(n), we require
that the language of each Büchi property automaton be stuttering closed.

Lemma 4. If B is a stuttering closed Büchi property automaton for DSM(n),
for every computation in Lω(ADSM(n)) and the language of the property au-
tomaton, L(B), there exists a corresponding computation in Lω(DSM(n)) and
L(B) and for every computation in Lω(DSM(n)) and L(B) there exists a cor-
responding computation in Lω(ADSM(n)) and L(B).

5 Analysis of an IP-Telecommunication Architecture

BoxOS is AT&T’s virtual telecommunication network based on IP [7, 15, 25]. In
this architecture, a telephone call is presented by a set of boxes representing
telephones and call features that communicate over possibly unbounded, perfect
communication channels. At a sufficient level of abstraction, each box represents
a finite state transducer.

Figure 3 describes part of a transparent box that represents a communica-
tion template that all telephony features should implement. The transparent
box communicates with two neighbors across four separate channels. Messages
to/from the upstream (initiating), caller, are sent/received via i channels. Mes-
sages to/from the downstream (receiving), callee, are sent/received via o chan-
nels. Importantly, the language of the automaton that models the behavior of
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LINKING2

LINKING3
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o!Setup
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i?Statuso?Status
ERROR END

o?unavail,
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o!Statusi!Status

i?Status

i?Status

Fig. 3. Template feature box

the transparent box (as shown in Figure 3) is a piecewise regular language. It
should be noted that a telephone call may be represented by a DSM(n) and
Figure 3 depicts one of the piecewise automata in the telephone call.

In our framework, different sets of properties can be specified that establish
the correct behavior of the transparent box. A safety property can be verified
by solving a reachability problem based on the negation of the safety prop-
erty, for example, checking the reachability of a dedicated error state. A class
of end-to-end temporal system properties specify that, for instance, if a mes-
sage is sent from one end, it will eventually be received at the other end; Al-
ways(Send ⇒ Eventually Receive) whose negation is: Eventually(Send and Al-
ways not Received)[22]. For example, if a setup message is sent from the initiating
caller, it will eventually be received by the callee. Another class of round-trip
properties ensure that for every request there will eventually be a reply. For
example, if a caller places a call (sends a setup message) and does not tear it
down, eventually it receives one of the outcome signals ‘unknown’, ‘unavail’, or
‘avail’ from downstream.

It is worth noting that representing the contents of the channels by tpr’s
allows specification of a wider range of channel properties, such as the existence
of a specific message in a channel. A more thorough analysis of these properties
is left for future work.

6 Summary and Future Work

We have presented an automated procedure for analyzing properties of FIFO
systems of piecewise processes that occur naturally in the description of IP-
telecommunication architectures. Further, it is evident that communication pro-
tocols must be ‘well-designed’ or satisfy some similar notion. Such distributed
systems are prone to errors and our analysis techniques can be used to check
for the presence of errors. For the future, we are interested in incorporating our
analysis technique into standardized analysis tools and developing extensions of
our techniques that are applicable to non-piecewise models.
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Abstract. We present a method for model-checking of safety and liveness prop-
erties over procedural programs, by combining state and ranking abstractions
with procedure summarization. Our abstraction is an augmented finitary abstrac-
tion [KP00, BPZ05], meaning that a concrete procedural program is first aug-
mented with a well founded ranking function, and then abstracted by a finitary
state abstraction. This results in a procedural abstract program with strong fair-
ness requirements which is then reduced to a finite-state fair discrete system (FDS)
using procedure summarization. This FDS is then model checked for the property.

1 Introduction

Procedural programs with unbounded recursion present a challenge to symbolic model-
checkers since they ostensibly require the checker to model an unbounded call stack.
In this paper we propose the integration of ranking abstraction [KP00, BPZ05], finitary
state abstraction, procedure summarization [SP81], and model-checking into a com-
bined method for the automatic verification of LTL properties of infinite-state recursive
procedural programs. The inputs to this method are a sequential procedural program
together with state and ranking abstractions. The output is either “success”, or a coun-
terexample in the form of an abstract error trace. The method is sound, as well as com-
plete, in the sense that for any valid property, a sufficiently accurate joint (state and
ranking) abstraction exists that establishes its validity.

The method centers around a fixpoint computation of procedure summaries of a
finite-state program, followed by a subsequent construction of a behaviorally equiv-
alent nondeterministic procedure-free program. Since we begin with an infinite-state
program that cannot be summarized automatically, a number of steps involved in ab-
straction and LTL model-checking need to be performed over the procedural (unsum-
marized) program. These include augmentation with non-constraining observers and
fairness constraints required for LTL verification and ranking abstraction, as well as
computation of state abstraction. Augmentation with global observers and fairness is
modeled in such a way as to make the associated properties observable once procedures
are summarized. In computing the abstraction, the abstraction of a procedure call is han-
dled by abstracting “everything but” the call itself, i.e., local assignments and binding
of actual parameters to formals and of return values to variables.
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The method relies on machinery for computing abstraction of first order formulas, but
is orthogonal as to how abstraction is actually computed. We have implemented a pro-
totype based on the TLV symbolic model-checker [Sha00] by extending it with a model
of procedural programs. Specifically, given a symbolic finite-state model of a program,
summaries are computed using BDD techniques in order to derive a fair discrete sys-
tem (FDS) free of procedures to which model-checking is applied. The tool is provided,
as input, with a concrete program and predicates and ranking components. It computes
predicate abstraction [GS97] automatically using the method proposed in [BPZ05]. We
have used this implementation to verify a number of canonical examples, such as Acker-
man’s function, the Factorial function and a procedural formulation of the 91 function.

While most components of the proposed method have been studied before, our ap-
proach is novel in that it reduces the verification problem to that of symbolic model-
checking. Furthermore, it allows for application of ranking and state abstractions while
still relegating all summarization computation to the model-checker. Another advantage
is that fairness is supported directly by the model and related algorithms, rather than it
being specified in a property.

1.1 Related Work

Recent work by Podelski et al. [PSW05] generalizes the concept of summaries to cap-
ture effects of computations between arbitrary program points. This is used to formulate
a proof rule for total correctness of recursive programs with nested loops, in which a
program summary is the auxiliary proof construct (analogous to an inductive invariant
in an invariance proof rule). The rule and accompanying formulation of summaries rep-
resent a framework in which abstract interpretation techniques and methods for ranking
function synthesis can be applied. In this manner both [PSW05] and our work aim at
similar objectives. The main difference from our work is that, while we strive to work
with abstraction of predicates, and use relations (and their abstraction) only for the
treatment of procedures, the general approach of [PSW05] is based on the abstraction
of relations even for the procedure-less case. A further difference is that, unlike our
work, [PSW05] does not provide an explicit algorithm for the verification of aribtrary
LTL properties. Instead it relies on a general reduction from proofs of termination to
LTL verification.

Recursive State Machines (RSMs) [AEY01, ABE+05] and Extended RSMs
[ACEM05] enhance the power of finite state machines by allowing for the recursive
invocation of state machines. They are used to model the control flow of programs con-
taining recursive procedure calls, and to analyze reachability and cycle detection. They
are, however, limited to programs with finite data. On the other hand, the method that
we present in this paper can be used to verify recursive programs with infinite data
domains by making use of ranking and finitary state abstractions.

In [BR00], an approach similar to ours for computing summary relations for pro-
cedures is implemented in the symbolic model checker Bebop. However, while Bebop
is able to determine whether a specific program statement is reachable, it cannot prove
termination of a recursive boolean program or of any other liveness property.

The paper is organized as follows: In Section 2 we present the formal model of
(procedure-free) fair discrete systems, and model-checking of LTL properties over them.
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Section 3 formalizes recursive procedural programs presented as flow-graphs. In Sec-
tion 4 we present a method for verifying the termination of procedural programs using
ranking abstraction, state abstraction, summarization, construction of a procedure-free
FDS, and finally, model-checking. In Section 5 we present a method for LTL model-
checking of recursive procedural programs. Finally, Section 6 concludes and discusses
future work.

2 Background

2.1 Fair Discrete Systems

The computation model, fair discrete systems (FDS) D : 〈V,Θ, ρ,J , C〉, consists of the
following components:

• V : A finite set of variables. We define a state s to be an interpretation of the
variables in V . Denoted by Σ is the set of all states of V .
• Θ : The initial condition. It is an assertion characterizing all the initial states of the

FDS. A state is called initial if it satisfies Θ.
• ρ : A transition relation. This is an assertion ρ(V, V ′), relating a state s ∈ Σ to its
D-successor s′ ∈ Σ.
• J : A set of justice (weak fairness) requirements (assertions).
• C : A set of compassion (strong fairness) requirements (assertions). Each compas-

sion requirement is a pair 〈p, q〉 of state assertions.

A run of an FDS is a sequence of states σ : s0, s1, ..., satisfying the following:

• Initiality: s0 is initial, i.e., s0 |= Θ.
• Consecution: For every j ≥ 0, the state sj+1 is a D-successor of the state sj .

A computation of an FDS is an infinite run which also satisfies:

• Justice: For every J ∈ J , σ contains infinitely many states satisfying J .
• Compassion: For every 〈p, q〉 ∈ C, σ should include either only finitely many p-

states, or infinitely many q-states.

An FDS D is said to be feasible if it has at least one computation.
A synchronous parallel composition of systems D1 and D2, denoted by D1 |||D2, is

specified by the FDS D : 〈V,Θ, ρ,J , C〉, where

V = V1 ∪ V2, ρ = ρ1 ∧ ρ2, Θ = Θ1 ∧ Θ2,
J = J1 ∪ J2, C = C1 ∪ C2

Synchronous parallel composition is used for the construction of an observer systemO,
which evaluates the behavior of another system D. That is, running D |||O will allow
D to behave as usual while O evaluates it.

2.2 Linear Temporal Logic – LTL

LTL is an extension of propositional logic with two additional basic temporal operators,
(Next) and U (Until), from which (Eventually), (Always), andW (Waiting-
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for) can be derived. An LTL formula is a combination of assertions using the boolean
operators ¬ and ∧ and the temporal operators:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕUϕ

An LTL formula ϕ is satisfied by computation σ, denoted σ |= ϕ, if ϕ holds at the
initial state of σ. An LTL formula ϕ is D-valid, denotedD |= ϕ, if all the computations
of an FDS D satisfy ϕ.

Every LTL formula ϕ is associated with a temporal tester, an FDS denoted by T [ϕ].
A tester contains a distinguished boolean variable x such that for every computation σ
of T [ϕ], for every position j ≥ 0, x[sj ] = 1 ⇐⇒ (σ, j) |= ϕ. This construction is
used for model-checking an FDS D in the following manner:

• Construct a temporal tester T [¬ϕ] which is initialized with x = 1, i.e. an FDS that
comprises just those computations that falsify ϕ.
• Form the synchronous parallel composition D ||| T [¬ϕ], i.e. an FDS for which all

of its computations are of D and which violate ϕ.
• Check feasibility of D ||| T [¬ϕ]. D |= ϕ if and only if D ||| T [¬ϕ] is infeasible.

3 Recursive Programs

A programP consists ofm+1 modules: P0, P1, . . . , Pm, where P0 is the main module,
and P1, . . . , Pm are procedures that may be called from P0 or from other procedures.

P1(in �x; out �z) Pm(in �x; out �z)P0(in �x; out �z)

Each module Pi is presented as a flow-graph with its own set of locations Li =
{�i0, �i1, . . . , �it}. It must have �i0 as its only entry point, �it as its only exit, and every
other location must be on a path from �i0 to �it. It is required that the entry node has no
incoming edges and that the terminal node has no outgoing edges.

The variables of each module Pi are partitioned into �y = (�x; �u;�z). We refer to �x, �u,
and �z as the input, working (local), and output variables, respectively. A module cannot
modify its own input variables.

3.1 Edge Labels

Each edge in the graph is labeled by an instruction that has one of the following forms:

• A local change d(�y, �y ′), where d is an assertion over two copies of the module
variables.

e
�a �c

d(�y, �y ′)
(1)

It is required that d(�y, �y ′) implies �x ′ = �x.
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• A procedure call din(�y, �x2);Pj(�x2, �z2); dout (�y, �z2, �y ′), where �x2 and �z2 are fresh
copies of the input and output parameters �x and �z, respectively.

�a �c
Pj(�x2, �z2) dout(�y, �z2, �y ′)din(�y, �x2)

This instruction represents a procedure call to procedurePj where several elements
are non-deterministic. The assertion din(�y, �x2) determines the actual arguments
that are fed in the variables of �x2. It may also contain an enabling condition under
which this transition is possible. The assertion dout (�y, �z2, �y ′) updates the module
variables �y based on the values returned by the procedurePj via the output parame-
ters �z2. It is required that dout (�y, �z2, �y ′) implies �x ′ = �x. Unless otherwise stated,
we shall use the following description as abbreviation for a procedure call.

e
�a �c

din(�y, �x2);Pj(�x2, �z2); dout (�y, �z2, �y ′)
(2)

Example 1 (The 91 Function). Consider the functional program specified by

F (x) = if x > 100 then x− 10 else F (F (x+ 11)) (3)

We refer to this function as F91. Fig. 1 shows the procedural version of F91. In the
figure, as well as subsequent examples, the notation �v1 := f(�v2) denotes �v′1 = f(�v2) ∧
pres(�y − �v2), with pres(�v) defined as �v′ = �v, for some set of variables �v.

0

1

2
x > 100 ∧ (z := x− 10)

x2 = u;
P (x2, z2);
z := z2;

x ≤ 100 ∧ x2 = x + 11;
P (x2, z2);
u := z2;

Fig. 1. Procedural program F91

3.2 Computations

A computation of a program P is a maximal (possibly infinite) sequence of states and
their labeled transitions:

σ : 〈�00; (ξ, �⊥, �⊥)〉 λ1−→ 〈�1;�ν1〉
λ2−→ 〈�2;�ν2〉 · · ·

where each �νi = (ξi, ηi, ζi) is an interpretation of the variables (�x, �u, �z). The values �⊥
denote uninitialized values. Labels in the transitions are either names of edges in the

program or the special label return. Each transition 〈�;�ν〉 λ−→ 〈�′;�ν′〉 in a computation
must be justified by one of the following cases:

Assignment: There exists an assignment edge e of the form presented in Diagram (1),
such that � = �a, λ = e, �′ = �c and 〈�ν, �ν′〉 |= d(�y, �y′).
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Procedure Call: There exists a call edge e of the form presented in Diagram (2), such
that � = �a, λ = e, �′ = �j

0, and �ν′ = (ξ′, �⊥, �⊥), where 〈�ν, ξ′〉 |= din(�y, �x2).

Return: There exists a procedure Pj (the procedure from which we return), such that
� = �j

t (the terminal location of Pj). The run leading up to 〈�;�ν〉 has a suffix of the form

〈�1;�ν1〉
λ1−→ 〈�j

0; (ξ; �⊥; �⊥)〉 λ2−→ · · · λk−→ 〈�; (ξ; η; ζ)〉︸ ︷︷ ︸
σ1

such that the segment σ1 is balanced (has an equal number of call and return labels),
λ1 = e is a call edge of the form presented in Diagram (2), where �′ = �c, λ = return,
and 〈�ν1, ζ, �ν

′〉 |= dout (�y, �z2, �y
′).

This definition uses the computation itself in order to retrieve the context as it were
before the corresponding call to procedure Pj .

For a run σ1 : 〈�00; (ξ, �⊥, �⊥)〉 λ1−→ · · · λk−→ 〈�;�ν〉, we define the level of state 〈�;�ν〉,
denoted Lev(〈�;�ν〉), to be the number of “call” edges in σ1 minus the number of “re-
turn” edges.

4 Verifying Termination

This section presents a method for verifying termination of procedural programs. Ini-
tially, the system is augmented with well-founded ranking components. Then a finitary
state abstraction is applied, resulting in a finite-state procedural program. Procedure
summaries are computed over the abstract, finite-state program, and a procedure-free
FDS is constructed. Finally, infeasibility of the derived FDS is checked, showing that it
does not possess a fair divergent computation. This establishes the termination of the
original program.

4.1 A Proof Rule for Termination

The application of a ranking abstraction to procedures is based on a rule for proving ter-
mination of loop-free procedural programs. We choose a well founded domain (D,2),
such that for each procedure Pi with input parameters �x, we associate a ranking func-
tion δi that maps �x to D. For each edge e in Pi, labeled by a procedure call as shown in
Diagram (2), we generate the descent conditionDe(�y) : din(�y, �x2) → δi(�x) 2 δj(�x2).
The soundness of this proof rule is stated by the following claim:

Claim 1 (Termination). If the descent condition De(�y) is valid for every procedure call
edge e in a loop-free procedural program P , then P terminates.

Proof: (Sketch) A non-terminating computation of a loop-free program must contain a
subsequence of the form

〈�00; (ξ0, �⊥, �⊥)〉, . . . , 〈�0i0 ; (ξ0, η0, ζ0)〉, 〈�j1
0 ; (ξ1, �⊥, �⊥)〉, . . . , 〈�j1

i1
; (ξ1, η1, ζ1)〉,

〈�j2
0 ; (ξ2, �⊥, �⊥)〉, . . . , 〈�j2

i2
; (ξ2, η2, ζ2)〉, 〈�j3

0 ; (ξ3, �⊥, �⊥)〉, . . .

where, for each k ≥ 0, Lev(〈�jk

0 ; (ξk, �⊥, �⊥)〉) = Lev(〈�jk

ik
; (ξk, ηk, ζk)〉) = k. If the

descent condition is valid for all call edges, this leads to the existence of the infinitely
descending sequence
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δ0(ξ0) 2 δj1(ξ1) 2 δj2(ξ2) 2 δj3(ξ3) 2 · · ·
which contradicts the well-foundedness of the δi’s.

Space limitations disallow a proof of the following completeness result:

Claim 2 (Completeness). The method of proving termination is complete for loop-free
programs.

Validity of the condition De is to be interpreted semantically. Namely, De(�y) should
hold for every �ν, such that there exists a computation reaching location �a with �y = �ν.

4.2 Ranking Augmentation of Procedural Programs

Ranking augmentation was suggested in [KP00] and used in [BPZ05] in conjunction
with predicate abstraction to verify liveness properties of non-procedural programs. In
its application here we require that a ranking function be applied only over the input pa-
rameters. Each procedure is augmented with a ranking observer variable that is updated
at every procedure call edge e, in a manner corresponding to the descent condition De.
For example, if the observer variable is inc then a call edge

din (�y, �x2);Pj(�x2;�z2); dout (�y, �z2, �y
′)

is augmented to be

din(�y, �x2) ∧ inc′ = sign(δ(�x2)− δ(�x)); Pj(�x2;�z2); dout(�y, �z2, �y
′) ∧ inc′ = 0

All local assignments are augmented with the assignment inc := 0, as the ranking does
not change locally in a procedure. Well foundedness of the ranking function is captured
by the compassion requirement (inc < 0, inc > 0) which is being imposed only at a
later stage.

Unlike the termination proof rule, the ranking function need not decrease on every
call edge. Instead, a program can be augmented with multiple similar components, and
it is up to the feasibility analysis to sort out their interaction and relevance automatically.

Example 2 (Ranking Augmentation of Program F91). We now present an example of
ranking abstraction applied to program F91 of Fig. 1. As a ranking component, we take

δ(x) = if x > 100 then 0 else 101− x

Fig. 2 presents the program augmented by the variable inc.

0

1

2
x > 100 ∧ ((z, inc) := (x− 10, 0))

(x2, inc′) = (u, Δ(x, x2));
P (x2, z2);
(z, inc) := (z2, 0)

x ≤ 100 ∧ ((x2, inc′) = (x + 11, Δ(x, x2)));
P (x2, z2);
(u, inc) := (z2, 0)

Fig. 2. Program F91 augmented by a Ranking Observer. The notation Δ(x1, x2) denotes the
expression sign(δ(x2)− δ(x1)).
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4.3 Predicate Abstraction of Augmented Procedural Programs

We consider the application of finitary abstraction to procedural programs, focusing
on predicate abstraction for clarity. We assume a predicate base that is partitioned into
�T = {�I(�x), �W (�y), �R(�x, �z)}, with corresponding abstract (boolean) variables �b

T
=

{�bI ,
�bW ,�bR}. For each procedure the input parameters, working variables, and output

parameters are�b
I
,�b

W
, and�b

R
, respectively.

An abstract procedure will have the same control-flow graph as its concrete counter-
part, where only labels along the edges are abstracted as follows:
• A local change relation d(�y, �y ′) is abstracted into the relation

D(�b
T
,�b′

T
) : ∃�y, �y ′.�b

T
= �T (�y) ∧�b′

T
= �T (�y ′) ∧ d(�y, �y ′)

• A procedure call din (�y, �x2);Pj(�x2, �z2); dout (�y, �z2, �y
′) is abstracted into the ab-

stract procedure call Din(�b
T
,�b2

I
);Pj(�b2I ,

�b2
R
);Dout(�bT

,�b2
R
,�b′

T
), where

Din (�bT ,�b2
I
) : ∃�y, �x2.�bT = �T (�y) ∧�b2

I
= �I(�x2) ∧ din (�y, �x2)

Dout(�bT ,�b2
R

,�b′
T
) : ∃�y, �x2, �z2, �y

′ �bT = �T (�y) ∧�b2
R

= �R(�x2, �z2) ∧�b′
T

= �T (�y ′)∧
din (�y, �x2) ∧ dout(�y, �z2, �y

′)

Example 3 (Abstraction of Program F91).
We apply predicate abstraction to program F91 of Fig. 1. As a predicate base, we take

�I : {x > 100}, �W : {u = g(x + 11)}, �R : {z = g(x)}

where

g(x) = if x > 100 then x− 10 else 91

The abstract domain consists of the corresponding boolean variables {BI , BW , BR}.
The abstraction yields the abstract procedural program P (BI , BR) which is presented
in Fig. 3.

0 2

1

BI ∧ (BR := 1)

¬BI ; P (B2
I , B2

R); BW := B2
R P (B2

I , B2
R); BR := ¬BW ∨BI �= B2

R

Fig. 3. An abstract version of Program F91

Finally we demonstrate the joint (predicate and ranking) abstraction of program F91.

Example 4 (Abstraction of Ranking-Augmented Program F91).
We wish to abstract the augmented program from Example 2. When applying the ab-
straction based on the predicate set

�I : {x > 100}, �W : {u = g(x + 11)}, �R : {z = g(x)}
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0

1

2
BI ∧ ((BR, inc) := (1, 0))

(B2
I , inc′) = (?, f(BI , BW , B2

I ));
P (B2

I , B2
R);

(BR, inc) := (¬BW ∨BI �= B2
R, 0)

¬BI ∧ (B2
I , inc′) = (?,−1);

P (B2
I , B2

R);
(BW , inc) := (B2

R, 0)

Fig. 4. An abstract version of Program F91 augmented by a Ranking Observer

we obtain the abstract program presented in Fig. 4, where

f(BI , BW , B2
I ) = if ¬BI ∧ (B2

I ∨ ¬B2
I ∧BW ) then −1

else if BI ∧B2
I then 0

else 1

Note that some (in fact, all) of the input arguments in the recursive calls are left
non-deterministically 0 or 1. In addition, on return from the second recursive call, it is
necessary to augment the transition with an adjusting assignment that correctly updates
the local abstract variables based on the returned result.

It is interesting to observe that all terminating calls to this abstract procedure return
BR = 1, thus providing an independent proof that program F91 is partially correct with
respect to the specification z = g(x).

The analysis of this abstract program yields that ¬BI∧BW is an invariant at location
1. Therefore, the value of f(BI , BW , B2

I ) on the transition departing from location 1
will always be −1. Thus, it so happens that even without feasibility analysis, from
Claim 1 we can conclude that the program terminates.

4.4 Summaries

A procedure summary is a relation between input and output parameters. A relation
q(�x, �z) is a summary if it holds for any �x and �z iff there exists a run in which the
procedure is called and returns, such that the input parameters are assigned �x and on
return the output parameters are assigned �z.

Since procedures may contain calls (recursive or not) to other procedures, deriving
summaries involves a fixpoint computation. An inductive assertion network is gener-
ated that defines, for each procedure Pj , a summary qj and an assertion ϕj

a associated
with each location �a. For each procedure we construct a set of constraints according to
the rules of Table 1. The constraint ϕj

t (�x, �u, �z) → qj(�x, �z) derives the summary from
the assertion associated with the terminating location of Pj . All assertions, beside ϕj

0,
are initialized false. ϕj

0, which refers to the entry location of Pj , is initialized true, i.e.
it allows the input variables to have any possible value at the entry location of proce-
dure Pj . Note that the matching constraint for an edge labeled with a call to procedure
Pi(�x2;�z2) encloses the summary of that procedure, i.e. the summary computation of
one procedure comprises summaries of procedures being called from it.

An iterative process is performed over the constraints contributed by all procedures
in the program, until a fixpoint is reached. Reaching a fixpoint is guaranteed since all
variables are of finite type.
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Table 1. Rules for Constraints contributed by Procedure Pj to the Inductive Assertion Network

Fact Constraint(s)
ϕj

0 = true
ϕj

t (�x, �u, �z)→ qj(�x, �z)

�a �c
d(�y, �y ′)

ϕj
a(�y) ∧ d(�y, �y ′)→ ϕj

c(�y ′)

�a �c
din(�y, �x2)

ϕj
a(�y) ∧ din(�y, �x2)→ ϕj

c(�y, �x2)

�a �c
Pi(�x2;�z2)

ϕj
a(�y, �x2) ∧ qi(�x2, �z2)→ ϕj

c(�y, �z2)

�a �c
dout(�y, �z2, �y

′)
ϕj

a(�y, �z2) ∧ dout(�y, �z2, �y
′)→ ϕj

c(�y ′)

Claim 3 (Soundness). Given a minimal solution to the constraints of Table 1, qj is a
summary of Pj , for each procedure Pj .

Proof. In one direction, let σ : s0, . . . , st be a computation segment starting at location
�j
0 and ending at �j

t , such that �x[s0] = �v1 and �z[st] = �v2. It is easy to show by induc-
tion on the length of σ that st |= ϕj

t (�x, �u, �z). From Table 1 we obtain ϕj
t (�x, �u, �z) →

qj(�x, �z). Therefore st |= qj(�x, �z). Since all edges satisfy �x = �x ′, we obtain [�x �→
�v1, �y �→ �v2] |= qj(�x, �y).

In the other direction, assume [�x �→ �v1, �y �→ �v2] |= qj(�x, �y). From the constraints
in Table 1 and the minimality of their solution, there exists a state st with �x[st] = �v1
and �z[st] = �v2 such that st |= ϕj

t . Repeating this reasoning we can, by propagating
backward, construct a computation segment starting at �0 that initially assigns �v1 to �x.

4.5 Deriving a Procedure-Free FDS

Using summaries of an abstract procedural program PA, one can construct the derived
FDS of PA, labeled derive(PA). This is an FDS denoting the set of reduced compu-
tations of PA, a notion formalized in this section. The variables of derive(PA) are
partitioned into �x, �y, and �z, each of which consists of the input, working, and output
variables of all procedures, respectively. The FDS is constructed as follows:

– Edges labeled by local changes in PA are preserved in derive(PA)
– A procedure call in PA, denoted by a sequence of edges of the form

din(�y, �x2);Pj(�x2, �z2); dout (�y, �z2, �y
′) from a location �a to a location �c, is trans-

formed into the following edges:
• A summary edge, specified by

e
�a �c

∃�x2, �z2.din (�y, �x2) ∧ qj(�x2, �z2) ∧ dout(�y, �z2, �y
′)

• A call edge, specified by

e
�a �j

0
din (�y, �x′)

– All compassion requirements, which are contributed by the ranking augmentation
and described in Subsection 4.2, are imposed on derive(PA).
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The reasoning leading to this construction is that summary edges represent proce-
dure calls that return, while call edges model non-returning procedure calls. Therefore,
a summary edge leads to the next location in the calling procedure while modifying its
variables according to the summary. On the other hand, a call edge connects a calling lo-
cation to the entry location of the procedure that is being called. Thus, a nonterminating
computation consists of infinitely many call edges, and a call stack is not necessary.

We now prove soundness of the construction. Recall the definition of a computation
of a procedural program given in Subsection 3.2. A computation can be terminating or
non-terminating. A terminating computation is finite, and has the property that every
computation segment can be extended to a balanced segment, which starts with a call-
ing step and ends with a matching return step. A computation segment is maximally
balanced if it is balanced and is not properly contained in any other balanced segment.

Definition 1. Letσ be a computation ofPA. Then the reduction ofσ, labeled reduce(σ),
is a sequence of states obtained from σ by replacing each maximal balanced segment by
a summary-edge traversal step.

Claim 4. For any sequence of states σ, σ is a computation of derive(PA) iff there exists
σ′, a computation of PA, such that reduce(σ′) = σ.

Proof of the claim follows from construction of derive(PA) in a straightforward man-
ner. It follows that if σ is a terminating computation of PA, then reduce(PA) consists
of a single summary step in the part of derive(PA) corresponding to P0. If σ is an in-
finite computation of PA, then reduce(σ) (which must also be infinite) consists of all
assignment steps and calls into procedures from which σ has not returned.

Claim 5 (Soundness – Termination). If derive(PA) is infeasible then PA is a terminat-
ing program.

Proof. Let us define the notion of abstraction of computations. Let σ = s0, s1, . . . be a
computation of P , the original procedural program from which PA was abstracted. The
abstraction of σ is a computation α(s0), α(s1), . . . where for all i ≥ 0, if si is a state in
σ, then α(si) = [�bI �→ �I(�x),�bW �→ �W (�y),�bR �→ �R(�x, �z)].

Assume that derive(PA) is infeasible. Namely, every infinite run of derive(PA) vio-
lates a compassion requirement. Suppose that P has an infinite computationσ. Consider
reduce(σ) which consists of all steps in non-terminating procedure invocations within
σ. Since the abstraction of reduce(σ) is a computation of derive(PA) it must be unfair
with respect to some compassion requirement. It follows that a ranking function keeps
decreasing over steps in reduce(σ) and never increases – a contradiction.

4.6 Analysis

The feasibility of derive(PA) can be checked by conventional symbolic model-checking
techniques. If it is feasible then there are two possibilities: (1) The original system truly
diverges, or (2) feasibility of the derived system is spurious, that is, state and ranking
abstractions have admitted behaviors that were not originally present. In the latter case,
the method presented here can be repeated with a refinement of either state or ranking
abstractions. The precise nature of such refinement is outside the scope of this paper.
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5 LTL Model Checking

In this section we generalize the method discussed so far to general LTL model-checking.
To this end we adapt to procedural programs the method discussed in Subsection 2.2
for model-checking LTL by composition with temporal testers [KPR98]. We prepend
the steps of the method in Section 4 with a tester composition step relative to an LTL

property. Once ranking augmentation, abstraction, summarization, and construction of
the derived FDS are computed, the resulting system is model-checked by conventional
means as to feasibility of initial states that do not satisfy the property.

The main issue is that synchronous composition of a procedural program with a
global tester, including justice requirements, needs to be expressed in terms of local
changes to procedure variables. In addition, since LTL is modeled over infinite se-
quences, the derived FDS needs to be extended with idling transitions.

5.1 Composition with Temporal Testers

A temporal tester is defined by a unique global variable, here labeled t, a transition rela-
tion ρ(�z, t, �z ′, t′)1 over primed and unprimed copies of the tester and program variables,
where t does not appear in �z, and a justice requirement. In order to simulate global com-
position with ρ, we augment every procedure with the input and output parameters ti
and to, respectively, as follows:

– An edge labeled by a local change is augmented with ρ(�z, to, �z ′, t′o)
– A procedure call of the form din(�y, �x2);Pj(�x2, �z2); dout (�y, �x2, �y

′) is augmented
to be din (�y, �x2) ∧ ρ(�z, to, �x2, t

2
i );Pj((�x2, t

2
i ), (�z2, t

2
o)); dout ∧ ρ(�z2, t

2
o, �z

′, t′o)
– Any edge leaving the initial location of a procedure is augmented with to = ti

Example 5. Consider the program in Fig. 5. Since this program does not terminate,
we are interested in verifying the property ϕ : ( z) ∨ at−�2, specifying that
either eventually a state with z = 1 is reached, or infinitely often location 2 of P1 is vis-
ited. To verify ϕ we decompose its negation into its principally temporal subformulas,
¬z and ¬at−�2, and compose the system with their temporal testers. Here we

demonstrate the composition with T [ ¬z], given by the transition relation t = ¬z ∧ t′

and the trivial justice requirement true. The composition is shown in Fig. 6.

As a side remark, we note that our method can handle global variables in the same way
as applied for global variables of testers, i.e., represent every global variable by a set of
input and output parameters and augment every procedure with these parameters and
with the corresponding transition relations.

5.2 Observing Justice

In order to observe justice imposed by a temporal tester, each procedure is augmented
by a pair of observer variables that consists of a working and an output variables. Let
J be a justice requirement, Pi be a procedure, and the associated observer variables be
Ju and Jo. Pi is augmented as follows: On initialization, both Ju and Jo are assigned

1 We assume here that the property to be verified is defined over the output variable only.
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2

10 3

0

1

x = 0 ∧ z := 1

init

init x2 = x− 1; P1(x2; z2); z := z2

x2 = x + 1; P1(x2; z2); z := z2

main

P0(x; z): P1(x; z):

Fig. 5. A Divergent Program. init represents x > 0 ∧ z := 0, and main represents x ≥
0 ∧ x2 := x;P1(x2; z2); z := z2.

2

10 3

0

1

x = 0 ∧ ti = to ∧ (z, to) := (1, 0)

init

init (x2 = x− 1) ∧ to = ti2; P1(x2, ti2; z2, to2); dout

(x2 = x + 1) ∧ to = ti2; P1(x2, ti2; z2, to2); dout

main

P0(x, ti; z, to): P1(x, ti; z, to):

Fig. 6. The Program of Fig. 5, Composed with T [ ¬z]. The assertion dout represents to2 =
(¬z2 ∧ t′

o) ∧ z := z2, init represents x > 0 ∧ ti = to ∧ z := 0, and main represents
x ≥ 0 ∧ (x2 = x) ∧ (to = ¬z ∧ ti2); P1(x2, ti2; z2, to2); dout .

true if the property J holds at that state. Local changes are conjoined with Ju := J ′

and Jo := (Jo ∨ J ′). Procedure calls are conjoined with Ju := (J ′ ∨ J2
o ) and

Jo := (Jo ∨ J ′ ∨ J2
o ), where J2

o is the relevant output observer variable of the
procedure being called.

While Ju observes J at every location, once Jo becomes true it remains so up to the
terminal location. Since Jo participates in the procedure summary, it is used to denote
whether justice has been satisfied within the called procedure.

5.3 The Derived FDS

We use the basic construction here in deriving the FDS as in Section 4.5. In addition,
for every non-output observer variable Ju we impose the justice requirement that in any
fair computation, Ju must be true infinitely often. Since LTL is modeled over infinite
sequences, we must also ensure that terminating computations of the procedural pro-
gram are represented by infinite sequences. To this end we simply extend the terminal
location of procedure P0 with a self-looping edge. Thus, a terminating computation is
one that eventually reaches the terminal location of P0 and stays idle henceforth.
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In this section we use the notation derive(PA) to denote the FDS that is derived from
PA and thus extended. The following claim of soundness is presented without proof due
to space limitations.

Claim 6 (Soundness – LTL). Let P be a procedural program, ϕ be a formula whose
principal operator is temporal, and PA be the abstract program resulting from the com-
position of P with the temporal tester T [¬ϕ] and its abstraction relative to a state and
ranking abstraction. Let to be the tester variable of T [¬ϕ]. If to = true is an infeasible
initial state of derive(PA) then ϕ is valid over P .

6 Conclusion

We have described the integration of ranking abstraction, finitary state abstraction, pro-
cedure summarization, and model-checking into a combined method for the automatic
verification of LTL properties of infinite-state recursive procedural programs. Our ap-
proach is novel in that it reduces the verification problem of procedural programs with
unbounded recursion to that of symbolic model-checking. Furthermore, it allows for ap-
plication of ranking and state abstractions while still relegating all summarization com-
putation to the model-checker. Another advantage is that fairness is being supported
directly by the model, rather than being specified in a property.

We have implemented a prototype based on the TLV symbolic model-checker and
tested several examples such as Ackerman’s function, the Factorial function and a re-
cursive formulation of the 91 function. We verified that they all terminate and model
checked satisfiability of several LTL properties.

As further work it would be interesting to investigate concurrency with bounded
context switching as suggested in [RQ05]. Another direction is the exploration of dif-
ferent versions of LTL that can relate to nesting levels of procedure calls, similar to
the manner in which the CARET logic [AEM04] expresses properties of recursive state
machines concerning the call stack.
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Abstract. A safety property restricts the set of reachable states. In this paper, we
introduce a notion of relative safety which states that certain program states are
reachable provided certain other states are. A key, but not exclusive, application
of this method is in representing symmetry in a program. Here, we show that rela-
tive safety generalizes the programs that are presently accommodated by existing
methods for symmetry. Finally, we provide a practical algorithm for proving rel-
ative safety.

1 Introduction

A safety property restricts the set of reachable states. Let [[P]] denote the collecting
semantics of a program P with variables X̃ . Thus each sequence x̃ of variable values in
[[P]] represents a reachable state. A safety property may be simply written as a constraint
Ψ over the variables X̃ . For example, the safety property X +Y < 9 states that in all
reachable states, the values of the program variables X and Y sum to less than 9. If we
let the predicate p(x̃) be true just in case the sequence of values of program variables
x̃ is in [[P]], then a safety property may be written in the form p(X̃) |= Ψ, for example,
p(X ,Y ) |= X +Y < 9.

In this paper, we introduce the notion of relative safety. Briefly and informally,
this asserts that a certain state is reachable provided a certain other state is reach-
able. Note that this does not mean that these two states share a computation path.
Specifically, consider the specification of states in the form p(X̃) ∧Ψ. That is, we
use the constraint Ψ to identify the set of solutions of Ψ which correspond to reach-
able states. Then our notion of relative safety simply relates two of these specifica-
tions in the following way: p(X̃)∧Ψ |= p(Ỹ )∧Ψ′ where Ψ and Ψ′ are constraints
over X̃ ,Ỹ . For example, p(X1,X2) |= p(Y1,Y2)∧X1 = Y2∧X2 = Y1 (or more succinctly,
p(X1,X2) |= p(X2,X1)) asserts that if the state (α,β) is reachable, then so is (β,α), for
all values α and β. In other words, the observable values of the two program variables
commute.

Relative safety can specify powerful structural properties of programs. The driving
application we consider in this paper is that of verification with symmetry reduction.
Symmetry has been widely employed for minimizing the search space in program ver-
ification. It is a reduction technique employed in Murϕ [13] and SMC [21] model
checkers among many others. Symmetry is often defined using automorphisms π on
the symmetric objects. These induce an equivalence relation between program states.
Efficiency in state exploration is hence achieved by only checking the representatives
of the equivalence classes.

E.A. Emerson and K.S. Namjoshi (Eds.): VMCAI 2006, LNCS 3855, pp. 282–297, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Let us take as an example a concurrent program with two almost identical processes,
where process 1 updates the variables PC1 and X1, and process 2, PC2 and X2. Here
PC1 and PC2 are process 1 and 2’s program counters, respectively. Let us consider
(α,β,γ,δ) to be values of (PC1,PC2,X1,X2). Classic symmetry “exchanges” process 1
and 2, that is, π((α,β,γ,δ)) = (β,α,δ,γ). A necessary condition for π to be an automor-
phism is that whenever x̃ is a reachable state, so is π(x̃). Such a relation between x̃ and
π(x̃) can be logically represented as the relative safety assertion p(PC1,PC2,X1,X2) |=
p(PC2,PC1,X2,X1) where the predicate p, once again, represents the reachable states
of the program. Below we show many more examples of symmetry, including ones that
are not covered by existing techniques.

The main technical part of this paper is a proof method. In its most basic form, the
method to prove the assertion G1 |= G2 checks that the set of states represented by the
symbolic formula G2 is reachable, whenever the set G1 is reachable. This is done by
the basic operation of “backward unfolding” the program’s transition relation. A key
element in our algorithm is the use of the principle of coinduction which is critical for
termination of the unfolding process.

The paper is organized as follows. We discuss some related work in Section 2. We
then formalize the program semantics and the proof method in the framework of Con-
straint Logic Programming (CLP) [14], for two main reasons. First, the logical frame-
work of CLP is eminently suitable for the represntation of our concept of relative safety,
and second, the established implementation technology of CLP systems allow us to per-
form unfolding operations efficiently. We introduce some preliminary CLP concepts in
Section 3. Relative safety is then formally defined in Section 4. Here, we show via
several examples, novel ways to realize symmetry. In addition to these, we will also
show a non-symmetry example. Section 5 formally presents our algorithm. Finally, in
Section 6, we demonstrate the use of our prototype implementation on some classes of
programs in order to show the practical potential of our algorithm.

2 Related Work

Existing approaches define symmetry on syntactic considerations. In contrast, our no-
tion of relative safety is based on semantics. An advantage is more flexibility in spec-
ifying a wide range of symmetry-like properties, including many that would not be
considered a symmetry property by the existing methods. One example, shown later, is
a mutual exclusion algorithm with priority between processes. We can handle a wider
range than [7, 20], for example. Importantly, relative safety goes far beyond symmetry
(and below, we demonstrate the property of serializability).

In more detail, symmetry is often defined as a transition-preserving equivalence [8,
3, 13, 9, 20], where an automorphism π, other than being a bijection on the reachable
states, also satisfies that (x̃, x̃′) is a transition iff (π(x̃),π(x̃′)) is. Another notion of
equivalence used is bisimilarity [7], replacing the second condition with bisimilarity
on the state graph. These stronger equivalences allows for the handling of larger class
of properties beyond safety such as CTL∗ properties. However, stronger equivalence
also means less freedom in handling symmetries on the collecting semantics, which we
exploit further in this paper.
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In [20], while still defining symmetry as transition-preserving equivalence, they at-
tempt to handle systems which state graphs are not fully symmetric. The approach
transforms the state graph into a fully symmetric one, while keeping annotation for
each transition that has no correspondence in the original state graph. The graph with
full symmetry is then reduced by equating automorphic states. This work is the most
general and can reduce the state graph of even totally asymmetric programs, however,
its application is limited to programs with syntacticly specified static transition priority.

Similar to the work of [20], prior works infer symmetry based on syntactic con-
ditions, such as concurrent program with identical processes or syntactic restrictions
on program statements and variable usage. These also include the scalarset approach
of Murφ [13], and the limitation to permutation of process identifiers in SMC model
checker [21]. In contrast, our approach to prove symmetry semanticly for each program
enables us to treat more programs where the semantics is symmetric although the syntax
is not.

An application of our symmetry proof method has been demonstrated in the context
of timed automata verification [16]. This paper presents a generalization and automation
of the method.

There have been many works in the area of verification using CLP (see [11] for a
non-exhaustive survey), partly because it is natural to express transition relations as
CLP rules. Due to its ability in handling constraints, CLP has been notably used in ver-
ification of infinite-state systems [5, 10, 12, 17], although results for finite-state systems
are also available [18, 19]. None of these works, however, deal with relative safety.

3 CLP Representation of Programs

We start by stipulating that each process in a concurrent program has the usual syntax
of a deterministic imperative language, and communication occurs via shared variables.
We also have a blocking primitive await (b) s where b is a boolean expression and s a
program statement, which can be executed only when b holds. A program is a collection
of a fixed number of processes. We provide the 2-process bakery algorithm in Figure 1
as an example. We display program points in angle brackets.

We now introduce CLP programs. CLP programs have a universe of discourse D
which is a set of terms, integers, and arrays of integers. A constraint is written using
a language of functions and relations. They are used in two ways: in the base pro-
gramming language to describe expressions and conditionals, and in user assertions,
defined below. In this paper, we will not define the constraint language explicitly, but
invent them on demand in accordance with our examples. Thus the terms of our CLP
programs include the function symbols of the constraint language.

while (true) do
〈0〉 t1 := t2 + 1
〈1〉 await (t1<t2 ∨ t2=0) skip
〈2〉 t1 := 0

end

while (true) do
〈0〉 t2 := t1 + 1
〈1〉 await (t2<t1 ∨ t1=0) skip
〈2〉 t2 := 0

end

Fig. 1. Bakery-2
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p([0,0],T1,T2)←T1 = 0,T2 = 0. % init
p([1,P2],T ′1,T2)←p([0,P2],T1,T2),T ′1 = T2 +1. % r1
p([2,P2],T1,T2)←p([1,P2],T1,T2),(T1 < T2∨T2 = 0). % e1
p([0,P2],T ′1,T2)←p([2,P2],T1,T2),T ′1 = 0. % x1
p([P1,1],T1,T ′2)←p([P1,0],T1,T2),T ′2 = T1 +1. % r2
p([P1,2],T1,T2)←p([P1,1],T1,T2),(T2 < T1∨T1 = 0). % e2
p([P1,0],T1,T ′2)←p([P1,2],T1,T2),T ′2 = 0. % x2

Fig. 2. CLP Representation of Bakery-2

An atom, is as usual, of the form p(t̃) where p is a user-defined predicate symbol and
the t̃ a tuple of terms. The set {p(d̃)} where p ranges over the predicates and d̃ ranges
over the tuples in D is called the domain base B of our CLP programs.

Now, a CLP program is a set of rules. A rule is an implication of the form A← B̃,φ
where the atom A is the head of the rule, and the sequence of atoms B̃ and the constraint
φ constitute the body of the rule. We say that a rule is a (constrained) fact if B̃ is the
empty sequence.

Translating a user program P0 into an appropriate CLP program P is in fact intu-
itively straightforward; we thus provide only an informal outline here. Our CLP rules
corresponding to a transition of the program will be of the form

p(PC′,X ′1,X
′
2, . . . ,X

′
n)← p(PC,X1,X2, . . . ,Xn),φ.

Here, PC is a list representing the program counters in the k processes of P0 before the
transition. Its primed counterpart PC′ represents the list after the transition. X1,X2, . . . ,Xn

and their primed counterparts represent the variables in P0 before and after the transition,
while φ is a constraint on all the variables. Note that as in the above rule, throughout this
paper we often use a comma in place of ∧ to denote conjunction. The above rule depicts
a transition from rhs to lhs .

Example 1 (Bakery-2). Consider our 2-process bakery algorithm in Figure 1. Note that
the point 〈2〉 indicates the critical section, and initially, t1 = t2 = 0. The CLP program
in Figure 2 (the parts preceded by % are comments) is in fact its CLP representation. x

The semantics of a CLP program is based on the concept of ground instances. A ground
instance of a constraint φ is obtained by instantiating the variables therein from D, and
the result is true or false. We write this as φσ [14] where σ : var(φ) �→D a grounding.
Similarly, a ground instance of an atom or rule is obtained by instantiating variables
therein with values in B using a grounding σ. Now consider the fixpoint operator TP :
2B �→ 2B for a CLP program P defined as follows: a ground atom Aσ is in TP(S) if
Aσ ∈ S or there is a ground instance (A← B̃,φ)σ of a rule A← B̃,φ in P such that
B̃σ ⊆ S and φσ is true. A basic theorem of CLP is that the least fixpoint of TP is the
least model of P, and this is also equal to the set of ground atoms. We denote this set by
[[P]]. A ground instance Aσ is true iff Aσ ∈ [[P]]. Similarly, a ground instance (B̃,φ)σ of
a goal is true iff B̃σ⊆ [[P]] and φσ is true. We denote the set of true ground instances of
a goal G by [[G]].

In general, where P is the CLP representation of P0, we have that the collecting
semantics of P0 is characterized by [[P]].
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4 Relative Safety

We now present an assertion language to express relative safety property, and demon-
strate its expressive power for program reasoning. We start with a definition of a con-
straint state.

Definition 1 (Constraint State). A constraint state is a goal in the form
p(PC,X1, . . . ,Xn),φ where PC,X1, . . . ,Xn represent the list of program counters and
program variables, and φ is a constraint on the variables.

Now let GL be a constraint state and GR either constraint or constraint state. Let X̃ =
var(GL)∪ var(GR).

Definition 2 (Relative Safety). A relative safety assertion is of the form GL |= GR.
Its meaning is ∀X̃ : GL → GR that is, for each grounding σ such that GLσ ∈ [[GL]],
GRσ ∈ [[GR]].

Intuitively, a relative safety assertion specifies that certain states are reachable only if
certain other states are.

Here we start with a traditional safety property, generally of the form:

p(PC, X̃), φ |= φ′

where φ and φ′ are constraints on the program counter array PC and program variables
X̃ . For example, in the Bakery-2 program, the following assertions specify mutual ex-
clusion.

p([P1,P2],T1,T2) |= P1 �= 2∧P2 �= 2, or, p([2,2],T1,T2) |= false

Now consider a relative safety assertion, stating symmetry for Bakery-2:

p([P1,P2],T1,T2) |= p([P2,P1],T2,T1).

Note that an automorphism must be included in a group with the composition of
automorphisms as its operator [23]. Such a group is known as an automorphism group.
Our idea is to use a set of relative safety assertions to specify possible automorphisms
on reachable states. Note that a single relative safety assertion in general only describes
a partial mapping, while an automorphism is total. In general we need a set of assertions
to describe a total mapping π. Moreover, equivalence between states is obtained by also
proving a complete set of assertions which represent the mappings in an automorphism
group. This would include inverses, which proof is often straightforward. Suppose that
map(GL |= GR) is the mapping represented by the assertion GL |= GR. Now, as an exam-
ple, the above symmetry assertion for Bakery-2 characterizes an automorphism group
Aut on the collecting semantics as follows:

– We include the obvious map(p([P1,P2],T1,T2) |= p([P1,P2],T1,T2)) in Aut satisfy-
ing the existence of identity.

– By simple renaming {P1 �→ P2,P2 �→ P1,T1 �→ T2,T2 �→ T1} on the above assertion,
the reverse map(p([P2,P1],T2,T1) |= p([P1,P2],T1,T2)) is in Aut satisfying the ex-
istence of inverse.
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– It is straightforward to show that if map(G1 |= G2) ∈ Aut and map(G2 |= G3) ∈ Aut
then map(G1 |= G3) ∈ Aut.

We will prove the assertion later in Section 5. We now proceed with several examples.

Example 2 (Rotational Symmetry). Next we demonstrate rotational symmetry in the
solution of N dining philosophers’ problem using N− 1 tickets. For simplicity, we as-
sume there are N=3 philosophers having ids 1, 2 and 3, and there are 3 forks represented
as boolean array f, where f[1], f[2], f[3] are forks between philosopher 3 and 1, 1
and 2, and 2 and 3, respectively. Initially the ticket number t=2. To save space, we
do not show the actual code. For our purpose it is suffice to demonstrate the rotational
symmetry as the assertion:

p([P1,P2,P3],F1,F2,F3,T ) |= p([P3,P1,P2],F3,F1,F2,T ),

where Pi denotes the program point of philosopher i, F1, F2 and F3 are the values of f[i],
1≤ i≤ 3, respectively, and T is the number of tickets left. The above assertion specifies
a cyclic shift. For this example, arbitrary transposition does not result in automorphism.

Example 3 (Permutation of Variable-Value Pair). In [16] we discussed a timed au-
tomata version of Fischer’s algorithm, a timing-based mutual exclusion algorithm. The
pseudocode can be found in [1] and is not presented here to save space. The algorithm
uses a global variable k whose value is the process identifier of the process that is about
to enter the critical section. This is translated into a variable K in our CLP representa-
tion (also not shown here). Since the example uses timing, our CLP representation for
the 2-process version uses the variables T1 and T 2, denoting the running time of each
process. Our symmetry assertion here is

p([P1,P2],T1,T2,K) |= p([P2,P1],T2,T1,K
′),φ,

where φ constrains (K,K′) to (0,0),(1,2) or (2,1). This is called permutation of
variable-value pair [20] since it maps the value of a variable onto a new one without
exchanging it with another variable. This is not covered by some previous approaches
such as [13, 21].

Example 4 (Priority Mutual Exclusion). We can also express the kind of “approximate”
symmetry, as exemplified by the simple 2-process priority mutual exclusion in Figure 3.
Each process has 〈2〉 as the critical section. Initially, the values of both x1 and x2 are 0.
We show the CLP representation in Figure 4. This example is semantically similar to the

while (true) do
〈0〉 await (x2 = 0) x1 := 1
〈1〉 skip
〈2〉 x1 := 0

end

while (true) do
〈0〉 x2 := 1
〈1〉 await (x1 = 0) skip
〈2〉 x2 := 0

end

Fig. 3. Priority Mutual Exclusion
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p([0,0],0,0).
p([1,P2],1,X2)←p([0,P2],X1,X2),X2 = 0.
p([2,P2],X1,X2)←p([1,P2],X1,X2).
p([0,P2],0,X2)←p([2,P2],X1,X2).

p([P1,1],X1,1)←p([P1,0],X1,X2).
p([P1,2],X1,X2)←p([P1,1],X1,X2),X1 = 0.
p([P1,0],X1,0)←p([P1,2],X1,X2).

Fig. 4. CLP Representation of Priority Mutual Exclusion

asymmetric readers-writers in [6] and the priority mutual exclusion in [20]. Although
the state graph of the program is not symmetric, the state space, i.e. the set of nodes in
the state graph, is, and knowing this is already useful to prove safety properties such as
mutual exclusion. We can represent the symmetry on the state space simply as:

p([P1,P2],X1,X2) |= p([P2,P1],X2,X1).

It is not immediately obvious that the program is symmetric based on syntactic obser-
vation alone.

Example 5 (Szymanski’s Algorithm). Szymanski’s algorithm is a more complex
priority-based mutual exclusion algorithm which is commonly encountered in the liter-
ature. We show the pseudocode in Figure 5. Its CLP representation is in Figure 6.

Roughly speaking, since the algorithm is based on prioritizing Process 1 to enter the
critical section 〈8〉, it is not possible for Process 2 to be in the critical section while
Process 1 is at its trying section. For example, the following does not hold:

p([8,7],X1,X2) |= p([7,8],X2,X1).
It is because the program points [8,7] are reachable while [7,8] are not. In other words,
there is a grounding for the lhs goal, but no grounding for the rhs goal. Therefore, a
simple symmetry assertion such the one given in the bakery algorithm does not hold.
However, the following “not-quite” symmetry assertions still hold:

p([8,P2],X1,X2),P2 < 3 |= p([P2,8],X2,X1).
p([8,P2],X1,X2),P2 > 7 |= p([P2,8],X2,X1).
p([9,P2],X1,X2),P2 �= 7 |= p([P2,9],X2,X1).

p([P1,P2],X1,X2),P1 �= 8,P1 �= 9 |= p([P2,P1],X2,X1).

while (true) do
〈0〉 x1:=1
〈1〉 await(x2<3) skip
〈2〉 x1:=3
〈3〉 if (x2=1) do
〈4〉 x1:=2
〈5〉 await(x2=4) skip

end
〈6〉 x1:=4
〈7〉 skip
〈8〉 await(x2<2∨x2>3) skip
〈9〉 x1:=0

end

while (true) do
〈0〉 x2:=1
〈1〉 await(x1<3) skip
〈2〉 x2:=3
〈3〉 if (x1=1) do
〈4〉 x2:=2
〈5〉 await(x1=4) skip

end
〈6〉 x2:=4
〈7〉 await(x1<2) skip
〈8〉 skip
〈9〉 x2:=0

end

Fig. 5. 2-Process Szymanski’s Algorithm
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p([0,0],0,0). % Initial State
% Rules for Process 1
p([1,P2],1,X2)←p([0,P2],X1,X2).
p([2,P2],X1,X2)←p([1,P2],X1,X2),X2 < 3.
p([3,P2],3,X2)←p([2,P2],X1,X2).
p([4,P2],X1,X2)←p([3,P2],X1,X2),X2 = 1.
p([5,P2],2,X2)←p([4,P2],X1,X2).
p([6,P2],X1,X2)←p([3,P2],X1,X2),X2 �= 1.
p([6,P2],X1,X2)←p([5,P2],X1,X2).
p([7,P2],4,X2)←p([6,P2],X1,X2).
p([8,P2],X1,X2)←p([7,P2],X1,X2).
p([9,P2],X1,X2)←p([8,P2],X1,X2),

(X2 < 2∨X2 > 3).
p([0,P2],0,X2)←p([9,P2],X1,X2).

% Rules for Process 2
p([P1,1],X1,1)←p([P1,0],X1,X2).
p([P1,2],X1,X2)←p([P1,1],X1,X2),X1 < 3.
p([P1,3],X1,3)←p([P1,2],X1,X2).
p([P1,4],X1,X2)←p([P1,3],X1,X2),X1 = 1.
p([P1,5],X1,2)←p([P1,4],X1,X2).
p([P1,6],X1,X2)←p([P1,3],X1,X2),X1 �= 1.
p([P1,6],X1,X2)←p([P1,5],X1,X2).
p([P1,7],X1,4)←p([P1,6],X1,X2).
p([P1,8],X1,X2)←p([P1,7],X1,X2),X1 < 2.
p([P1,9],X1,X2)←p([P1,8],X1,X2).
p([P1,0],X1,0)←p([P1,9],X1,X2).

Fig. 6. CLP Representation of Szymanski’s Algorithm

At first it seems that the above assertions no longer defines an automorphism group
since p([P1,8],X1,X2),3 ≤ P1 ≤ 7 |= p([8,P1],X2,X1) can be derived from the last as-
sertion, yet the inverse does not hold. However, by observation the assertion p([P1,8],
X1,X2) |= P1 < 3∨P1 > 7 holds since it is not possible for process 2 to be in the criti-
cal section while process 1 is waiting. Similarly, p([P1,9],X1,X2) |= P1 �= 7 also holds.
These impose restrictions on the last assertion above.

We are not aware of any verification technique that would allow us to express and
use this kind of symmetry.

Example 6 (Serializability). We next discuss an application of relative safety assertion
beyond symmetry. We show a producer/consumer program in Figure 7, which CLP rep-
resentation is in Figure 8. The macros conk() and prol(), abstract program fragments
that serve to produce and consume respectively. We will imagine that apart from the
variable full there are other variables x which may be used in conk() and prol().

Consider the assertions:

p([n + 1,P2],Full, f (X)),P2 ≤ n |= p([1,P2],Full,X).
p([P1,n],Full,g(X)),P1 ≥ 1 |= p([P1,0],Full,X).

where the expression f (X) and g(X) are the results of performing con1() . . . conn()
and pro1() . . . pron() respectively on X . Then the assertions say that the result of
performing the interleaving of conk() and prol() macros, 1≤ k≤ P1−1, 1≤ l ≤ P2 is
as though the two sequences of transitions are serializable. Note that here we still have
an automorphism group which contains the above assertions and their inverses.

Both symmetry and serializability are examples of non-behavioral properties, i.e.,
properties determined by the structure of the program. They are not necessarily related
to the intended result of the computation. Relative safety is potentially useful to specify
many other useful non-behavioral properties, possibly ad-hoc and application specific.
The class of such properties is potentially large. It is intuitively clear that such infor-
mation can help in speeding up the proof process of other properties, which we will
demonstrate later.
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Consumer:
while (true) do

0 await (full=1) full:=0
1 con1() 2 n conn() n 1

end

Producer:
while (true) do

0 pro1() 1 n 1 pron()
n await (full=0) full:=1 n 1

end

Fig. 7. Producer/Consumer

p([0,0],0,X). % Initial State
% Consumer
p([1,P2],0,X)← p([0,P2],1,X).
p([2,P2],Full,X)← p([1,P2],Full,X).
p([n,P2],Full,X)← p([n−1,P2],Full,X).
p([0,P2],Full,X)← p([n,P2],Full,X).

% Producer
p([P1,1],Full,X)← p([P1,0],Full,X).
p([P1,n],Full,X)← p([P1,n−1],Full,X).
p([P1,n+1],Full,X)← p([P1,n],Full,X).
p([P1,0],1,X)← p([P1,n+1],0,X).

Fig. 8. Partial CLP Representation of Producer/Consumer

5 The Proof Method

Now let G = (B1, . . . ,Bn,φ) and P denote a goal and program respectively. Let R =
A← C1, . . . ,Cm,φ1 denote a rule in P, written so that none of its variables appear in
G. Let the equation A = B be shorthand for the pairwise equation of the corresponding
arguments of A and B. A reduct of G using R, denoted by reduct(G,R), is of the form

(B1, . . . ,Bi−1,C1, . . . ,Cm,Bi+1, . . . ,Bn,Bi = A∧φ∧φ1)

provided the constraint Bi = A∧φ∧φ1 has a true ground instance. Since the CLP rules
are implications, it follows that G← reduct(G,R) holds.

Definition 3 (Unfold). Given a program P and a goal G which contain one atom,
a complete unfold of a goal G, denoted by unfold(G) is the set {G′|∃R ∈ P : G′ =
reduct(G,R)}. A (not necessarily complete) unfold of G is a set unfold′(G)⊆ unfold(G).

Note that since [[G]] �= /0 only if G∩ TP([[ unfold(G)]]) �= /0, and this holds only if
[[ unfold(G)]] �= /0, we have the logical semantics of unfold: G→ unfold(G).

Definition 4 (Unfold Tree Goals). Given a program P and a set H of goals each con-
tain one atom, we define the function δ(H) = H∪unfold′(G1), when G1 ∈H. We obtain
a set of unfold tree goals of G by a finite successive applications of δ on {G}.

Since for any goal G, G← reduct(G,R), for any goal G1 in the unfold tree goals of G,
G1→ G.

Definition 5 (Frontier). Given a program P and a set H of goals which contains one
atom, when there exists G1 ∈ H, we define the nondeterministic function ε(H) = (H−
{G1})∪ unfold(G1). ε() can be successively applied to a singleton set containing an
initial goal G obtaining a frontier F = ε(. . . (ε({G})) . . .).

From the logical semantics of unfold, for any frontier F of G, G→ F .
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Fig. 9. Informal Structure of Proof Process

Intuitively, in order to prove GL |= GR, we proceed as follows: unfold GL completely
to obtain a frontier containing the goals GL

1 , . . . ,G
L
n , and unfold GR (not necessarily

completely) obtaining unfold tree goals GR
1 , . . . ,G

R
m. This is depicted in Figure 9. Then

the proof holds if
GL

1 ∨ . . .∨GL
n |= GR

1 ∨ . . .∨GR
m

or alternatively, if GL
i |= GR

1 ∨ . . .∨GR
m for all 1 ≤ i ≤ n. The justification for this

result comes from the logical semantics of unfold: we have that GL → GL
1 ∨ . . .∨GL

n ,
and GR

j →GR for all j such that 1≤ j≤m. By a chain of implications we may conclude
GL |= GR.

More specifically, but with some loss of generality, the proof holds if

∀i : 1≤ i≤ n,∃ j : 1≤ j ≤ m : GL
i |= GR

j .

and for this reason, our proof obligation shall be defined below to be simply a pair of
goals, written GL

i |= GR
j .

Note that since we replace the global satisfaction criterion by local criteria, our proof
method is therefore incomplete in cases where we need to perform some unfolds of GR,
that is, when proving relative safety assertions. Unfold of GR is not needed for proving
traditional safety assertions.

Our proof method can also be viewed as checking that the set of states represented by
the symbolic formula GR is reachable, whenever the set GL is reachable. This is done by
showing that a frontier of states that reach GL also reaches GR. If GL is to be reachable
from the initial state, it must be through at least one of the states in this frontier. And
since from all states in the frontier GR is reachable, GR must also be reachable from the
initial state.

5.1 Proof Rules

We now present a calculus for proving relative safety assertions. To handle the possibly
infinite unfoldings of GL and GR (see Figure 9), we shall depend on the use coinduction
for the unfolding of GL.

Proof by coinduction proceeds by assuming everything we like as long as we do not
violate any facts. While assuming a set of assertions of the form GL |= GR collected
along an unfold path, we prove another assertion on the path, making it unnecessary to
unfold the path further. For the use of coinduction, we now give the following definition.
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Definition 6 (Proof Obligation). A proof obligation is of the form Ã 'GL |= GR, where
GL and GR are goals and Ã is a set of assertions that are assumed.

The role of proof obligations is to capture the state of a proof. The set Ã contains asser-
tions that can be used coinductively to discard the proof obligation at hand.

Our proof rules are presented in Figure 10. Each rule operates on the (possibly
empty) set of proof obligations Π, by selecting a proof obligation from Π and attempt-
ing to discard it. In this process, new proof obligations may be produced. The proof
process is typically centered around unfolding the goals in proof obligations.

The left unfold and coinduction (LU+C) rule performs a complete unfold on the lhs
of a proof obligation, producing a new set of proof obligations. The original assertion,
while removed from Π, is added as an assumption to every newly produced proof oblig-
ation, opening the door to using coinduction in the proof.

(LU+C)
Π∪{Ã ' GL |= GR}

Π∪ n
i=1{Ã∪{GL |= GR} ' GL

i |= GR}
unfold(GL) = {GL

1 , . . . ,G
L
n}

(RU)
Π∪{Ã ' GL |= GR}
Π∪{Ã ' GL |= GR

i }
GR

i ∈ unfold(GR)

(AP)
Π∪{Ã ' GL,φ |= GR}

Π∪{Ã ' GR
1 θ,φ |= GR}

GL
1 |= GR

1 ∈ Ã and there
exists a renaming θ s.t.
GL |= GL

1θ

(DP)
Π∪{Ã ' GL,φ |= GR}

Π
There exists a renaming
θ s.t. GL |= GRθ

(SPL)
Π∪{Ã ' GL |= GR}

Π∪ k
i=1{Ã ' GL,φi |= GR}

φ1∨ . . .∨φk is true.

Fig. 10. Proof Rules

Example 7 (Proving Symmetry). We exemplify our proof rules using a proof of a sym-
metry property of the 2-process bakery algorithm (Figure 2):

p([P1,P2],T1,T2) |= p([P2,P1],T2,T1). (1)

Initially, Π = { /0 ' p([P1,P2],T1,T2) |= p([P2,P1],T2,T1)}.

Using the rule LU+C, and all the CLP rules of Figure 2, we perform a left unfold of
GL = p([P1,P2],T1,T2), obtaining a new set of proof obligations Π′. In particular, by the
unfold of CLP rule r1, Π′ includes the obligation (O1):

Ã′ ' p([P′1,P2],T ′1 ,T2),P1 = 1,P′1 = 0,T1 = T2 + 1 |= p([P2,P1],T2,T1),

where Ã′ = {p([P1,P2],T1,T2) |= p([P2,P1],T2,T1)}.
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By the unfold of CLP rule init, Π′ also includes the obligation (O2):

Ã′ ' P1 = P2 = 0,T1 = T2 = 0 |= p([P2,P1],T2,T1).

Other than these two obligations, Π′ also includes the result of unfolding using the rules
e1, x1, r2, e2, and x2.

The rule right unfold (RU) performs an unfold operation on the rhs of a proof oblig-
ation. Note that only one unfolded goal is used. Now, in practice, it is generally not
known which reduct GR

i of GR is the one we need later, or indeed if GR itself is needed
later.

Returning to our example, by unfolding GR = p([P2,P1],T2,T1) of (O1) using proof
rule RU and CLP rule r2 of Figure 2, we obtain Π′′ which includes (O3):

Ã′ ' p([P′1,P2],T ′1 ,T2),P1 = 1,P′1 = 0,T1 = T2 + 1 |=
p([P2,P′′1 ],T2,T ′′1 ),P1 = 1,P′′1 = 0,T1 = T2 + 1

Similarly, by unfolding the rhs of (O2) using RU and the CLP rule init, we obtain
Π′′′ which includes the obligation (O4):

Ã′ ' P1 = P2 = 0,T1 = T2 = 0 |= P1 = P2 = 0,T1 = T2 = 0.

The rule assumption proof (AP) transforms an obligation by using an assumption,
and realizes the coinduction principle (since assumptions can only be created by the
rule (LU+C)).

Continuing our example, we can now immediately prove (O3) by rule AP, and ap-
plying the original symmetry assertion (1) which is included in the set of assumed
assertions Ã′ of (O3). More concretely, we apply (1) to the lhs of (O3) obtaining the
goal p([P2,P′1],T2,T ′1),P1 = 1,P′1 = 0,T1 = T2 +1, which clearly implies the rhs of (O3)
by renaming of each double primed variables to its single primed version.

The rule direct proof (DP) discards a proof obligation when it can be directly proven
that it holds, possibly by some renaming of variables. This rule is used to discharge
(O4), since it is immediately clear that it holds. The renaming θ that we apply here is
the identity.

Finally, the rule split (SPL) converts a proof obligation into several, more specialized
ones.

Given an assertion GL |= GR, a proof shall start with Π = {Ã ' GL |= GR}, and
proceed by repeatedly applying the rules in Figure 10 to it. The conditions in which a
proof can be completed are stated in the following theorem.

Theorem 1 (Proof of Assertions). A safety assertion GL |= GR holds if, starting with
the proof obligation Π = { /0 ' GL |= GR}, there exists a sequence of applications of
proof rules that results in Π = /0. The safety assertion holds conditionally on Ã if we
start with Π = {Ã ' GL |= GR}, where Ã �= /0.

Our proof method can be used to prove traditional safety assertion GL |= Ψ, to prove
relative safety assertion GL |= GR, where GR contains an atom, and to prove traditional
safety assertion using other assertions, e.g., relative safety assertions representing sym-
metry, possibly obtaining smaller proof. For the last use we start a prove of traditional
safety assertion with a non-empty set of assumed assertions.
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The proof rules above are sufficient in principle for our purposes. However, there
is a very important principle which gives rise to an optimization: redundancy between
obligations which essential idea is based on the observation that in proving GL |= GR,
we may obtain a goal GL

i by a sequence of unfolds from GL, and prove the obligation
GL

i |= GR. Using this we can try to establish GL
j ,φ |= GR in another part of the tree,

where i �= j, where there exists a renaming θ such that GL
j |= GL

i θ. Here, we reuse the
proof of GL

i |= GR in the proof of GL
j ,φ |= GR.

A fundamental question in proving relative safety assertion GL |= GR in general, is
how to interleave the unfolding of the lhs versus the rhs. For this we can repeatedly
apply left-unfolding on GL either until “looping”, that is, until each path in the tree
contains a repeated occurrence of a program counter, or the final goal of the path is a
constraint. This is because coinduction is likely to be applicable at a looping point.

6 Implementation and Experiments

We implemented our proof algorithm as regular CLP(R ) [15] programs. Our prototype
implementations use coinduction, and a tabling mechanism for storing assumed asser-
tions. We run our prototypes using a 2 GHz Pentium 4 Xeon machine with 2 GB of RAM.

Our first prototype is for proving relative assertions. Here we hope that the symme-
try proof using coinduction concludes in just 1 level of unfold of both lhs and rhs of
the assertion, because this is the case for perfectly symmetric programs. These include
bakery algorithm and dining philosophers’ problem. In these examples, every transition
from state s to t has its symmetric counterpart that maps π(s) to the π(t), where π an au-
tomorphism of states. Our implementation therefore first tries to check goals obtained
from 1 level of both lhs and rhs unfold. For each goal in the lhs frontier, it tries to search
for a goal in the rhs of depth 1, such that the original symmetry assertion is applicable
coinductively. Where the proof does not conclude in this manner, we have a program
with imperfect symmetry, such is the case with the simple priority mutual exclusion
and Szymanski’s algorithm. In this case, general depth-first traversal of lhs subtree is
initiated. For producer-consumer problem, we do not perform any lhs unfolding.

Experimental results in proving relative safety assertions are shown in Table 1, where
A#=number of verified assertions, LSt=number of visited lhs goals, RSt=number of
visited rhs goals, and T=time in seconds. In ProblemName-N, N denotes the number
of processes, except for Prod/Cons-N where N denotes that there are N produce and
consume operations. Note that we could not complete the experiment for 6-process
bakery algorithm and 3-process Szymanski’s algorithm after a few hours.

We also implemented a second prototype to prove safety assertions of the form G |=
false with or without assumed relative safety assertions (e.g., symmetry). G |= false
declares non-reachability of error states G.

A coinductive verification requires matching between the goal in an assertion and
an assumed assertion such that the said assertion can be proven coinductively. As is
common in the literature, for verification using symmetry we need to define a set of
canonical representatives of the equivalence class of goals induced by given symmetry,
such that the matching can be done efficiently among representatives. Unfortunately,
finding all the canonical representatives of a goal is a hard problem known as the orbit
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Table 1. Relative Safety Proof Experimental Results

Problem A# LSt RSt T

Bakery-2 1 9 27 0.00
Bakery-3 2 44 254 0.10
Bakery-4 3 147 1557 11.28
Bakery-5 4 424 7804 2320.3
Bakery-6 5 ∞ ∞ ∞

Philosopher-3 1 19 124 0.01

Problem A# LSt RSt T

Philosopher-4 1 24 232 0.02
Priority 1 43 220 0.04

Szymanski-2 8 362 28419 59.11
Szymanski-3 16 ∞ ∞ ∞

Prod/Cons-10 2 0 170 0.19
Prod/Cons-20 2 0 530 1.88

problem [2]. Our solution here is to try to generate canonical representatives of a goal
only up to a constant number, and we employ a sorting algorithm as our canonicalization
function. We note, however, that canonicalization is not hard for dining philosophers’
problem since for this problem it is a cyclic shift which is linear to the permutable
domain size (cf. [2]). Also that neither sorting nor cyclic shift is necessary when using
serializability assertions.

The results are shown in Table 2 (a). The proof of traditional safety does not require
right unfolding, hence there is no column for RSt value. We ran the bakery, Peterson’s,
Lamport’s fast mutual exclusion and Szymanski’s algorithms proving mutual exclu-
sion. Note that we do not prove the symmetry assertions of some of the problems (e.g.,
Szymanski-3). For the dining philosophers’ problem, we prove that there cannot be

Table 2. Safety Proof Experimental Results

CLP/Coinductive Tabling Delzanno-
Problem No Assertion W/ Assertion Podelski

LSt T LSt T # Facts

Bakery-2 15 0.00 8 0.00 13
Bakery-3 296 0.07 45 0.01 109
Bakery-4 4624 6.60 191 0.20 963
Bakery-5 ∞ ∞ 677 2.88
Bakery-6 ∞ ∞ 2569 49.08
Bakery-7 ∞ ∞ 11865 1052.32

Peterson-2 105 0.05 10 0.00
Peterson-3 20285 119.03 175 0.15
Peterson-4 ∞ ∞ 3510 11.98
Lamport-2 143 0.02 72 0.02
Lamport-3 4255 1.13 707 0.40
Lamport-4 ∞ ∞ 5626 7.63

Szymanski-2 240 0.08 84 0.02
Szymanski-3 10883 35.43 3176 2.91

Philosopher-3 882 0.51 553 0.30
Philosopher-4 4293 27.77 2783 9.67
Prod/Cons-10 664 0.10 171 0.02
Prod/Cons-20 2314 1.90 331 0.04

(a) Stored Assertions and Time

Problem % Reduction
Type LSt T

Bakery 76% 78%
Peterson 95% 99.9%
Lamport 67% 65%

Szymanski 68% 83%
Philosopher 36% 53%
Prod/Cons 87% 94%

(b) % Reduction
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more than N/2 philosophers simultaneously eating. For the producer-consumer prob-
lem, each proi() increments a variable x, and con j() decrements it. Here we verify
that the value of x can never be more than 2n.

Bakery algorithm has infinite reachable states, and therefore cannot be handled by
finite-state model checkers. We compare our search space the results of the CLP-based
system of Delzanno and Podelski [4]. As also noted by Delzanno and Podelski, the
problem does not scale well to larger number of processes, but using symmetry, we
have pushed its verification limit to 7 processes without abstraction.

In Table 2 (b) we summarize the effectiveness of the use of a variety of relative safety
assertions. The use of symmetry assertion effectively reduces the search space of per-
fectly symmetric problems (bakery, Peterson’s, Lamport’s fast mutex, dining philoso-
phers). However, the reduction for Szymanski’s algorithm is competitive with perfectly
symmetric problems, showing that “not-quite” symmetry reduction is worth pursuing.
The use of rotational symmetry in the dining philosophers’ problem is, expectedly, less
effective. We also note that we managed to obtain a substantial reduction of state space
for the producer/consumer problem. Reduction in time roughly corresponds to those of
state space.

Finally, comparing Table 1 and 2, the proof of relative safety assertions are no easier
than the proof of traditional safety assertions, even with coinduction. This is because of
the need to perform rhs unfold when proving relative safety.

7 Conclusion

In this paper, we introduced a novel assertion called relative safety. This can be uniquely
used to assert structural properties of programs. We chose a driving application area of
symmetry, and demonstrated that, by using relative safety, we could accommodate a
larger class of programs than have been previously considered by other means. We
provided a proof system, based upon well understood computational steps of unfolding,
and introduced a new coinductive tabling mechanism. We then ran some experiments in
order to show the practical potential of our algorithm. Further work is to discover more
important classes of structural properties for which relative safety can be used.
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Abstract. We propose a type-based resource usage analysis for the π-
calculus extended with resource creation/access primitives. The goal of
the resource usage analysis is to statically check that a program accesses
resources such as files and memory in a valid manner. Our type system is
an extension of previous behavioral type systems for the pi-calculus, and
can guarantee the safety property that no invalid access is performed,
as well as the property that necessary accesses (such as the close oper-
ation for a file) are eventually performed unless the program diverges.
A sound type inference algorithm for the type system is also developed
to free the programmer from the burden of writing complex type an-
notations. Based on the algorithm, we have implemented a prototype
resource usage analyzer for the π-calculus. To the authors’ knowledge,
ours is the first type-based resource usage analysis that deals with an
expressive concurrent language like the π-calculus.

1 Introduction

Computer programs access many external resources, such as files, library func-
tions, device drivers, etc. Such resources are often associated with certain access
protocols; for example, an opened file should be eventually closed and after the
file has been closed, no read/write access is allowed. The aim of resource usage
analysis [9] is to statically check that programs conform to such access pro-
tocols. Although a number of approaches, including type systems and model
checking, have been proposed so far for the resource usage analysis or similar
analyses [1, 5–7, 9], most of them focused on analysis of sequential programs,
and did not treat concurrent programs, especially those involving dynamic cre-
ation/passing of channels and resources.

In the present paper, we propose a type-based method of resource usage analy-
sis for concurrent languages. Dealing with concurrency is especially important
because concurrent programs are hard to debug, and also because actual pro-
grams accessing resources are often concurrent. We use the π-calculus (extended
with resource primitives) as a target language so that our analysis can be ap-
plied to a wide range of concurrency primitives (including those for dynamically
creating and passing channels) in a uniform manner.
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For the purpose of analyzing resource usage, we extend previous behavioral
type systems for the π-calculus [3, 8]. The idea of the behavioral types [3, 8]
is to use CCS-like processes as types. The types express abstract behavior of
processes, so that certain properties of processes can be verified by verifying
the corresponding properties of their types, using, for example, model checking
techniques. The latter properties (of CCS-like types) are more amenable to auto-
matic verification techniques like model checking than the former ones, because
the types do not have channel mobility and also because the types typically
represent only the behavior of a part of the entire process.

Following the previous behavioral types, we use CCS-like types to express
resource-wise access behaviors of a process and construct a type system which
guarantees that any well-typed process uses resources in a valid manner. The
main contributions of the present paper are:

– Adaption of behavioral types (for pure π-calculus) [3, 8] to the π-calculus
extended with resource access primitives.

– Realization of fully automatic verification (while making the analysis more
precise than [8]). Igarashi and Kobayashi [8] gave only an abstract type
system, without giving a concrete type inference algorithm. Chaki et al. [3]
requires type annotations. The full automation was enabled by a combination
of a number of small ideas, like inclusion of hiding and renaming as type
constructors (Igarashi and Kobayashi [8] used a fragment without hiding
and renaming, and Chaki et al. [3] used a fragment without renaming),
approximation of a CCS-like type by a Petri net (to reduce the problem of
checking conformance of inferred types to resource usage specification).

– Verification of not only the usual safety property that an invalid resource
access does not occur, but also an extended safety (which we call partial
liveness) that necessary resource accesses (e.g. closing of a file) are even-
tually performed unless the whole process diverges. The partial liveness is
not guaranteed by Chaki et al.’s type system [3]. A noteworthy point about
our type system for guaranteeing the partial liveness is that it is parame-
terized by a mechanism that guarantees deadlock-freedom (in the sense of
Kobayashi’s definition [13]). So, our type system can be combined with any
mechanism (model checking, abstract interpretation, another type system,
or whatever) to verify deadlock-freedom.

– Implementation of a prototype resource usage analyzer based on the pro-
posed method. The implementation can be tested at http://www.yl.is.s.
u-tokyo.ac.jp/~kohei/usage-pi/.

The rest of this paper is structured as follows. Section 2 introduces an extension
of the π-calculus with primitives for creating and accessing resources. Section 3
introduces a type system for resource usage analysis. Section 4 gives a type
inference algorithm for the type system. Section 5 presents our prototypical
implementation. Section 6 discusses related work. Section 7 concludes. For lack
of space, proofs and some explanations have been omitted. They are found in
the full version of this paper [15].
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2 Language

Let x, y, z range over a countably infinite set Var of variables, let values v range
over variables and also the two constant values true and false, let tags t range
over {∅, c}, let ξ range over a set of access labels, and let Φ (called a trace set)
denote a set of sequences of access labels, possibly ending with a special label ↓,
that is closed under the prefix operation. We write x̃ for a sequence x1, . . . ,xn

of variables, and similarly ṽ, and define Φ−ξ = {s | ξs ∈ Φ}. Let L range over
reduction labels {xξ | x ∈ Var} ∪ {τ}.

P ::= 0 | (P |Q) | if v then P else Q | (νx) P | ∗P
| xt〈ev〉. P | xt(ey). P | (NΦx)P | accξ(x).P

Structural preorder � is as follows. P ≡ Q stands for (P � Q) ∧ (Q � P ).

P |0 ≡ P P |Q ≡ Q |P P | (Q |R) ≡ (P |Q) |R ∗P � ∗P |P
(νx) P |Q � (νx) (P |Q) and (NΦx)P |Q � (NΦx)(P |Q)if x not free in Q

P � P ′ Q � Q′

P |Q � P ′ |Q′
P � Q

(νx) P � (νx) Q

P � Q

(NΦx)P � (NΦx)Q

Labeled relation L−→ is as follows. Write P −→ Q when P
L−→ Q for some L, and −→∗

for reflexive and transitive closure of −→. Define target(xξ) = {x} and target(τ) = ∅.

xt〈ez〉. P |xt′(ey). Q τ−→ P | [ez/ey]Q accξ(x).P xξ−→ P
if true then P else Q

τ−→ P

if false then P else Q
τ−→ Q

P
L−→ Q

P |R L−→ Q |R
P

L−→ Q x �∈ target(L)

(νx) P
L−→ (νx) Q

P
xξ−→ Q

(NΦx)P τ−→ (NΦ−ξx)Q

P
L−→ Q x �∈ target(L)

(NΦx)P L−→ (NΦx)Q

P � P ′ P ′ L−→ Q′ Q′ � Q

P
L−→ Q

Fig. 1. Process language

The process language P is in Figure 1. The first line is standard π-calculus –
(νx)P declares a new channel with bound name x, ∗P is replication, and parallel
composition | binds less tightly than the prefixes. We often omit trailing 0.
Bound and free variables are defined as normal. We identify processes up to α-
conversion, and so assume that bound variables are always different from each
other and from free variables.

The input command xt(ỹ). P waits for input on channel x with bound formal
parameters ỹ and then behaves as P . The output command xt〈ṽ〉. P sends ṽ
along x and then behaves as P . The attribute t is either c (indicating that if
the input is executed then it will succeed unless the whole process diverges) or ∅
(which does not give the guarantee). We often omit ∅. Note that the attributes
do not affect the operational semantics of processes. Typically the attributes



Resource Usage Analysis for the π-Calculus 301

have been inferred by some deadlock analysis tool such as TyPiCal [10–12, 14].
For this paper, we assume that the correctness of the attributes are ensured by
whichever deadlock-analysis tool used to make the annotations.

For the final line in the definition of processes, (NΦx)P declares a resource
with bound name x which is to be accessed according to specification Φ, and
accξ(x).P performs access ξ on resource x and then behaves like P . Resources
here are an abstraction of real-world resources such as files or objects. In this
paper we consider accesses such as I for initialize, R for read, W for write and
C for close. For example, (N(I(R+W )∗C ↓)#x)P creates a resource that should be
first initialized, read or written an arbitrary number of times, and then closed.
The symbol ↓ at the end indicates that the final close is required eventually
to occur. Here, (S)# is the prefix closure of S, i.e., {s | ss′ ∈ S}. We write ε
for the empty access sequence. We write init(x).P for accI(x).P , and similarly
read(x), write(x), close(x). We do not fix the syntax of Φ. Our type system
is independent of the choice of the language for describing the specificaiton Φ
(except for the sub-algorithm for type-checking discussed in Section 4.1, where
we assume that Φ is a regular language).

We treat resources as primitives in this paper, and give operational semantics
where accξ(x).P is non-blocking. This is for simplicity. It would also be possible
to treat a resource with (say) three access labels as a tuple of three channels.
This would allow previous work [3, 8] to infer some of the properties of this
paper, albeit with less precision and more complexity. Also in this paper we
have specifications Φ apply only to a single resource. To model a program with
two co-declared resources as in [8] with intertwined specifications, we would
instead merge them into a single resource with a single specification.

The operational semantics of the language are given in Figure 1, through a
structural preorder ( and a labeled reduction relation L−→. Notice that invalid
resource access sets Φ = ∅, valid access removes a prefix from Φ, and complete
access results in Φ = {ε, ↓}).

(N(IC ↓)#x)read(x).0→ (N∅x)0 (invalid access)

(N(IC ↓)#x)init(x).0→ (N(C ↓)#x)0 (valid access)

(N(IC ↓)#x)init(x).close(x).0→ (N{ε,↓}x)0 (complete access)

We are concerned with the following properties.

Definition 1. 1. A process P is safe if it does not contain a sub-expression of
the form (N∅x)Q.

2. A process P is partially live if ↓ ∈ Φ whenever P −→∗( (ν̃Ñ)(NΦx)Q �−→.

The first property means that the process has not performed any invalid access.
The second property means that necessary accesses are eventually performed
before the whole process converges. In the next section, we shall develop a type
system that guarantees the safety and partial liveness.

Example 1. The following example process is safe and partially live. It uses in-
ternal synchronization to ensure that the resource x is accessed in a valid order.
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(N(IR∗C)#x)(νy) (νz)
(

init(x).(y〈 〉 | y〈 〉) /* initialize x, and send signals */
| yc( ). read(x).z〈 〉 /* wait on y, then read x, and signal on z*/
| yc( ). read(x).z〈 〉 /* wait on y, then read x, and signal on z*/
| zc( ). zc( ). close(x)

)
/* wait on z, then close x */

3 Type System

3.1 Types

We first introduce the syntax of types. We use two categories of types: value
types and behavioral types. The latter describes how a process accesses resources
and communicates through channels. As mentioned in Section 1, we use CCS
processes for behavioral types.

Definition 2 (types). The sets of value types σ and behavioral types A are
defined by:

σ ::=bool | res | chan〈(x1 :σ1, . . . ,xn :σn)A〉
A::=0 | α | at.A | xξ.A | τt.A | (A1 |A2) | A1 ⊕A2 | ∗A
| 〈y1/x1, . . . , yn/xn〉A | (νx)A | μα.A | A↑S | A↓S

a (communication labels) ::= x | x

A behavioral type A, which is a CCS process, describes what kind of commu-
nication and resource access a process may perform. 0 describes a process that
performs no communication or resource access. The types xt. A, xt. A, xξ.A and
τt.A describes process that first perform an action and then behave according
to A; the actions are, respectively, an input on x, an output on x, an access
operation ξ on x, and the invisible action. Attributes t denote whether an action
is guaranteed to succeed. A1 |A2 describes a process that performs communica-
tions and resource access according to A1 and A2, possibly in parallel. A1⊕A2
describes a process that behaves according to either A1 or A2. ∗A describes a
process that behaves like A an arbitrary number of times, possibly in parallel.
〈y1/x1, . . . , yn/xn〉A, abbreviated to 〈ỹ/x̃〉A, denotes simultaneous renaming of
x̃ with ỹ in A. (νx)A describes a process that behaves like A for some hidden
channel x. For example, (νx) (x. y |x) describes a process that performs an out-
put on y after the invisible action on x. The type μα.A describes a process that
behaves like a recursive process defined by α

�
= A. The type A↑S describes a

process that behaves like A, except that actions whose targets are in S are re-
placed by the invisible action τ , while A↓S describes a process that behaves like
A, except that actions whose targets are not in S are replaced by τ . The formal
semantics of behavioral types is defined later using labeled transition semantics.

As for value types, bool is the type of booleans. res is the type of re-
sources. The type chan〈(x1 :σ1, . . . ,xn :σn)A〉, abbreviated to chan〈(x̃ : σ̃)A〉,
describes channels carrying tuples consisting of values of types σ1, . . . , σn. Here
the type A approximates how a receiver on the channel may use the elements
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x1, . . . ,xn of each tuple for communications and resource access. For exam-
ple, chan〈(x : res, y : res)xR.yC〉 describes channels carrying a pair of resources,
where a party who receives the actual pair (x′, y′) will first read x′ and then
close y′. We sometimes omit σ̃ and write chan〈(x̃)A〉 for chan〈(x̃ : σ̃)A〉. When
x̃ is empty, we also write chan〈〉.

Note that 〈ỹ/x̃〉 is treated as a constructor rather than an operator for per-
forming the actual substitution. We write [ỹ/x̃] for the latter throughout this
paper. 〈ỹ/x̃〉A is slightly different from the relabeling of the standard CCS [17]:
〈y/x〉(x | y) allows the communication on y, but the relabeling of CCS does not.
This difference calls for the introduction of a special transition label {x, y} in
Section 3.2.

(νx)A, 〈ỹ/x̃〉A, and A↑S bind x, x̃, and the variables in S respectively. We
write FV(A) for the set of free variables in A. We identify behavioral types up to
renaming of bound variables. In the rest of this paper, we require that every chan-
nel type chan〈(x1 :σ1, . . . ,xn :σn)A〉 must satisfy FV(A) ⊆ {x1, . . . ,xn}. For
example, chan〈(x:res)xR〉 is a valid type but chan〈(x:res)yR〉 is not. By abuse
of notation, we write 〈v1/x1, . . . , vn/xn〉A for 〈vi1/xi1 , . . . , vik

/xik
〉A where

{vi1 , . . . , vik
} = {v1, . . . , vn}\{true, false}. For example, 〈true/x, y/z〉A stands

for 〈y/z〉A.

3.2 Semantics of Behavioral Types

We give a labeled transition relation l−→ for behavioral types. The transition
labels l are

l ::= x | x | xξ | τ | {x, y}

The label {x, y} indicates the potential to react in the presence of a substitution
that identifies x and y. We also extend target to the function on transition labels
by:

target(x) = target(x) = {x} target({x, y}) = {x, y}

Figure 2 shows a part of the definition of the transition relation l−→ on behavioral
types. For the complete definition, see the full paper [15]. We write =⇒ for the
reflexive and transitive closure of τ−→. We also write l=⇒ for =⇒ l−→=⇒.

at.A
a→A xξ.A

xξ→ A τt.A
τ→A

A
l→A′ target(l)⊆S

A↑S τ→A′↑S
A

l→A′ target(l)∩S=∅
A↑S l→A′↑S

A
l→A′ target(l)⊆S

A↓S l→A′↓S
A

l→A′ target(l)∩S=∅
A↓S τ→A′↓S

Fig. 2. A Part of Definition of Transition semantics of behavioral types
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Remark 1. (νx)A should not be confused with A↑{x}. (νx)A is the hiding oper-
ator of CCS, while A↑{x} just replaces any actions on x with τ [8]. For example,

(νx) (x. yξ) cannot make any transition, but (x. yξ)↑{x}
τ−→ yξ

−→ 0↑{x}.

We next define a predicate disabled(A,S) inductively as follows.

disabled(0, S)
disabled(xξ.A, S) if disabled(A,S) and x �∈ S

disabled(ac.A, S) if disabled(A,S)
disabled(a∅.A, S)
disabled(τc.A, S) if disabled(A,S)
disabled(τ∅.A, S)

disabled(A1 |A2, S) if disabled(A1, S) and disabled(A2, S)
disabled(A1 ⊕A2, S) if disabled(A1, S) or disabled(A2, S)

disabled(∗A,S) if disabled(A,S)
disabled((νx)A,S) if disabled(A,S\{x})

disabled(A↑S′ , S) if disabled(A,S\S′)
disabled(A↓S′ , S) if disabled(A,S ∩ S′)

disabled(〈ỹ/x̃〉A,S) if disabled(A, {z | [ỹ/x̃]z ∈ S})
disabled(μα.A, S) if disabled([μα.A/α]A,S)

Intuitively, disabled(A,S) means that A describes a process that may get blocked
without accessing any resources in S.

The set etracesx(A) defined below is the set of possible access sequences on
x described by A.

Definition 3 (extended traces). The set etracesx(A) of extended traces is:

{ξ1 · · · ξn ↓ |∃B.A↓{x}
xξ1
=⇒ · · · xξn

=⇒ B ∧ disabled(B, {x})}
∪{ξ1 · · · ξn|∃B.A↓{x}

xξ1
=⇒ · · · xξn

=⇒ B}

We define the subtyping relation A1 ≤ A2 below. Intuitively, A1 ≤ A2 means
that a process behaving according to A1 can also be viewed as a process behaving
according to A2. To put in another way, A1 ≤ A2 means that A2 simulates A1.1

We define ≤ for only closed types, i.e., those not containing free type variables.

Definition 4 (subtyping). The subtyping relation ≤ on closed behavioral
types is the largest relation that satisfies the following properties:

– A1 ≤ A2 and A1
l−→ A′

1 implies A2
l=⇒ A′

2 and A′
1 ≤ A′

2 for some A′
2.

– disabled(A1, S) implies disabled(A2, S) for any set S of variables.

We often write A1≥A2 for A2≤A1, and write A1 ≈ A2 for A1≤A2 ∧A2≤A1.
1 Note that the subtyping relation defined here is the converse of the one used in

Igarashi and Kobayashi’s generic type system [8].
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3.3 Typing

We consider two kinds of judgments, Γ � v : σ for values, and Γ � P :A for
processes. Γ is a mapping from a finite set of variables to value types. In
Γ �P :A, the type environment Γ describes the types of the variables, and A de-
scribes the possible behaviors of P . For example, x : chan〈(b :bool)0〉 � P : x |x
implies that P may send booleans along the channel x twice. The judgment
y : chan〈(x : chan〈(b :bool)0〉)x〉 �Q : y means that Q may perform an input on
y once, and then it may send a boolean on the received value. Note that in the
judgment Γ �P :A, the type A is an approximation of the behavior of P on free
channels. P may do less than what is specified by A, but must not do more; for
example, x : chan〈( )0〉�x〈 〉 : x |x holds but x : chan〈( )0〉�x〈 〉.x〈 〉 : x does not.
Because of this invariant, if A does not perform any invalid access, neither does P .

We write dom(Γ ) for the domain of Γ . We write ∅ for the empty type environ-
ment, and write x1 : τ1, . . . ,xn : τn (where x1, . . . ,xn are distinct from each other)
for the type environment Γ such that dom(Γ ) = {x1, . . . ,xn} and Γ (xi) = τi

for each i ∈ {1, . . . , n}. When x �∈ dom(Γ ), we write Γ,x : τ for the type envi-
ronment Δ such that dom(Δ) = dom(Γ ) ∪ {x}, Δ(x) = τ , and Δ(y) = Γ (y)
for y ∈ dom(Γ ). We define the value judgment relation Γ � v:σ to be the least
relation closed under

Γ, x:σ � x:σ Γ � true:bool Γ � false:bool.

We write Γ � ṽ:σ̃ as an abbreviation for (Γ � v1:σ1) ∧ · · · ∧ (Γ � vn:σn).
Figure 3 gives the rules for the relation Γ �P :A. We explain key rules below.

In rule (T-Out), the first premise Γ �P :A2 implies that the continuation of the
output process behaves like A2, and the second premise Γ � x : chan〈(ỹ : σ̃)A1〉

Γ 
 P : A2 Γ 
 x : chan〈(y : σ)A1〉 Γ 
 v : σ

Γ 
 xt〈v〉. P : xt. (〈v/y〉A1 |A2)
(T-Out)

Γ, y : σ 
 P : A2 Γ 
 x : chan〈(y : σ)A1〉 A2↓{y} ≤ A1

Γ 
 xt(y). P : xt. (A2↑{y})
(T-In)

Γ 
 P1 : A1 Γ 
 P2 : A2

Γ 
 P1 |P2 : A1 |A2
(T-Par)

Γ 
 P : A
Γ 
 ∗P : ∗A (T-Rep)

Γ 
 v :bool Γ 
 P : A Γ 
 Q : A
Γ 
 if v then P else Q : A

(T-If)

Γ, x : chan〈(y : σ)A1〉 
 P : A2

Γ 
 (νx)P : (νx)A2
(T-New)

Γ 
 0 :0 (T-Zero)

Γ 
 P : A Γ 
 x : res

Γ 
 accξ(x).P : xξ.A
(T-Acc)

Γ, x : res 
 P : A etracesx(A) ⊆ Φ

Γ 
 (NΦx)P : A↑{x}
(T-NewR)

Γ 
 P : A′ A′ ≤ A

Γ 
 P : A
(T-Sub)

Fig. 3. Typing Rules
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implies that the tuple of values ṽ being sent may be used by an input process
according to 〈ṽ/ỹ〉A1. Therefore, the whole behavior of the output process is
described by x. (〈ṽ/ỹ〉A1 |A2). Note that, as in previous behavioral type sys-
tems [3, 8], the resource access and communications made on ṽ by the receiver
of ṽ are counted as the behavior of the output process. In rule (T-In), the first
premise implies that the continuation of the input process behaves like A2. Fol-
lowing previous behavioral type systems [3, 8], we split A2 into two parts: A2↓{y}
and A2↑{y}. The first part describes the behavior on the received values ỹ and is
taken into account in the channel type. The second part describes the resource
access and communications performed on other values, and is taken into account
in the behavioral type of the input process. The condition A2↓{y} ≤ A1 requires
that the access and communication behavior on ỹ conforms to A1, the channel
arguments’ behavior. In (T-New), the premise implies that P behaves like A, so
that (νx)P behaves like (νx)A. Here, we only require that x is a channel, unlike
in the previous behavioral type systems for the π-calculus [8, 10]. That is be-
cause we are only interested in the resource access behavior; the communication
behavior is used only for accurately inferring the resource access behavior. In
(T-NewR), we check that the process’s behavior A conforms to the resource us-
age specification Φ. Rule (T-Sub) allows the type A′ of a process to be replaced
by its approximation A.

Example 2. Consider the process P = (νs) (∗s(n,x, r). P1 | (NΦx)P2), where:

P1=if n = 0 then r〈〉 else (νr′) (s〈n− 1,x, r′〉 | r′c(). read(x).r〈〉)
P2=(νr) (init(x).s〈100,x, r〉 | rc(). close(x)) Φ = (IR∗C ↓)#

Let A1 = μα.(r ⊕ (νr′) (〈r′/r〉α|r′c.xR.r) and
let Γ = s:chan〈(n:int, x:res, r:chan〈〉)A1〉. Then

Γ, n:int,x:res, r:chan〈〉 � P1 :A1 Γ � ∗s(n,x, r). P1 : ∗s. (A1↑{n,x,r}) ≈ ∗s
Γ � P2 : (νr) (xI .A1|rc.xC)

So long as etracesx((νr) (xI .A1|r.xC)) ⊆ Φ, we obtain ∅ � P :0. See Section 4.1
for the algorithm that establishes etracesx(·) ⊆ Φ. �

Remark 2. The type A1 in the example above demonstrates how recursion,
hiding, and renaming are used together. In general, in order to type a recur-
sive process of the form ∗s(x). (νy) (· · · s〈y〉 · · · ), we need to find a type that
satisfies (νy) (· · · 〈y/x〉A · · · ) ≤ A. Moreover, for the type inference (in Sec-
tion 4), we must find the least such A. Thanks to the type constructors for
recursion, hiding, and renaming, we can always do that: A can be expressed by
μα.(νy) (· · · 〈y/x〉α · · · ).

The following theorem states that no well-typed process performs an invalid
access to a resource.

Theorem 1 (type soundness (safety)). Suppose that P is safe. If Γ � P :A
and P −→∗ Q, then Q is safe.
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Theorem 2 below states that well-typed programs eventually perform all the
necessary resource accesses (unless the whole process diverges).

Definition 5 (well-annotatedness). P is active if P ( (ν̃Ñ)(xc〈ṽ〉. Q |R) or
P ( (ν̃Ñ)(xc(ỹ). Q |R). P is well-annotated if for any P ′ such that P −→∗ P ′

and active(P ′), there exists P ′′ such that P ′ −→ P ′′.

Theorem 2. If well annotated(P ) and ∅ � P :A, then P is partially live.

4 Type Inference Algorithm

This section discusses an algorithm which takes a closed process P as an input
and checks whether ∅�P :0 holds. The algorithm consists of the following steps.

1. Extract constraints on type variables based on the (syntax-directed version
of) typing rules.

2. Reduce constraints to trace inclusion constraints of the form
{etracesx1(A1) ⊆ Φ1, . . . , etracesxn(An) ⊆ Φn}

3. Decide whether the trace inclusion constraints are satisfied.

The algorithm for Step 3 is sound but not complete.
The first two steps are fairly standard [9, 10]. Based on the typing rules, we

can transform ∅ � P :0 to equivalent constraints of the form:

{α1 ≥ A1, . . . , αn ≥ An, etracesx1(B1) ⊆ Φ1, . . . , etracesxm(Bm) ⊆ Φm}

where α1, . . . , αn are different from each other. Each subtype constraint α ≥ A
can be replaced by α ≥ μα.A. Therefore, the above constraints can be further
reduced to:

{etracesx1([Ã′/α̃]B1) ⊆ Φ1, . . . , etracesxm([Ã′/α̃]Bm) ⊆ Φm}

Here, A′
1, . . . , A

′
n are the least solutions for the subtype constraints. Thus, we

have reduced type checking to the validity of trace inclusion constraints of the
form etracesx(A) ⊆ Φ.

Example 3. Recall Example 2. We obtain the constraint etracesx(A1)⊆(IR∗C)#

where
A1 = (νr) (xI .s. A2 | r.xC) A3 = μα2.α2
A2 = μα1.r. A3 ⊕ (νr′) (s. 〈r′/r〉α1 | r′.xR.r. A3)↓{n,x,r}.

4.1 Step 3: Constraint Solving

We present an approximate algorithm for checking how to check a trace inclusion
constraint etracesx(A) ⊆ Φ when the trace set Φ is a regular language. (Actu-
ally, we can extend the algorithm to deal with the case where Φ is a deterministic
Petri net language: see the full version [15].)
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The algorithm consists of the following three steps.

– Approximate the behavior of A↓{x} by a (labeled) Petri net NA1,x.
– Construct a Petri net NA′

1,x ‖MΦ that simultaneously simulates NA1,x and
a minimized deterministic automaton MΦ that accepts Φ.

– Check that NA′
1,x ‖MΦ does not reach any invalid state. Here, the set of

invalid states consists of (1) states where NA1,x can make a ξ-transition
while MΦ cannot, and (2) states where NA1,x is disabled (in other words,
can make a ↓-transition) while MΦ cannot make a ↓-transition.

The last part amounts to solving a reachability problem of Petri nets. In the
implementation, we further approximate the Petri net by a finite state machine.

We sketch the first step of the algorithm with an example below. Attributes are
omitted below for simplicity. Please consult the full version [15] for more details
and the other two steps. In Example 3 above, we have reduced the typability of
the process to the equivalent constraint etracesx(A1) ⊆ Φ where Φ = (IR∗C ↓)#
and

A1↓{x} ≈ (νr) (xI .A′′
2 | r.xC) A′′

2 = r ⊕ (νr′) (〈r′/r〉A′′
2 | r′.xR.r)

Here, we have omitted A3 = μα.α since it is insignificant.
Approximate the behavior of A1↓{x} by a Petri net [19] NA1,x. This part

is similar to the translation of usage expressions into Petri nets in Kobayashi’s
previous work [10, 11, 14]. Since the behavioral types are more expressive (having
recursion, hiding, and renaming), however, we need to approximate the behavior
of a behavioral type unlike in the previous work. In this case A1↓{x} is infinite.
To make it tractable we make a sound approximation A′

1 by pushing (ν) to top
level, and we eliminate 〈r′/r〉:

A′
1 =(νr, r′) (xI .A′

2 | r.xC) A′
2 =r ⊕ (A′

3 | r′.xR.r) A′
3 =r′ ⊕ (A′

3 | r′.xR.r′)

Then NA′
1,x is as pictured in Figure 4. (Here we treat A1 ⊕ A2 as τ.A1 ⊕ τ.A2

for clarity. We also use a version of Petri nets with labeled transitions.) The
rectangles are the places of the net, and the dots labeled by τ,xR, etc. are the

xI.A′
2xI.A′
2 r.xCr.xC

τ.r ⊕ τ.(A′
3|r′.xR.r)τ.r ⊕ τ.(A′
3|r′.xR.r)

τ.r′ ⊕ τ.(A′
3|r′.xR.r′)τ.r′ ⊕ τ.(A′
3|r′.xR.r′)

rr xCxC

xR.rxR.r

r′.xR.rr′.xR.r

r′r′

xR.r′xR.r′r′.xR.r′r′.xR.r′

I

R

R

τ

τ
τ

τ

C

τ

τ

τ

τ

B1

B2

B3

B4

B5

B6 B7

B8

B9

B10

B11

Fig. 4. NA′
1,x
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transitions of the net. Write ix for the number of tokens at node Bx. The behavior
A′

1 corresponds to the initial marking {i1=1, i10=1}. We say that the nodes B̃
together with the restricted names (r, r′) constitute a basis for A′

1. Note here that
etracesx(A1) ⊆ etracesx(A′

1) = ptraces(NA′
1,x) where ptraces(NA′

1,x) is the
set of traces of the Petri net. Thus, ptraces(NA′

1,x) ⊆ Φ is a sufficient condition
for etracesx(A1) ⊆ Φ . The key point here is that A′

1 still has infinite states, but
all its reachable states can be expressed in the form (νr, r′) (i1B1 | · · · | i11B11)
(where ikBk is the parallel composition of ik copies of Bk), a linear combination
of finitely many processes B̃. That is why we could express A′

1 by the Petri net
as above.

5 Implementation

We have implemented a prototype resource usage analyzer based on the type sys-
tem proposed in this paper. We have tested all the examples given in the present
paper. The implementation can be tested at http://www.yl.is.s.u-tokyo.ac.
jp/~kohei/usage-pi/.

The analyzer takes a pi-calculus program as an input, and uses TyPiCal[11]
to annotate each input or output action with an attribute on whether the action
is guaranteed to succeed automatically. The annotated program is then analyzed
based on the algorithm described in Section 4.

The followings are some design decisions we made in the current implemen-
tation. We restrict the resource usage specification (Φ) to the regular languages
although in future we may extend it to deterministic Petri net languages. In the
algorithm for checking etracesx(A) ⊆ Φ, we blindly approximate A by pushing
all of its ν-prefixes to the top-level. In future we might utilize an existing model
checker to handle the case where A is already finite. To solve the reachability
problems of Petri nets, we approximate the number of tokens in each place by an

Input:

new create,s in
*(create?(r).newR {init(read|write)*close }, x in acc(x,init).r!(x))

| *(new r in create!(r) | r?(y).new c in s!(false,y,c)
| s!(false,y,c) | c?().c?().acc(y,close))

| *(s?(b,x,r).if b then r!() else acc(x,read).s!(b,x,r))

Output:

(*** The result of lock-freedom analysis ***)
new create, s in
*create??(r). newR {init(read|write)*close}, x in acc(x, init). r!!(x)

| *(new r in create!!(r) | r??(y).new c in s!!(false,y,c)
| s!!(false,y,c) | c??().c??().acc(y,close))

...
No error found

Fig. 5. A Sample Run of the Analyzer
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element of the finite set {0, 1, 2, “3 or more”}. That approximation reduces Petri
nets to finite state machines, so we can use BDD to compute an approximation
of the reachable states.

Figure 5 shows a part of a successful run of the analyzer. The first process (on
the second line) of the input program runs a server, which returns a new, initial-
ized resource. We write ! and ? for output and input actions. The resource access
specification is here expressed by a regular expression init(read|write)*close.
The second process runs infinitely many client processes, each of which sends
a request for a new resource, and after receiving it, reads and closes it. The
third process (on the 6th line) is a tail-recursive version of the replicated service
in Example 2. Here, a boolean is passed as the first argument of s instead of
an integer, as the current system is not adapted to handle integers; it does not
affect the analysis, since the system ignores the value and simply inspects both
branches of the conditional. Note that the program creates infinitely many re-
sources and has infinitely many states. The first output is the annotated version
of the input program produced by TyPiCal, where !! and ?? are an output and
an input with the attribute c.

6 Related Work

Resource usage analysis and similar analyses have recently been studied exten-
sively, and a variety of methods from type systems to model checking have been
proposed [1, 5–7, 9, 16, 20]. However, only a few of them deal with concurrent lan-
guages. To our knowledge, none of them deal with the partial liveness property.
Nguyen and Rathke [18] propose an effect-type system for a kind of resource
usage analysis for functional languages extended with threads and monitors. In
their language, neither resources nor monitors can be created dynamically. On
the other hand, our target language is π-calculus, so that our type system can
be applied to programs that may create infinitely many resources (due to the
existence of primitives for dynamic creation of resources: recall the example in
Figure 5), and also to programs that use a wide range of communication and
synchronization primitives.

Model checking technologies [2, 4, 21, 22] can of course be applicable to con-
current languages, but naive applications of model checking technologies would
suffer from the state explosion problem, especially for expressive concurrent lan-
guages like π-calculus, where resources and communication channels can be dy-
namically created and passed around. Actually, our type-based analysis can be
considered as a kind of abstract model checking. The behavioral types extracted
by (the first two steps of) the type inference algorithm are abstract concurrent
programs, each of which captures the access behavior on each resource. Then,
conformance of the abstract program with respect to the resource usage speci-
fication is checked as a model checking problem. From that perspective, a nice
point about our approach is that our type, which describes a resource-wise be-
havior, has much smaller state space than the whole program. In particular, if
infinitely many resources are dynamically created, the whole program has in-
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finite states, but it is often the case that our behavioral types are still finite
(indeed so for the example in Figure 5).

Technically, closest to our type system are that of Igarashi and Kobayashi [8]
and that of Chaki, Rajamani, and Rehof [3]. Those type systems are developed
for checking the communication behavior of a process, but by viewing a set of
channels as a resource, it is possible to use those type systems directly for the
resource usage analysis. As mentioned in Section 1, the main contributions of
the present work with respect to those type systems are realization of automatic
verification while keeping enough precision, and verification of the partial live-
ness. The parameterization of the type system with an arbitrary mechanism to
guarantee deadlock-freedom opens a new possibility of integrating type-based
techniques with other verification techniques (the current implementation uses
another type-based analyzer to infer deadlock-freedom, but one can replace that
part with a model checker or an abstract interpreter).

7 Conclusion

We have presented a type-based technique for verifying resource usage of concur-
rent programs. Future work includes more serious assessment of the effectiveness
of our analysis and extensions of the type system to deal with other typical syn-
chronization primitives like join-patterns and external choice.
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Abstract. A semantics-based framework is presented for the definition
and manipulation of class hierarchies for object-oriented languages. The
framework is based on the notion of observable of a class, i.e., an abstrac-
tion of its semantics when focusing on a behavioral property of interest.
We define a semantic subclass relation, capturing the fact that a subclass
preserves the behavior of its superclass up to a given (tunable) observed
property. We study the relation between syntactic subclass, as present
in mainstream object-oriented languages, and the notion of semantic
subclass. The approach is then extended to class hierarchies, leading
to a semantics-based modular treatment of a suite of basic observable-
preserving operators on hierarchies. We instantiate the framework by
presenting effective algorithms that compute a semantic superclass for
two given classes, that extend a hierarchy with a new class, and that
merge two hierarchies by preserving semantic subclass relations.

1 Introduction

In the object-oriented paradigm, a crucial role is played by the notion of class
hierarchy. Being A a subclass of B captures the fact that the state and the
behavior of the elements of A are coherent with the intended meaning of B,
while disregarding the additional features and functionalities that characterize
the subclass.

The approach of mainstream object-oriented languages, like Java and C++,
to class hierarchies can be seen as merely syntactic. In such a view hierarchies
are collections of classes ordered by the transitive closure of explicitly declared
subclass or subtype relations. This is why the main theoretical and practical
contributions to hierarchy refactoring issues [32, 33] combine static and dynamic
analyses that focus only on syntactic elements. However, as pointed out by [29],
this approach has severe limitations, as it leads to troubles when trying to face
the issue of extending a given class hierarchy.

In this paper we adopt an alternative, semantics-based approach for the defi-
nition and manipulation of class hierarchies. It uses previous works on abstract
interpretation theory [10], that allows formalizing the notion of different levels
of property abstraction and of abstract semantics. This framework is based on
the notion of observable of a class, i.e., an abstraction of the class semantics that
focuses on a behavioral property of interest. The intuition is that the semantics
of a class can be abstracted by parameterizing it with respect to a given domain
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of observables, and that a notion of semantic subclass can then be defined in
terms of preservation of these observables. This notion of semantic subclass can
be seen as a proper generalization of the concept of class subtyping, having the
advantage of being tunable with respect to a given underlying abstract domain
and hence of the properties we are interested to capture.

The notion of syntactic subclass, forcing that fields and methods have the
same names, is too weak to state something about semantic subclassing, but
compatibility results on the syntactic extension on one hand, and suitable re-
naming functions on the other can be stated that allow us to properly relate the
two subclass relations.

The interest of the notion of semantic subclass become even more interesting
when facing the problem of manipulating class hierarchies which has more than
thousands of classes (for instance, NetBeans [27] is made up of 8328 classes). We
formalize the notion of semantic ordering of hierarchies as “when is it the case
that a hierarchy is more informative with respect to a given observable?”

We show that this notion of semantic subclassing

– can be formally related to the traditional syntactic-based subclassing relation;
– it is crucial for designing automatic and modular verification tools for poly-

morphic code;
– it enlightens the trade-off between the expressive power of specification lan-

guages for object-oriented languages and the subtype relations they support;
– it is the base to design algorithms and tools for extending, refactoring and

merging class hierarchies.

In fact, in the paper we show how it can be used for the automatic and modular
verification of polymorphic code, for bounding the expressive power of specifi-
cation languages for object-oriented languages and for the characterization of
semantic class hierarchies. Intuitively, semantic class hierarchies ensure that, up
to a given observable, classes lower in the hierarchy specializes the behavior of
the upper classes. We instantiate our framework by design algorithms for ex-
tending, refactoring and merging class hierarchies. Such algorithms represent
the basis for our mid-term goal, that is a tool for the modular verification and
the semi-automatic refactoring of large class hierarchies.

Paper Structure. In Section 2, an example introduces the main ideas of the
paper. In Section 3, the notion of observable is introduced as an abstraction of the
concrete semantics. In Section 4, we introduce the semantic subclass relation, we
discuss its relationship with the syntactic notion, and we show its use for modular
verification of polymorphic code. In Section 5, the framework is lifted to class
hierarchies by introducing a suite of refactoring operators. Finally, Section 6
discusses related work, and Section 7 concludes.

2 A Motivating Example

Let us consider the five classes described in Fig. 1 that encode different sets of inte-
ger numbers. In class Even, variable x can only take even values, whereas variable x
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class Integer {
int x;
init(){ x = 0 }
add() { x += 1 }
sub() { x -= 1 } }

class Even {
int x;
init(){ x = 0 }
add() { x += 2 }
sub() { x -= 2 } }

class Odd {
int x;
init(){ x = 1 }
add() { x += 2 }
sub() { x -= 2 } }

class MultEight{
int x;
init(){ x = 0 }
add() { x += 16 }
sub() { x -= 8 } }

class MultTwelve{
int x;
init(){ x = 0 }
add() { x += 24 }
sub() { x -= 12 } }

Fig. 1. Running examples

of Odd takes odd values only. The instance variable of MultEight and MultTwelve
can only be assigned a value that is a multiple of 8 and 12, respectively.

A first question to address is “What are the admissible hierarchies among
such classes?”. A hierarchy is admissible when the subclasses preserve a given
property of their superclass. So, when the parity of the field x is observed, both
the class hierarchies H1 and H2 in Fig. 2 are admissible. This is true for H1,
as the value of MultEight.x is always a multiple of 8, and in particular it is
even. As a consequence, when just parity is observed, MultEight preserves the
behavior of Even. On the other hand, H2 is also an admissible class hierarchy
w.r.t. parity as the values taken by MultTwelve.x and MultEight.x are even
numbers, too. As a consequence, MultTwelve preserves the parity behavior of its
superclass MultEight. Nevertheless, when we consider a more precise property,
for instance the value taken by x up to a numerical congruence, then H2 is no
longer an admissible hierarchy. In fact, as in general a multiple of 12 is not
a multiple of 8, MultTwelve does not preserve the congruence property of its
ancestor MultEight.

“Why do we need admissible class hierarchies?” For two reasons: (i) it allows
one to design modular verification tools of polymorphic methods, and (ii) it
supports design of semantics-preserving operations on class hierarchies.

To illustrate (i), consider the class hierarchy H1 and the method inv, defined
as follows:

Integer

Odd

��������������
Even

��

MultEight

��������������
MultTwelve

��

(a) H1, admissible for congruences

Integer

Even

������������
MultEight

��

Odd

������������

MultTwelve

��

(b) H2, admissible for parities

Fig. 2. H1 and H2, two possible class hierarchies



316 F. Logozzo and A. Cortesi

inv(Even e){return 1/(1− e.x%2)}.
In order to prove that inv never performs a division by zero, it suffices to prove it
w.r.t. Even instances. In fact as H1 is admissible for parity, then all the subclasses
of Even preserve the property that x is an even number. Nevertheless, in order
to prove it correct also for all the future extensions of the hierarchy, we need to
assure that all the manipulations on class hierarchies preserve its admissibility.
This leads to (ii).

This semantic approach can be used to define, and prove correct, manipu-
lating operations on class hierarchies that preserve admissibility w.r.t. a given
property. For instance, we will show an algorithm for class insertion. Such an
algorithm, when applied to the classes of Fig. 3 and to the hierarchy H1, returns
the hierarchy H3 in Fig. 4, which is still admissible for congruences (and hence
parities). As a consequence, the method inv is still guaranteed to be correct for
all possible inputs.

class MultFour { class MultTwenty {
int x; int x;
init() { x = 0 } init() { x = 0 }
add() { x += 4 } add() { x += 20 }
sub() { x -= 4 }} sub() { x -= 60 }}

Fig. 3. Two classes to be added to H1

Integer

Even

�������������
Odd

�������������

MultTwenty

��������������
MultFour

�������������

MultEight

�������������
MultTwelve

��������������

Fig. 4. H3: the hierarchy H1 augmented with MultTwenty and MultFour

3 Concrete and Abstract Semantics of Classes

In this section, we introduce the syntax and the concrete semantics of classes.
Then, we define the domain of observables and the abstract semantics of a class.

3.1 Syntax

A class is a template for objects. It is provided by the programmer who specifies
the fields, the methods and the class constructor.
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Definition 1 (Classes). A class C is a triple 〈F, init, M〉 where F is a set of dis-
tinct variables, init is the class constructor and M is a set of method definitions.
The set of all the classes is denoted by C.

Like in Smalltalk [15], methods are untyped and fields are private. This is just to
simplify the exposition and it does not cause any loss of generality: any external
access to a field f can be simulated by a pair of methods set f/ get f. Further-
more, we assume that a class has only one constructor. The generalization to an
arbitrary number of constructors is straightforward. The interface of a class is
the set of messages it can answer:

Definition 2 (Class Interface). Given a class C = 〈init, M〉, let Mnames be the
names of C’s methods. Then the interface of C is ι(C) = {init} ∪ Mnames.

3.2 Concrete Semantics

Given a class C = 〈F, init, M〉, every instance of C has an internal state σ ∈ Σ
that is a function from fields to values, i.e., Σ = [F → Dval ], where Dval is the
semantic domain of values.

When a class is instantiated, the class constructor is called to set the internal
state of the new object. This is modeled by a semantic function �init� ∈
[Dval → P(Σ)]. We consider sets in order to model non-determinism, e.g., user
input or random choices.

The semantics of a method m is a function �m� ∈ [Dval ×Σ → P(Dval ×Σ)].
A method is called with two parameters: the method actual parameters and the
internal state of the object it belongs to. The output of a method is a set of pairs
〈 return value (if any), new object state 〉.

The most precise state-based property of a class C is the set of states reached
by any execution of every instance of C in any possible context. In this paper, we
consider just state-based properties. Such an approach can be shown to be an
abstraction of a trace-based semantics for object-oriented languages, [23, 22], in
which just the states before and after the invocation of a method are retained.

The set of states reached by any execution of any instance of a class can
be expressed as a least fixpoint on the complete boolean lattice 〈P(Σ),⊆〉. The
set of the initial states, i.e., the states reached after any invocation of the C
constructor, is:

S0 = {σ ∈ Σ | ∃v ∈ Dval . σ ∈ �init�(v)}.

The states reached after the invocation of a method m are given by the method
collecting forward semantics >�m� ∈ [P(Σ)→ P(Σ)]:

>�m�(S) = {σ′ ∈ Σ | ∃σ ∈ S. ∃v ∈ Dval . ∃v′ ∈ Dval . 〈v′, σ′〉 ∈ �m�〈v, σ〉}.

The class reachable states are the least solution of the following recursive equa-
tions:

S = S0 ∪
⋃
m∈M

Sm

Sm = >�m�(S) m ∈ M.

(1)



318 F. Logozzo and A. Cortesi

The above equations characterize the set of states that are reachable before and
after the invocation of any method in any instance of the class. Stated otherwise,
they consider all the states reached after any possible invocation, in any order,
with any input values of the methods of a class. A more general situation, in
which the context may update the fields of an object, e.g. , because of aliasing,
is considered in [22].

The least solution of (1) w.r.t. set inclusion corresponds to a tuple 〈S, S0, {m :
Sm}〉 such that S is a class invariant [21, 23, 22], and for each method m, Sm is
the strongest postcondition of the method. The method preconditions can be
obtained by going backward from the postconditions: given a method m and its
postcondition, we consider the set of states from which it is possible to reach
a state in Sm by an invocation of m. Formally, the collecting backward method
semantics <�m� ∈ [P(Σ)→ P(Σ)] is defined as

<�m�(S) = {σ ∈ Σ | ∃σ′ ∈ S. ∃v ∈ Dval . ∃v′ ∈ Dval . 〈v′, σ′〉 ∈ �m�〈v, σ〉}.

and the methods preconditions are Bm = <�m�(Sm).

The concrete class semantics, i.e., the most precise property of a class [10], is
the triple �C� = 〈S, S0, {m : Bm → Sm}〉.

The use of the concrete semantics �C� for the definition of the observables
of a class has two drawbacks. First, in general the computation of the least
fixpoint of (1) may be unfeasible and the sets S and Sm and Bm may not be
computer-representable. Therefore, this approach is not suitable for an effective
definition of semantic subclassing. Second, it is too precise, as it may differentiate
classes that do not need to be distinguished. For example, let us consider two
classes StackWithList and StackWithArray which implement a stack by using
respectively a linked list and a resizable array. Both of them have push and pop
methods. If they are observed using the concrete semantics, then the two classes
are unrelated, as the internal representation of the stack is different. On the
other hand, when the behavior w.r.t. to the invocation of methods is observed,
they act in the same way, e.g., no difference can be made between the values
returned by the respective pop methods: both of them return the value on the
top of the stack.

In order to overcome those drawbacks we consider abstract domains that
encode the relevant properties and abstract semantics that are feasible, i.e. which
are sound, but not necessarily complete, abstractions of the concrete semantics.

3.3 Domain of Observables

An observable of a class C is an approximation of its semantics that captures
some aspects of interest of the behavior of C. We build a domain of observables
starting from an abstraction of sets of object states.

Let us consider an abstract domain 〈P,�〉, which is a complete lattice, related
to the concrete domain by a Galois connection [10]:

〈P(Σ),⊆, ∅, Σ,∪,∩〉 −−−→←−−−α

γ
〈P,�,⊥,�,�,�〉. (2)
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For instance, if we are interested in the linear relations between the values of
the fields of the instances of C, we instantiate P with the Octagons abstract
domain [26]. On the other hand if we are interested in object aliasing then we
are likely to choose for P an abstract domain that captures shapes, e.g.,[30, 31].

Once 〈P,�〉 is fixed, the abstract domain 〈O[P ],�[P ]
o 〉 of the observables of

a class is built on top of it. The elements of the abstract domain belong to the
set:

O[P ] = {〈S̄, S̄0, {m : 〈V̄m, B̄m〉 → S̄m}〉 | S̄, S̄0, V̄m, B̄m, S̄m ∈ P}.
Intuitively, an element of O[P ] consists of an approximation of the class invariant,
the constructor postcondition, and for each method an approximation of its
precondition and postcondition. A method precondition is in turn made up of
two parts, one for the method input values and the other for that internal object
state. When no ambiguity arises, we write 〈O,�o〉 instead of 〈O[P ],�[P ]

o 〉. We
tacitly assume that if a method n is not defined in a class, then its precondition
and postconditions are respectively � and ⊥.

The partial order�o on O is defined point-wise. Let o1 =〈Ī , Ī0, {mi : 〈Ūi, R̄i〉→
Īi}〉 and o2 = 〈J̄ , J̄0, {mj : 〈W̄j , Q̄j〉 → J̄j}〉 be two elements1 of O. Then the
order �o is defined as:

o1�oo2 ⇐⇒ Ī � J̄ ∧ Ī0 � J̄0 ∧ (∀mi. W̄i � Ūi ∧ Q̄i � R̄i ∧ Īi � J̄i).

If o1 and o2 are the observables of two classes A and B then the order �o ensures
that A preserves the class invariant of B and that the methods of A are a “safe”
replacement of those with the same name in B. Intuitively, the precondition
generalizes the observations, made in the context of type theory, of [3]. It states
two things. First, if the context satisfies W̄i then it satisfies the inherited method
precondition Ūi too (i.e., W̄i � Ūi). Thus the inherited method can be used in
any context where its ancestor can. Second, the state of o1 before the invocation
of a method must be compatible with that of o2 (i.e., Q̄i � R̄i). Finally, the
postcondition of the inherited method must be at least as strong as that of the
ancestor (i.e., Īi � J̄i).

Having defined �o, it is routine to check that ⊥o = 〈⊥,⊥, {mi : 〈�,�〉 → ⊥}〉
is the smallest element of O and �o = 〈�,�, {mi : 〈⊥,⊥〉 → �}〉 is the largest
one. The join, �o, and the meet, �o, operators on O can be defined point-wise.

Suppose that the order relation � on P is decidable [28]. This is the case for
abstract domains used for effective static analyses. As �o is defined in terms of
� and the universal quantification ranges on a finite number of methods then
�o is decidable too.

Theorem 1. Let 〈P,�,⊥,�,�,�〉 be a complete lattice. Then 〈O,�o,⊥o,�o,
�o,�o〉 is a complete lattice. Moreover, if � is decidable then �o is decidable
too.

From basic abstract interpretation theory [11] we know that A(P(Σ)), the set of
all the abstractions of the concrete domain, is a complete lattice ordered w.r.t.
1 We use the same index for methods with the same name. For instance Pi and Qi are

the preconditions for the homonym method mi of o1 and o2.
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the “relative” precision, ≤, of abstract domains. As immediate consequence, we
obtain that Galois connections can be lifted to the domain of observables:

Lemma 1. Let 〈P,�〉 and 〈P ′,�′〉 be two domains in A(P(Σ)) such that 〈P,�〉
≤ 〈P ′,�′〉 with the Galois connection 〈α, γ〉. Then,

〈O[P ],�[P ]
o 〉 −−−→←−−−

αo

γo 〈O[P ′],�[P ′]
o 〉

where αo and γo are

α0(〈S̄, S̄0, {m : 〈V̄m, B̄m〉 → S̄m}〉 = 〈α(S̄), α(S̄0), {m : 〈α(V̄m), α(B̄m)〉 → α(S̄m)}〉
γ0(〈S̄′, S̄′

0, {m : 〈V̄ ′
m , B̄

′
m〉 → S̄′

m}〉 = 〈γ(S̄′), γ(S̄′
0), {m : 〈γ(V̄ ′

m ), γ(B̄′
m)〉 → γ(S̄′

m)}〉.

3.4 Abstract Semantics

Once the abstract domain is defined, an abstraction of �C� can be obtained by
considering the abstract counterpart for (1). As a first step we need to consider
the abstraction corresponding to the initial states, and the forward and the
backward collecting semantics. We consider the best abstract counterparts for
such concrete semantic functions.

By Galois connection properties, the best approximation for the initial states
of the class is α(S0) = S̄0. By [11], the best approximation in P of the for-
ward collecting method semantics of m of C is ¯ >�m� ∈ [P → P ] defined as
¯ >�m�(S̄) = α ◦ >�m� ◦ γ(S̄). The abstract counterpart for the equations (1)
is the following equation system:

S̄ = S̄0 �
⊔
m∈M

S̄m

S̄m = ¯ >�m�(S̄) m ∈ M.

(3)

The above equations are monotonic and, by the Tarski fixpoint theorem, there
exists a least solution 〈S̄, S̄0, {m : S̄m}〉. Similarly to the concrete case, the ab-
stract preconditions can be obtained by considering the best approximation
of the backward collecting method semantics ¯ <�m� ∈ [P → P ] defined as
¯ <�m�(S̄) = α ◦ <�m� ◦ γ(S̄). The method abstract preconditions are obtained
by projecting ¯ <�m�(S̄m) respectively on the method input values and the in-
stance fields: V̄m = πin( ¯ <�m�(S̄m)) and B̄m = πF( ¯ <�m�(S̄m)).

To sum up, the triple ¯ �C� = 〈S̄, S̄0, {m : 〈V̄m, B̄m〉 → S̄m}〉 belongs to the
domain of observables, and it is the best sound approximation of the semantics
of C, w.r.t the properties encoded by the abstract domain 〈P,�〉.

Theorem 2 (Observable of a Class). Let 〈P,�〉 be an abstract domain that
satisfies (2) and let the observable of a class C w.r.t. the property encoded by
〈P,�〉 be ¯ �C� = 〈S̄, S̄0, {m : 〈V̄m, B̄m〉 → S̄m}〉. Then αo( �C�)�o

¯ �C�.

Example 1. Let us instantiate 〈P,�〉 with Con, the abstract domain of equali-
ties of linear congruences, [16]. The elements of such a domain have the form
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x = a mod b, where x is a program variable and a and b are integers. The
representation function γc ∈ [Con→ P(Σ)] is defined as

γc(x = a mod b) = {σ ∈ Σ | ∃k ∈ N. σ(x) = a + k · b}.

Let us consider the classes Even and MultEight in Fig. 2 and let e be the property
x = 0 mod 2, d the property x = 1 mod 2 and u be the property x = 0 mod 8 .
Then the observables of Even and MultEight w.r.t. Con are

¯ �Even� = 〈e, e, {add : 〈⊥, e〉 → e, sub : 〈⊥, e〉 → e}〉
¯ �Odd� = 〈d, d, {add : 〈⊥, d〉 → d, sub : 〈⊥, d〉 → d}〉

¯ �MultEight� = 〈u, u, {add : 〈⊥, u〉 → u, sub : 〈⊥, u〉 → u}〉.

It is worth noting that as add and sub do not have an input parameter, the
corresponding precondition for the input values is ⊥. ��

4 Subclassing

The notion of subclassing can be defined both at semantic and syntactic level.
Given two classes A and B, A is a syntactic subclass of B, denoted A 	 B, if all
the names defined in B are defined in A too. On the other hand, A is a semantic
subclass of B, denoted A 
 B, if A preserves the observable of B. The notion of
semantic subclassing is useful for exploring the expressive power of specification
languages and the modular verification of object-oriented programs.

4.1 Syntactic Subclassing

The intuition behind the syntactic subclassing relation is inspired by the Smalltalk
approach to inheritance: a subclass must answer to all the messages sent to its
superclass. Stated otherwise, the syntactic subclassing relation is defined in terms
of inclusion of class interfaces:

Definition 3 (Syntactic Subclassing). Let A and B be two classes, ι(·) as in
Def. 2. Then the syntactic subclass relation is defined as A 	 B⇐⇒ ι(A) ⊇ ι(B).

It is worth noting that as ι(·) does not distinguish between names of fields and
methods, class A= 〈∅, init, f = λx.x + 1〉 is a syntactic subclass of B=〈f, init, ∅〉,
even if in the first case f is a name of a method and in the second it is the name of
a field. This is not surprising in the general, untyped, context we consider.

Example 2. In mainstream object-oriented languages the subclassing mechanism
is provided through class extension. For example, in Java a subclass of a base
class B is created by using the syntactic construct “A extends B { extension }”,
where A is the name of the subclass and extension are the fields and the methods
added and/or redefined by the subclass. As a consequence, if type declarations
are considered part of the fields and method names, then A 	 B always holds. ��
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4.2 Semantic Subclassing

The semantic subclassing relation formalizes the intuition that up-to a given
property, a class A behaves like a class B. For example, if the property of interest
is the type of the class, then A is a semantic subclass of B if its type is a subtype
of B. In our framework, semantic subclassing can be defined in terms of the
preservation of observables. In fact, as �o is the abstract counterpart for the
logical implication then ¯ �A��o

¯ �B� means that A preserves the semantics of B,
when a given property of interest is observed. Therefore we can define

Definition 4 (Semantic Subclassing). Let 〈O,�o〉 be an abstract domain of
observables and let A and B be two classes. Then the semantic subclassing relation
with respect to O is defined as A 
O B⇐⇒ ¯ �A��o

¯ �B�.

Example 3. Let us consider the classes Even, Odd and MultEight and their re-
spective observables as in Ex. 1. Then, as u � e holds, we have that MultEight

Even. On the other hand, we have that neither e � d nor d � e. As a conse-
quence, Even �
 Odd and Odd �
 Even. ��

Observe that when 〈O,�o〉 is instantiated with the types abstract domain [9]
then the relation defined above coincides with the traditional subtyping-based
definition of subclassing [2].

B
Semantics �� �B�

Abstract
Semantics �� ¯ �B�

�o

		
A

Semantics ��

�

��

�A�

Abstract
Semantics �� ¯ �A�

Fig. 5. A visualization of the semantic subclassing relation

The relation between classes, concrete semantics and observables can be vi-
sualized by the diagram in Fig. 5. When the abstract semantics of A and B are
compared, that of A implies the one of B. This means that A refines B w.r.t. the
properties encoded by the abstract domain O, in accord with the mundane ap-
proach of inheritance where a subclass is as a specialization of its ancestors [25].

The next lemma states the monotonicity of 
 w.r.t. the observed properties:

Lemma 2. Let A and B be classes, 〈P,�〉 and 〈P ′,�′〉 be abstract domains in
A(P(Σ)) such that 〈P,�〉 ≤ 〈P ′,�′〉. If A 
O[P ] B then A 
O[P ′] B.

By Lemma 2, the more precise the domain of observables, the more precise the
induced subclass relation. If we observe a more precise property about the class
semantics then we are able to better distinguish between the different classes.

Example 4. Let us consider the hierarchies H1 and H2 depicted in Fig. 2. As the
domain of congruences is (strictly) more precise than the domain of parities, H1
is also admissible for parities, by Lemma 2. Observe that in general the converse
is not true: for instance H2 is not admissible for congruences. ��



Semantic Hierarchy Refactoring by Abstract Interpretation 323

When considering the identity Galois connection 〈λx. x, λx. x〉, Def. 4 above
boils down to the observation of the concrete semantics, so that by Lemma 2,

O[P(Σ)] is the most precise semantic subclassing relation. Furthermore, the
semantic subclass relation induced by the most abstract domain is the trivial
one, in which all classes are in relation with all others. As a consequence, given
two classes A and B there always exist an abstract domain of observables O such
that A 
O B. However, in general there not exists a least domain of observables
such that the two are in the semantic subclass relation, as shown by the following
example:

Example 5. Let us consider two classes A and B that are equal except for a
method m defined as:

A.m() {
x = 1; y = 2;
if (x > 0) && (y % 2 == 0) {
x = 1; y = 4; }

else {
x = 1; y = 8; }}

B.m() {
x = 1; y = 2;
if (x > 0) && (y % 2 == 0) {
x = 1; y = 2; }

else {
x = 3; y = 10; }}

When considering the domain of intervals [10] as observables, we infer that
A 
Intervals B as ([1, 1], [4, 8]) � ([1, 3], [2, 10]) and when considering the domain
of parities as observables, we infer that A 
Parities B as (odd, even) � (odd, even).
In fact, in both cases the abstract domain is not precise enough to capture the
branch chosen by the conditional statement. Nevertheless, when considering the
reduced product, [11], Intervals× Parities we have that A �
Intervals×Parities B as

(([1, 1], odd), ([4, 4], even)) �� (([1, 1], odd), ([2, 2], even)).

As a consequence, if there exists a least domain O such that A 
O B, then O
should be strictly smaller than both Intervals and Parities as the two domains
are not comparable. Then, O must be smaller or equal to the reduced product
of the two domains. We have just shown that it cannot be equal. By Lemma 2
it follows that it cannot be smaller, too. ��

Observation. The previous example emphasizes a strict link between the concept
of subtyping in specification languages for object-oriented programs and the
notion of abstraction. Let us consider two classes A and B, two specification
languages L1 and L2, and the strongest properties we can express about the
behavior of A and B in L1 and in L2, say respectively ϕA

1, ϕ
B
1 and ϕA

2, ϕ
B
2. Let us

suppose that ϕA
1 ⇒ ϕB

1 and ϕA
2 ⇒ ϕB

2. By definition of behavioral subtyping, [18],
A is a subclass of B in both L1 and in L2. Nevertheless, by Ex. 5, by the definition
of observable of a class, and by basic abstract interpretation theory [8], it follows
that if we consider a specification language L3 expressive enough to contain both
L1 and L2, and the corresponding strongest properties ϕA

3, ϕ
B
3, then ϕA

3 �⇒ ϕB
3.

This means that when a more expressive language is used then the classes A and
B are no more related. This fact enlightens an interesting trade-off between the
expressive power of specification languages for object-oriented programs and the
granularity of the subtyping relation they support.
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4.3 Modular Verification of Polymorphic Code

Thanks to the following lemma, the notion of semantic subclass turns out to be
useful for the modular verification of polymorphic code:

Lemma 3 (Modular Verification). Let 〈P,�〉 be an abstract domain, let g ∈
[O[P ] → P ] be a monotonic function and let f ∈ [C → P ] be defined as f =
λB. g( ¯ �B�). Then, A 
O[P ] B implies that f(A) � f(B).

Let us consider a function “m(B b) { bodym }”. The best abstract semantics,[11],
of m w.r.t. a given abstract domain 〈P,�〉 is ¯�m� 2. By Galois connection prop-
erties, ¯�m� is a monotonic function. Let o ∈ O[P ]. We define g as the function
obtained from ¯�m� by replacing each occurrence of an invocation of a method
of b, e.g. b.n(...), inside bodym with the corresponding preconditions and post-
conditions of o [14]. We denote it with m[b �→ o]. Hence, g = λo. ¯�m[b �→ o]� is
a monotonic function, and in particular ¯�m� � g( ¯ �B�) as ¯ �B� is an approx-
imation of the behavior of b in all the possible contexts. Then, we can apply
Lemma 3 so that for every class A, A 
O[P ] B, we have that g( ¯ �A�) � g( ¯ �B�).
As a consequence, if we can prove that g( ¯ �B�) � S̄ for a given specification S̄, by
transitivity, it follows that g( ¯ �A�) � S̄, for every semantic subclass A 
O[P ] B,
i.e., m is correct w.r.t. the specification S̄.

Example 6. Consider the function inv in Sect. 2. We want to prove the property
that inv never performs a division by zero. Let us instantiate P with the parity
abstract domain. By Ex. 1 we know that x = e. By an abstract evaluation of the
return expression, one obtains 1/(1 − e%2) = 1/d, that is always defined (as
obvisiously zero is not an odd number). As a consequence, when an instance of
Even is passed to inv, it does not throw any division-by-zero exception. Further-
more, for what said above, this is true for all the semantic subclasses of Even. ��

4.4 Relation Between 	 and 


Consider two classes A and B such that A 	 B. By definition, this means that all
the names (fields or methods) defined in B are defined in A too. In general, such
a condition is too weak to state something “interesting” about the semantics of
A w.r.t. that of B: as seen before, there exists a domain of observables O such
that A 
O B, and in most cases such a domain is the most abstract one, and by
Lemma 2 this implies that 
 is a uninteresting relation. Therefore, in order to
obtain more interesting subclass relations, we have to consider some hypotheses
on the abstract semantics of the methods of the class. If the constructor of a
class A is compatible with that of B, and if the methods of A do not violate
the class invariant of B, then A is a semantic subclass of B. On the other hand,
semantic subclassing almost implies syntactic subclassing. This is formalized by
the following theorems [24]:

2 We consider the best abstract function in order to simplify the exposition. Neverthe-
less the paper’s results still hold when a generic upper-approximation is considered.
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Theorem 3. Let A = 〈FA, initA, MA〉 and B = 〈FB, initB, MB〉 be two classes such
that A 	 B, and let 〈P,�〉 ∈ A(P(Σ)). If (i) IB is a class invariant for B, (ii)
¯ >�initA� � ¯ >�initB�, (iii) ∀S̄ ∈ P. ∀m ∈ MA ∩ MB. ¯ >�m�(S̄) � IB and (iv)
∀m ∈ MA. m �∈ MB =⇒ ¯ >�m�(S̄) � IB then A 
O[P ] B.

Theorem 4. Let A, B ∈ C, such that A 
O B. Then there exists a renaming
function φ such that φ(A) 	 B.

5 Meaning-Preserving Manipulation of Class Hierarchies

In this Section, we exploit the results of the previous sections to introduce the
concept of admissible class hierarchy, and to define and prove correct some op-
erators on class hierarchies.

5.1 Admissible Semantic Class Hierarchies

For basic definitions on trees, the reader may refer to [6]. If T is a tree, nodesOf(T )
denotes the elements of the tree, rootOf(T ) denotes the root of the tree, and if
n ∈ nodesOf(T ) then sonsOf(n) are the successors of the node n. In particular, if
sonsOf(n) = ∅ then n is a leaf. A tree with a root r and successors S is tree(r, S).

Here we only consider single inheritance so that class hierarchies are trees
of classes. An admissible hierarchy w.r.t. a transitive relation ρ on classes is a
tree such that all the nodes are classes, and given two nodes n and n′ such that
n′ ∈ sonsOf(n) then n′ is in the relation ρ with n. Formally:

Definition 5 (Admissible Class Hierarchy). Let H be a tree and ρ ⊆ C×C

be a transitive relation on classes. Then we say that H is a class hierarchy which
is admissible w.r.t. ρ, if (i) nodesOf(H) ⊆ C, and (ii) ∀n ∈ nodesOf(H). ∀n′ ∈
sonsOf(n).n′ρn.

We denote the set of all the class hierarchies admissible w.r.t. ρ as H[ρ]. It is
worth noting that our definition subsumes the definition of class hierarchies of
mainstream object-oriented languages. In fact, when ρ is instantiated with 	,
we obtain class hierarchies in which all the subclasses have at least the same
methods as their superclass. A semantic class hierarchy is just the instantiation
of the Def. 5 with the relation 
. The theorems and lemmata of the previous
sections can be easily lifted to class hierarchies:

Example 7. Consider the two hierarchies in Fig. 2. H1 is admissible w.r.t. 
Con

and H2 is admissible w.r.t. 
Parities but not w.r.t. 
Con. ��

In order to manipulate hierarchies we wish to preserve admissibility. This is
why we need the notion of a fair operator. A fair operator on class hierarchies
transforms a set of class hierarchies admissible w.r.t. a relation ρ into a class
hierarchy that is admissible w.r.t. a relation ρ′.

Definition 6 (Fair Operator). Let ρ and ρ′ be transitive relations. Then we
say that a function t is a fair operator w.r.t. ρ and ρ′ if t ∈ [P(H[ρ])→ H[ρ′]].

In the following, when not stated otherwise, we assume that ρ = ρ′ =
.
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5.2 Class Insertion

The first fair operator we consider is the one for adding a class into an admis-
sible class hierarchy. The algorithm definition of such an operator is presented
in Fig. 6. It uses as sub-routine CSS, an algorithm for computing a common
semantic superclass of two given classes, that is depicted in Fig. 7 and discussed
in the next section.

The insertion algorithm takes as input an admissible class hierarchy H and
a class C. Four cases are distinguished. (i) if C already belongs to H then the
hierarchy keeps unchanged. (ii) If C is a superclass of the root of H, then a new
class hierarchy whose root is C is returned. (iii) If C is a subclass of the root of
H, then the insertion must preserve the admissibility of the hierarchy. If C is a
superclass of some of the successors, then it is inserted between the root of H and
such successors. Otherwise it checks whether some root class of the successors
is a superclass of C. If it is the case, then the algorithm is recursively applied,
otherwise C is added at this level of the hierarchy. (iv) If C and the root of H

H � C � let R = rootOf(H), S = sonsOf(R)
let H< = {K ∈ S | rootOf(K) 
 C}
let H> = {K ∈ S | rootOf(K) � C}
if C ∈ nodesOf(H) then return H

if R 
C then return tree(C, R)
if C 
R then

if H< �= ∅ then
return tree(R, (S-H<) ∪ tree(C, H<))

if H> �= ∅ then select K ∈ S
return tree(R, (S-K) ∪ ( K �C))

else return tree(R, S ∪ {C})
else select C� = CSS(R, C)

return tree(C�, {R, C})

Fig. 6. The algorithm for a fair class insertion

CSS(A, B) � let A = 〈FA, initA, MA〉,
B = 〈FB, initB, MB〉,
FC = ∅, initC = initA, MC = ∅

repeat
select f ∈ FA − FC

if B 
〈FC ∪ {f}, τFC∪{f}(initA), τFC∪{f}(MC)〉
then FC = FC ∪ {f},

initC = τFC∪{f}(initA)
‖ select m ∈ MA − MC

if B 
〈FC, initC, τFC(MC ∪ {m})〉
then MC = MC ∪ {m}

until no more fields or methods are added
return 〈FC, initC, τFC(MC)〉

Fig. 7. Algorithm for computing the CSS
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are unrelated, the algorithm returns a new hierarchy whose root is a superclass
of both C and the root of H.

The soundness of the algorithm follows from the observation that, if in the
input hierarchy there is an admissible path from a class B to a class A, then in
the extended hierarchy there still exists an admissible path from B to A.

Lemma 4 (Soundness of 5, [24]). The operator 5 defined in Fig. 6 is a fair
operator w.r.t. 
, i.e., 5 ∈ [H[
]× C→ H[
]].

Example 8. Consider the hierarchy H1 and the classes MultFour and MultTwenty
of Sect.2. (H1 5 MultFour) 5 MultTwenty = H3 of Fig.4. ��
Because of Th. 1, the algorithm 5 is effective as soon as the underlying domain
of observables is suitable for a static analysis, i.e. the abstract elements are
computer representable, the order on P is decidable, and a widening operator
ensures the convergence of the fixpoint computation. The dual operator, i.e.,
the elimination of a class from a hierarchy, corresponds straightforwardly to the
algorithm for removing a node from an ordered tree [6].

5.3 Common Semantic Superclass

From the previous section we were left to define (and prove correct) the algorithm
that returns the common semantic superclass (CSS) of two given classes. First
we recall the definition of meaning-preserving transformation τ [12]:

Definition 7 (Program Transformation). Let A = 〈F, init, M〉 and 〈α, γ〉 a
Galois connection satisfying (2). A meaning-preserving program transformation
τ ∈ [F→ M→ M] is such that ∀f ∈ F. ∀m ∈ M: (i) τf(m) does not contain the field
f and (ii) ∀d̄ ∈ P. α( >�m�(γ(d̄)) � α( >�τf(m)�(γ(d̄))).

Intuitively, τf(m) projects out the field f from the source of m preserving the
semantics up to an observation (i.e., α).

The algorithm CSS is presented in Fig. 7. It is parameterized by the un-
derlying abstract domain of observables and a meaning preserving map τ . The
algorithm starts with a superclass for A (i.e., 〈∅, initA, ∅〉). Then, it iterates by
non-deterministically adding, at at each step, a field or a method of A: if such an
addition produces a superclass for B then it is retained, otherwise it is discarded.
When no more methods or fields can be added, the algorithm returns a semantic
superclass for A and B, as guaranteed by the following theorem:

Theorem 5 (Soundness of CSS). Let A and B be two classes. Then CSS(A,B)
is such that A 
 CSS(A,B) and B 
 CSS(A,B).

It is worth noting that in general, CSS(A,B) �= CSS(B,A). Furthermore, by Th. 1,
it follows that if 
 is decidable, then the algorithm is effective. This is the case
when the underlying abstract domain of observables corresponds to one used for
a static analysis [20].

Example 9. Consider the classes MultEight and MultTwelve and MultFour de-
fined as in Sect. 2. When using the abstract domain of linear congruences,
CSS(MultEight,MultTwelve) = MultFour. ��
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5.4 Merging of Hierarchies

The last refactoring operation on hierarchies we consider is about merging. The
algorithm 5 can be used as a basis for the algorithm to merge two admissible
class hierarchies:

H1 �H2 � let H = H1, N = nodesOf(H2)
while N �= ∅ do

select C ∈ N
H = H �C, N = N − C

return H.

Lemma 5. �is a fair operator w.r.t. 
, i.e., � ∈ [H[
]→ H[
]].

It is worth mentioning that the modularity and modulability of the operators
described in this section are the crucial keys that allow to apply them also to
“real world” hierarchy management issues [33].

6 Related Work

In their seminal work on Simula [13], Dahl and Nygaard justified the concept
of inheritance on syntactic bases, namely as textual concatenation of program
blocks. A first semantic approach is [15] an (informal) operational approach to
the semantics of inheritance is introduced. In particular the problem of specifying
the semantics of message dispatch is reduced to that of method lookup. In [5]
a denotational characterization of inheritance is introduced and proved correct
w.r.t. an operational semantics based on the method lookup algorithm of [15].
An unifying view of the different forms of inheritance provided by programming
languages is presented in [1]. In the objects as records model [2], the semantics
of an object is abstracted with its type: inheritance is identified with subtyping.
Such an approach is not fully satisfactory as shown in [4]. The notion of subtyping
has been generalized in [18] where inheritance is seen as property preservation:
the behavioral type of a class is a human-provided formula, which specifies the
behavior of the class, and subclassing boils down to formula implication. The
main difference between our concept of observable and that of behavioral type
is that observables are systematically obtained as an abstraction of the class
semantics instead of being provided by the programmer.

As for class hierarchies refactoring, [32] presents a semantics-preserving ap-
proach to class composition. Such an approach preserves the behavior of the
composing hierarchies when they do not interfere. If they do interfere, a static
analysis determines which components (classes, methods, etc.) of the hierarchies
may interfere, given a set of programs that use such hierarchies. Such an ap-
proach is the base of the [33], which exploits static and dynamic information
for class refactoring. The main difference between these works and ours is that
we exploit the notion of observable, which is a property valid for all the instan-
tiation contexts of a class. As a consequence we do not need to rely on a set
of test programs for inferring hierarchy properties. Furthermore, as a soundness
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requirement, we ask that a refactoring operator on a class hierarchy preserve the
observable, i.e., an abstraction of the concrete semantics. As a consequence we
are in a more general setting, and the traditional one is recovered as soon as we
consider the domain of observables to be the concrete one.

7 Conclusions and Future Work

We introduced a framework for the definition and the manipulation of class
hierarchies based on semantics abstraction. The main novelty of this approach is
twofold: it provides a logic-based solid foundation of class refactoring operations
that are safe by construction, and allows us to tune it according to the observed
property. The next goal is the development of a tool for the semi-automatic
refactoring of class hierarchies, based on [19, 21], and the design of abstract
domains capturing properties expressible in JML [17].
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Abstract. Standard abstract model checking relies on abstract Kripke structures
which approximate the concrete model by gluing together indistinguishable states.
Strong preservation for a specification language L encodes the equivalence of
concrete and abstract model checking of formulas in L. Abstract interpretation
allows to design abstract models which are more general than abstract Kripke
structures. In this paper we show how abstract interpretation-based models can be
exploited in order to specify a general strongly preserving abstract model check-
ing framework. This is shown in particular for specification languages including
standard temporal operators which admit a characterization as least/greatest fix-
points, as e.g. standard “Finally”, “Globally”, “Until” and “Release” modalities.

1 Introduction

Abstract model checking is one successful and practical way to deal with the well-
known state explosion problem of model checking in system verification [1, 3]. Stan-
dard abstract model checking [2] relies on abstract models which are based on partitions
of the state space. Given a concrete model as a Kripke structure K = (Σ,→), a stan-
dard abstract model is specified by an abstract Kripke structure A = (A,→�) where the
set A of abstract states is defined by a surjective map h : Σ → A and→� is an abstract
transition relation on A. Thus, A determines a partition PA of Σ and vice versa. A
weak preservation result for some temporal language L guarantees that for any formula
ϕ ∈ L, if ϕ holds on the abstract model A then ϕ also holds on the concrete model
K. On the other hand, strong preservation means that any formula of L holds on A if
and only if it holds on K. Strong preservation is highly desirable since it allows to draw
consequences from negative answers on the abstract side [3]. Thus, in order to design a
standard abstract model we need both an appropriate partition of the space state and a
suitable abstract transition relation.

The relationship between abstract interpretation and abstract model checking has
been the subject of a number of works (see e.g. [2, 6, 7, 9, 10, 11, 15, 16, 19, 18]). We
introduced in [17] an abstract interpretation-based framework for specifying generic
strongly preserving abstract models, where a partition of the state space Σ is viewed
as a particular abstract domain of the powerset ℘(Σ), where ℘(Σ) plays the role of
concrete semantic domain. This generalized approach leads to a precise correspon-
dence between forward complete abstract interpretations and strongly preserving ab-
stract models. We deal with generic (temporal) languages L of state formulas which
are inductively generated by a setAP of atomic propositions p and a set Op of opera-
tors f , i.e. L 6 ϕ ::= p | f(ϕ1, ..., ϕn). A semantic interpretation p ⊆ Σ of atomic
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propositions and of operators f : ℘(Σ)n → ℘(Σ) determines a concrete semantic func-
tion [[·]] : L → ℘(Σ) where [[p]] = p and [[f(ϕ1, ..., ϕn)]] = f([[ϕ1]], ..., [[ϕn]]). Thus,
any abstract domain A of ℘(Σ) and corresponding abstract interpretation p� ∈ A and
f � : An → A for constants/operators, denoted by I�, induce an abstract semantic func-
tion [[·]]A : L → A where [[p]]A = p� and [[f(ϕ1, ..., ϕn)]]A = f �([[ϕ1]]A, ..., [[ϕn]]A).
In particular, the abstract interpretation of p and f can be given as their best correct
approximations on A, i.e. pA def= α(p) and fA def= α ◦ f ◦ γ where α and γ are the ab-
straction and concretization maps relating A to ℘(Σ). In this generalized setting, strong
preservation goes as follows: the abstract interpretation (A, I�) is strongly preserving
for L when for any S ⊆ Σ and ϕ ∈ L, S ⊆ [[ϕ]] ⇔ α(S) ≤ [[ϕ]]A. When A is an
abstract domain representing a partition of Σ, this boils down to standard strong preser-
vation for abstract Kripke structures, where different choices for the abstract transition
relation �� correspond to different abstract interpretations of the operators f .

It turns out that forward completeness implies strong preservation, i.e. if the abstract
domain A is forward complete for the concrete constants/operators of L — this means
that no loss of precision occurs by approximating each p and f on the abstract domain
A — then A is strongly preserving for L. The converse is in general not true. How-
ever, we show that when A is L-covered — meaning that each abstract value a ∈ A
corresponds to some formula ϕ ∈ L, i.e. γ(a) = [[ϕ]] — forward completeness and
strong preservation are indeed equivalent notions and consequently the abstract inter-
pretation of constants/operators of L as best correct approximations on A is the only
possible choice in order to have strong preservation. One interesting point to remark is
that when the abstract domain is a state partition P , an abstract transition relation �� on
P such that the abstract Kripke structure (P,��) strongly preserves L might not exist,
while, in contrast, a strongly preserving abstract semantics on the partition P viewed as
an abstract domain always exists.

The abstract semantics is therefore defined by approximating the interpretation of
logical/temporal operators of L through their best correct approximations on the ab-
stract domain A. In principle, this can be done for any logical/temporal operator. How-
ever, when a temporal operator f can be expressed as a least/greatest fixpoint of an-
other temporal operator g, e.g. f = λX. lfp(λY.g(X,Y )), the best correct approx-
imation α ◦ f ◦ γ might not be characterizable as a least/greatest fixpoint. For ex-
ample, the existential “Finally” operator can be characterized as a least fixpoint by
EF(X) = lfp(λY.X ∪ EX(Y )), where EX = pre

�
is the standard predecessor

transformer on the concrete Kripke structure. The best correct approximation of EF
on an abstract domain A is therefore the abstract function α ◦ EF ◦ γ : A → A.
However, this definition gives us no clue for computing α ◦ EF ◦ γ as a least fix-
point. By contrast, in standard abstract model checking the abstract interpretation of
language operators is based on an abstract Kripke structure A = (P,��), so that it
is enough to compute the least fixpoint lfp(λY �.X� ∪ EX�(Y �)) on the abstract state
space P , namely X� and Y � are sets of blocks in P , ∪ is union of sets of blocks and
EX� = pre

�
� is the predecessor transformer on A. For example, for the language

L 6 ϕ ::= p | ϕ1 ∧ ϕ2 | EFϕ if one can define a strongly preserving abstract Kripke
structure (P,��), where P is some partition of Σ, then the abstract Kripke structure
(P,�∃∃) strongly preserves L as well, where B1�

∃∃B2 iff ∃s1 ∈ B1.∃s2 ∈ B2.s1�s2.
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In this case, while the concrete fixpoint is given by EF(X) = lfp(λY.X ∪ pre
�

(Y )),
the abstract fixpoint is EX�(X�) = lfp(λY �.X� ∪ pre

�
∃∃(Y �)). The key point here is

that the best correct approximation of the concrete function λ〈X,Y 〉. X ∪ pre
�

(Y ) on
the partition P viewed as an abstract domain is indeed λ〈X�, Y �〉. X� ∪ pre

�
∃∃(Y �).

In other terms, the best correct approximation of λX. lfp(λY.X ∪ pre
�

(Y )) can be
expressed as λX�. lfp(λY �.X� ∪ pre

�
∃∃(Y �)) and thus preserves the same “template”

of the concrete fixpoint function. We generalized this phenomenon to generic functions
and abstract domains and then applied to standard temporal operators which can be
expressed as fixpoints, that is, “Finally”, “Globally”, “Until” and “Release” modali-
ties. We applied our results both to partitions, namely standard abstract models, and
to disjunctive abstract domains, namely domains which are able to represent precisely
logical disjunction. As far as partitions are concerned, we obtained new results of strong
preservation on standard abstract Kripke structures. On the other hand, applications to
disjunctive abstract domains provide a new procedure to perform a strongly preserv-
ing abstract model checking. This latter approach seems especially interesting because
examples hint that efficient implementations are feasible.

2 Background

Notation. The standard pointwise ordering between functions will be denoted by�. For
a set S ∈ ℘(℘(X)), we write the sets in S in a compact form like in {[1], [12], [123]} ∈
℘(℘({1, 2, 3})). We denote by  the complement operator w.r.t. some universe set.
Part(Σ) denotes the set of partitions of Σ. We consider transition systems (Σ,R)
where the relation R ⊆ Σ × Σ (also denoted by R−→) is total. A Kripke structure
K = (Σ,R,AP, �) consists of a transition system (Σ,R) together with a set AP
of atomic propositions and a labelling function � : Σ → ℘(AP). Paths in K are
defined by Path(K) def= {π : N → Σ | ∀i ∈ N. πi

R−→πi+1}. A transition relation
R ⊆ Σ × Σ defines the usual pre/post transformers on ℘(Σ): preR, postR, p̃reR,
p̃ostR. When clear from the context, subscripts R are sometimes omitted. The relations
R∃∃, R∀∃ ⊆ ℘(Σ)× ℘(Σ) are defined as follows: (S1, S2) ∈ R∃∃ (respectively, R∀∃)
iff ∃s1 ∈ S1. (respectively, ∀s1 ∈ S1.) ∃s2 ∈ S2. (s1, s2) ∈ R.

Abstract Interpretation and Completeness. As usual in standard abstract interpreta-
tion, abstract domains are specified by Galois connections/insertions (GCs/GIs) [4, 5].
A GC/GI of the abstract domain A into the concrete domain C through the abstrac-
tion and concretization maps α : C → A and γ : A → C will be denoted by
(C,α, γ,A). GIs of a common concrete domain C are pre-ordered w.r.t. precision as
usual: G1 = (C,α1, γ1, A1) � G2 = (C,α2, γ2, A2) (i.e., A1 is more precise than A2)
iff γ1 ◦α1 � γ2 ◦α2. Moreover, G1 and G2 are equivalent when G1 � G2 and G2 � G1.
Let G = (C,α, γ,A) be a GI, f : C → C be some concrete semantic function — for
simplicity, we consider here 1-ary functions — and f � : A → A be a corresponding
abstract function. 〈A, f �〉 is a sound abstract interpretation when α ◦ f � f � ◦ α. The
abstract function fA def= α ◦ f ◦ γ : A→ A is called the best correct approximation of
f in A. Completeness in abstract interpretation corresponds to require the following
strengthening of soundness: α ◦ f = f � ◦ α. This is called backward completeness be-
cause an orthogonal notion of forward completeness may be considered: in fact, the
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soundness condition α ◦ f � f � ◦ α is equivalent to f ◦ γ � γ ◦ f �, so that forward
completeness for f � corresponds to strengthen soundness by requiring: f ◦ γ = γ ◦ f �.
Giacobazzi et al. [12] observed that both backward and forward completeness uniquely
depend upon the abstraction map, namely they are abstract domain properties. In fact,
it turns out that there exists f � : A → A such that 〈A, f �〉 is backward (forward) com-
plete iff γ ◦ α ◦ f ◦ γ ◦ α = γ ◦ α ◦ f (γ ◦ α ◦ f ◦ γ ◦ α = f ◦ γ ◦ α). Thus, we say
that a GI G is backward (forward) complete for f when γ ◦ α ◦ f ◦ γ ◦ α = γ ◦ α ◦ f
(γ ◦α◦f ◦γ ◦α = f ◦γ ◦α). Note that G is forward complete for f iff f maps elements
in img(γ) to elements in img(γ).

If [[·]] : L → C and [[·]]� : L → A are, respectively, a concrete and an abstract se-
mantics of a generic language L, then soundness and completeness for the abstract se-
mantics [[·]]� are defined as follows: 〈A, [[·]]�〉 is sound (respectively, backward complete,
forward complete) if for any ϕ ∈ L, α([[ϕ]]) ≤A [[ϕ]]� (respectively, α([[ϕ]]) = [[ϕ]]�,
[[ϕ]] = γ([[ϕ]]�)).

Recall that a GI G = (C,α, γ,A) is disjunctive (or additive) when γ is additive,
i.e. when γ preserves arbitrary least upper bounds. It turns out that G is disjunctive iff
img(γ) ⊆ C is join-closed, i.e. closed under arbitrary lub’s. Disjunctive GIs can be
“inverted” as follows and such inversion preserves forward completeness.

Proposition 2.1. Let G = (C≤, α, γ, A≤) be a disjunctive GI and f : C → C.
(i) Let α�(c) def= ∨ {a ∈ A | γ(a) ≤ c}. Then, G� def= (C≥, α�, γ, A≥) is a GI.
(ii) G� is forward complete for f iff G is forward complete for f . In this case, the two
best correct approximations of f w.r.t. G� and G coincide.

3 Abstract Models

3.1 Abstract Semantics

We consider (temporal) specification languages L whose state formulas ϕ are induc-
tively defined by: L 6 ϕ ::= p | f(ϕ1, ..., ϕn), where p ∈ AP ranges over a set of
atomic propositions while f ranges over a finite set Op of operators. AP and Op are
also denoted, respectively, by APL and OpL. Each f ∈ Op has an arity ar(f) > 0.
The interpretation of formulas in L is determined by a semantic structure S = (Σ, I)
where Σ is a set of states and I is an interpretation function which maps p ∈ AP
to I(p) ∈ ℘(Σ) and f ∈ Op to I(f) : ℘(Σ)ar(f) → ℘(Σ). We also use p and
f to denote, respectively, I(p) and I(f). Also, AP def= {p ∈ ℘(Σ) | p ∈ AP} and
Op

def= {f : ℘(Σ)ar(f) → ℘(Σ) | f ∈ Op}. The concrete state semantic function
[[·]]S : L→ ℘(Σ) evaluates a formula ϕ ∈ L to the set of states making ϕ true w.r.t. the
semantic structure S:

[[p]]S = p and [[f(ϕ1, ..., ϕn)]]S = f([[ϕ1]]S, ..., [[ϕn]]S).

Semantic structures generalize the role of Kripke structures. In fact, in standard model
checking [3], a semantic structure is usually defined through a Kripke structure K so
that the interpretation of operators in Op is defined in terms of paths in K and of stan-
dard logical operators. In the following, we will freely use standard logical and tem-
poral operators together with their corresponding usual interpretations: for example,
I(∧) = ∩, I(¬) = , I(EX) = preR, etc.
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Following the abstract interpretation approach, an abstract semantic structure is
given by S� = (A, I�) where (C,α, γ,A) is a GI and for any p ∈ AP and f ∈ Op,
I(p) ∈ A and I�(f) : Aar(f) → A. Thus, an abstract semantic structure S� defines an
abstract semantics [[·]]S� : L→ A for the language L.

Let S be a (concrete) semantic structure for L. A GI (C,α, γ,A) always induces an
abstract semantic structure SA = (A, IA) where IA provides the best correct approx-
imations on A of the concrete interpretation of constants/operators: IA(p) def= α(I(p))
for p ∈ AP and IA(f) def= (I(f))A for f ∈ Op. If the (concrete) interpretation OpL

consists of monotone functions then the abstract semantics [[·]]SA induced by SA is al-
ways automatically sound. This induced abstract semantics will be denoted by [[·]]AS .

Example 3.1. Let us consider the following Kripke structure K, where superscripts de-
note the labelling function.

Kripke
structure K

1p

		

3p

		

5q

		
2q



�����
4q



�����
6r

��

Abstract
domain A �

qr�

			

p�











q�




r�

���

⊥

������
�������

Let L 6 ϕ ::= p | ϕ1 ∧ ϕ2 | EXϕ. Let S be the semantic structure for L induced by the
Kripke structure K so that EX = pre

�
. Let A be the lattice depicted above. We con-

sider the abstraction map α : ℘(Σ)⊆ → A where α({n}), i.e. on singletons, is defined
by α({1}) = α({3}) def= p�, α({2}) = α({4}) = α({5}) def= q� and α({6}) def= r�, while
for any S ∈ ℘(Σ), α(S) def= ∨s∈S α({s}). Hence, we have that:

[[EXr]]AS = EXA([[r]]AS ) = EXA(α(r)) = EXA(α({6})) = EXA(r�) =
α(EX(γ(r�))) = α(EX({6})) = α({5, 6}) = α({5}) ∨ α({6}) = q� ∨ r� = qr�.

Since γ(qr�) = {2, 4, 5, 6}, as expected, observe that the abstract semantics [[EXr]]AS is
a proper over-approximation in A of the concrete semantics [[EXr]]S = {5, 6}. ��

3.2 Partitioning Abstractions

As shown in [17], standard partition-based abstract model checking [2, 3] can be viewed
as a particular instance of abstract semantics as defined in Section 3.1, where: (i) given
some state partition P ∈ Part(Σ), the abstract domain is ℘(P )⊆, where the abstraction
map is the “covering” function αP : ℘(Σ)⊆ → ℘(P )⊆ such that αP (S) def= {B ∈
P | B ∩ S �= ∅}, while γP : ℘(P )⊆ → ℘(Σ)⊆ is given by γP (X) = ∪B∈XB; (ii) if
the concrete interpretation function I is based on a concrete Krike structure K, then the
abstract interpretation function I� is simply given by the evaluation of I on an abstract
Kripke structure A = (P,R�,AP, ��) which replaces K, where R� ⊆ P × P is the
abstract transition relation on the abstract state space P . Thus, in this sense, an abstract
Kripke structure always induces an abstract semantics for a language.

Any GI G=(℘(Σ)⊆, α, γ, A) which is equivalent to a GI (℘(Σ)⊆, αP , γP , ℘(P )⊆),
for some partition P ∈ Part(Σ), is called partitioning. It turns out (see [17]) that G
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is partitioning iff γ(A) is closed under complementation. Of course, not every abstrac-
tion of ℘(Σ)⊆ is partitioning. For instance, if s̄ ∈ Σ, A = {⊥,�}, γ(⊥) = {s̄} and
γ(�) = Σ then (℘(Σ)⊆, α, γ, A) is a disjunctive GI, where α denotes the left adjoint
to γ, which is not partitioning because γ(A) = {{s̄}, Σ} is not closed under comple-
mentation. This opens the question whether it is possible to minimally refine a given
abstract domain in order to make it partitioning. Given a GI G = (℘(Σ)⊆, α, γ, A), we
define an equivalence relation ∼G on Σ by identifying those states that are blurred by
the abstraction α: s ∼G t iff α({s}) = α({t}). This is an equivalence relation, namely
a partition in Part(Σ), and therefore it induces a partitioning abstraction that we denote
by P(G). As shown in [17], it turns out that P(G) is the least partitioning refinement of
G, that is: P(G) � G and for any partitioning G′ � G, G′ � P(G).

Example 3.2. Let us consider the abstraction G in Exam-
ple 3.1. From the definition of α, we have that α({s}) =
α({t}) iff s and t belong to the same block of the parti-
tion P = {[13], [245], [6]}, so that P(G) is given by the GI
(℘(Σ), αP , γP , ℘(P )). The abstract domain ℘(P )⊆ can be
therefore represented by the lattice depicted on the right. ��

�

pq�

����
pr� qr�



p�

����
q�

���� ����
r�

����

⊥


�����

3.3 Strong Preservation

As recalled above, standard abstract model checking [2, 3] is based on state partitions
and abstract Kripke structures. Strong preservation for some language L encodes the
equivalence of abstract and concrete validity for formulas in L. Given a partition P ∈
Part(Σ), let [[·]]P : L → ℘(P ) denote an abstract semantics defined on ℘(P ). For
example, but not necessarily, this can be the abstract semantics induced by an abstract
Kripke structure (P,R�,AP , ��). A partition P ∈ Part(Σ) is strongly preserving (s.p.

for short) for L when for any s ∈ Σ and ϕ ∈ L, s ∈ [[ϕ]] iff αP ({s}) ∈ [[ϕ]]P . It
is known [8, 9, 17] that the coarsest s.p. partition PL for L is given by the following
state equivalence ∼L induced by L: s1 ∼L s2 iff ∀ϕ ∈ L. s1 ∈ [[ϕ]] ⇔ s2 ∈ [[ϕ]].
Obviously, the definition of an abstract Kripke structure which induces a s.p. abstract
semantics depends on the language L. Let us recall some well-known examples [2,
3, 13]. Let K = (Σ,R,AP , �) be a concrete Kripke structure and let Psim, Pbis ∈
Part(Σ) denote, respectively, simulation and bisimulation equivalence on K. Then, the
abstract semantics induced by the abstract Kripke structure (Psim, R∀∃,AP , ��) (where
��(B) = ∪s∈B�(s)) is s.p. for ACTL∗, while that induced by (Pbis, R

∃∃,AP , ��) is s.p.
for CTL∗.

Strong preservation was generalized in [17] to abstract domains as follows.

Definition 3.3. Let S = (Σ, I) and S� = (A, I�) be, respectively, concrete and abstract
semantic structures for L. Let [[·]]S� : L → A be the corresponding abstract semantics.
S� (or [[·]]S� ) is strongly preserving for L (w.r.t. S) when for any S ∈ ℘(Σ) and ϕ ∈ L,
S ⊆ [[ϕ]]S ⇔ α(S) ≤A [[ϕ]]S� . ��

The following simple but key result shows that strong preservation amounts to forward
completeness.

Theorem 3.4. S� is s.p. for L iff the abstract semantics 〈A, [[·]]S�〉 is forward complete.
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It turns out (cf. [17]) that if a s.p. abstract semantics on the abstract domain A exists
then the abstract semantics [[·]]AS induced by A is s.p. as well, so that strong preservation
is an abstract domain property. Hence, we say that the GI G = (℘(Σ)⊆, α, γ, A) (or
simply A when the GI is clear from the context) is s.p. for L if SA is s.p. for L (or,
equivalently, if a s.p. abstract semantics on A exists). In this case, by Theorem 3.4, we
also say that the abstract domain A is language forward complete for L.

Example 3.5. Let us consider again Example 3.1. It turns out that A is not s.p. pre-
serving for L because γ([[EXr]]AS ) = γ(qr�) = {2, 4, 5, 6}, while [[EXr]]S = {5, 6}.
Therefore, for instance, 2 ∈ γ([[EXp]]AS )� [[EXr]]S, or, equivalently,α({2}) ≤ [[EXr]]AS
whilst 2 �∈ [[EXr]]S. ��

4 Abstract Semantics

It is known (see e.g. [7]) that if an abstract domain A is forward complete for all the
constants/operators ofAP∪ Op (where atomic propositions are viewed as 0-ary op-
erators) — here also called operator-wise forward completeness — of some concrete
interpretation of some language L then A is language forward complete for L (i.e., for
all ϕ ∈ L, [[ϕ]]S = γ([[ϕ]]AS )). The converse in general is not true, as shown by the
following example.

Example 4.1. Let us consider the following Kripke structure K and the partitioning
abstract domain A induced by the partition P = {[12], [3]}, i.e. A = ℘(P )⊆.

1p �� 2p �� 3p
��

Let us consider the language L 6 ϕ ::= p | EXϕ. The Kripke structure K induces the
semantic structure S = ({1, 2, 3}, I) such that I(p) = {1, 2, 3} and I(EX) = pre

�
.

Hence, we have that [[p]]S = {1, 2, 3}, [[EXp]]S = {1, 2, 3} and, for k > 1, [[EXkp]]S =
{1, 2, 3}. On the abstract side we have that [[p]]AS = {[12], [3]}, [[EXp]]AS = {[12], [3]}
and, for k > 1, [[EXkp]]AS = {[12], [3]}. Thus, for any ϕ ∈ L, [[ϕ]]S = γP ([[ϕ]]AS ),
i.e. the abstract domain A is language forward complete for L. On the other hand,
pre

�
(γP (αP ({3}))) = pre

�
({3}) = {2, 3} while γP (αP (pre

�
(γP (αP ({3}))))) =

γP (αP ({2, 3})) = {1, 2, 3}, so that A is not forward complete for pre
�

. ��

Operator-wise forward completeness is easier to check than language forward com-
pleteness. Moreover, the problem of refining an abstract domain in order to make it for-
ward (or backward) complete for a given set of operators admits constructive fixpoint
solutions [12, 18]. It is thus interesting to determine conditions on abstract domains
which guarantee the equivalence of operator-wise and language forward completeness.

Definition 4.2. Let S = (Σ, I) be a semantic structure for L and (℘(Σ)⊆, α, γ, A) be
a GI. The abstract domain A is L-covered by the concrete semantics [[·]]S (or simply by
S) when for any a ∈ A there exists ϕ ∈ L such that γ(a) = [[ϕ]]S. ��

It turns out that this notion of covering ensures the equivalence of operator-wise and
language forward completeness.
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Theorem 4.3. Let A be L-covered by S. Then, A is language forward complete for L

iff A is forward complete for all the constants/operators inAPL ∪OpL.

As recalled above, given an abstract domain A, if an abstract semantic structure
S� = (A, I�) is s.p. for L then the abstract structure SA = (A, IA) induced by A is
s.p. for L as well. However, the interpretation functions I� and IA may differ.

Example 4.4. Let us consider again Example 4.1. Let us first note that A is not L-
covered by S because {[[ϕ]]S | ϕ ∈ L} = {{1, 2, 3}}. Let us consider the abstract
semantic structure S� = (A, I�) induced by the following abstract Kripke structure:

[12]p �� [3]p
��

Hence, I�(EX) = preR� where preR�(∅) = ∅, preR�({[12]}) = ∅, preR�({[3]}) =
{[12], [3]}, preR�({[12], [3]}) = {[12], [3]}. It is easy to see that S� is s.p. for L. In fact,
we have that γP ([[p]]S�) = γP ({[12], [3]}) = {1, 2, 3} = [[p]]S and γP ([[EXp]]S�) =
γP (preR�({[12], [3]})) = γP ({[12], [3]}) = {1, 2, 3} = [[EXp]]S, so that by Theo-
rem 3.4, S� is s.p. for L. However, it turns out that I�(EX) �= IA(EX)=αP ◦ pre

�
◦γP .

In fact, preR�({[12]}) = ∅ while αP (pre
�

(γP ({[12]}))) = αP (pre
�

({1, 2})) =
αP ({1}) = {[12]}. Thus, S� and SA are two different abstract semantic structures
which are both s.p. for L. ��
Thus, in general, for a given abstract domain A, there may be different s.p. abstract se-
mantic structures defined over A. However, if A is L-covered by the concrete semantic
structure then a unique s.p. abstract semantic structure may exist.

Corollary 4.5. If A is L-covered by S and S� = (A, I�) is s.p. for L then I� = IA.

Thus, when A is L-covered by S, we have that a unique interpretation of constants/
functions on A which is s.p. for L may exist, namely their best correct approximations
on A.

Example 4.6. Let us consider the language L 6 ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ and the
following Kripke structure K with transition relation R.

Concrete
Kripke structure K 1p ��

���
���

� 2q
��

3p

��������� �� 4r

��

[2]q
��

Abstract
Kripke structure A [13]p

�������

�������

[4]r

��

This induces a concrete semantic structure S = ({1, 2, 3, 4}, I) where I(p) = {1, 3},
I(q) = {2}, I(r) = {4}, I(¬) = , I(∧) = ∩ and I(EX) = preR. Let us consider
the state partition P = {13, 2, 4} and the corresponding abstract Kripke structure A

depicted above where the transition relation is given by R∃∃. Let us consider the abstract
semantic structure S� = (A, I�) induced by A, i.e. A = ℘(P )⊆ and I�(p) = {13},
I�(q) = {2}, I�(r) = {4}, I�(¬) = , I�(∧) = ∩ and I�(EX) = preR∃∃ .

It is easy to check that I�(¬), I�(∧) and I�(EX) are indeed the best correct ap-
proximations on A of, respectively, the concrete operations of set complementation
 = I(¬), set interesection ∩ = I(∧) and preR = I(EX). Hence, I� = IA, namely
S� = SA.
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It turns out that A is L-covered by S. In fact, since the set of concrete semantics of
formulas in L is closed under set complementation we have that any union of blocks of
P belongs to {[[ϕ]]S | ϕ ∈ L}, so that img(γP ) ⊆ {[[ϕ]]S | ϕ ∈ L}.

We also have that SA is s.p. for L. This happens because A is forward complete
for the constants/operations of L. In fact, all the concrete operations , ∩ and preR

map unions of blocks in ℘(P ) into unions of blocks in ℘(P ) and therefore the abstract
domain A = ℘(P ) is forward complete for them. For example, let us observe that this
holds for preR because preR({1, 3}) = ∅, preR({2}) = {1, 3, 4} and preR({4}) =
{1, 3}. Hence, since A is operator-wise forward complete we have that A is language
forward complete for L as well and therefore, by Theorem 3.4, SA is s.p. for L.

Consequently, by Corollary 4.5, SA is the unique abstract semantic structure on the
abstract domain A which is s.p. for L. ��

It may also happen that one can define a s.p. abstract semantics on some partition P
although this abstract semantics cannot be derived from an abstract Kripke structure on
P , as shown by the following example.

Example 4.7. Consider the following simple language L 6 ϕ ::= p | AXXϕ and the
following Kripke structure K where R is the transition relation.

�������	r
stop �� �������	ry

stop �� �������	g
go �� �������	y

go
��

This models a four-state traffic light controller (like in the U.K. and in Germany). This
gives rise to a concrete semantic structure S = ({r, ry, g, y}, I) where I(stop) =
{r, ry}, I(go) = {g, y} and I(AXX) = p̃reR2 . Hence, according to the standard inter-
pretation I(AXX) = p̃reR2 , we have that s ∈ [[AXXϕ]]S iff for any path π0π1π2 . . . in
K starting from s = π0, we have that π2 ∈ [[ϕ]]S. Observe that [[AXXstop]]S = {g, y}
and [[AXXgo]]S = {r, ry}. Consider the partition P = {[r, ry], [g, y]} and the corre-
sponding partitioning abstract domain A = ℘(P )⊆. Hence, for the corresponding ab-
stract semantic structure SA = (A, IA) we have that IA(stop) = {[r, ry]}, IA(go) =
{[g, y]} and IA(AXX) = αP ◦ p̃reR2 ◦ γP , so that

IA(AXX)(∅) = ∅;
IA(AXX)({[r, ry]}) = {[g, y]}; IA(AXX)({[g, y]}) = {[r, ry]};
IA(AXX)({[r, ry], [g, y]}) = {[r, ry], [g, y]}.

By Theorem 3.4, it turns out that SA is s.p. for L because A is forward complete for
p̃reR2 . In fact, it turns out that p̃reR2 maps unions of blocks in P to unions of blocks
in P because: p̃reR2(∅) = ∅, p̃reR2({r, ry}) = {g, y}, p̃reR2({g, y}) = {r, ry} and
p̃reR2({r, ry, g, y}) = {r, ry, g, y}.

However, let us show that there exists no abstract transition relation R� ⊆ P × P
on the partition P such that the abstract Kripke structure A = (P,R�,AP, ��) induces
an abstract semantic structure which is s.p. for L. Assume by contradiction that such
an abstract Kripke structure A exists and let S� be the corresponding induced abstract
semantic structure. Let B1 = [r, ry] ∈ P and B2 = [g, y] ∈ P . Since r ∈ [[AXXgo]]S
and g ∈ [[AXXstop]]S, by strong preservation, it must be that B1 ∈ [[AXXgo]]S� and
B2 ∈ [[AXXstop]]S� . Thus, necessarily, (B1, B2), (B2, B1) ∈ R�. This leads to the
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contradiction B1 �∈ [[AXXgo]]S� . In fact, if R� = {(B1, B2), (B2, B1)} then we would
have that B1 �∈ [[AXXgo]]S� . Moreover, if, instead, (B1, B1) ∈ R� (the case (B2, B2)
is analogous), then we would still have that B1 �∈ [[AXXgo]]S� . Even more, along the
same lines it is not difficult to show that no proper abstract Kripke structure induces an
abstract semantic structure which strongly preserves L, because even if we split one of
the two blocks B1 or B2 we still cannot define an abstract transition relation ensuring
strong preservation for L. ��

5 Fixpoints in Abstract Semantics

The above abstract interpretation-based approach to abstract model checking systemat-
ically defines the abstract semantics by approximating the interpretation of logical/tem-
poral operators through their best correct approximations on the abstract domain. In
principle, this can be done for any logical/temporal operator. However, when a tempo-
ral operator f can be expressed as a least/greatest fixpoint of another temporal operator
g, e.g. f(S) = lfp(λX.g(X,S)), the best correct approximation α ◦ f ◦ γ might not
be characterizable as a least/greatest fixpoint. Ideally, we would aim at approximat-
ing g through some abstract operator g� in order to be able to characterize α ◦ f ◦ γ
as the abstract least fixpoint of g�. Let us illustrate this through the case of the “Fi-
nally” operator EF, whose standard interpretation can be characterized as a fixpoint:
EF(S) = lfp(λX.S ∪ EX(X)). The best correct approximation of EF w.r.t. a Ga-
lois insertion (℘(Σ)⊆, α, γ, A) is the abstract function α ◦ EF ◦ γ : A → A. How-
ever, this definition gives us no clue for computing α ◦ EF ◦ γ as a least fixpoint.
By contrast, in standard abstract model checking the abstract interpretation of the lan-
guage operators is based on an abstract transition relation defined on the abstract state
space, i.e. an abstract Kripke structure, so that it is enough to compute the least fix-
point lfp(λX.S ∪EX(X)) on the abstract Kripke structure. For example, consider the
language L 6 ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EFϕ. Let K = (Σ,R,AP, �) be a concrete
Kripke structure. One can easily see that if P ∈ Part(Σ) is s.p. for L then the abstract
Kripke structure on P with abstract transition relation R∃∃ ⊆ P × P is s.p. for L. In
this case, while the concrete fixpoint is given by EF(S) = lfp(λX.S ∪ preR(X)), for
any S ⊆ Σ, the abstract fixpoint is lfp(λX�.S� ∪P preR∃∃(X�)), for any S� ⊆ P ,
where ∪P is union of blocks in P , namely the least upper bound of the abstract do-
main ℘(P )⊆. Recall that the abstract domain ℘(P )⊆ is related to the concrete domain
℘(Σ)⊆ by the GI GP = (℘(Σ)⊆, αP , γP , ℘(P )⊆). The key point to note here is that
λ〈X�, Y �〉. X� ∪A preA

R(Y �) is indeed the best correct approximation of the concrete
operation λ〈X,Y 〉. X ∪ preR(Y ) through the GI GP . These observations lead us to the
following generalization.

Theorem 5.1. Let C be a complete lattice, (C,α, γ,A) be a GI and f : Cn+1 → C be
monotone. Let F

def= λ�c ∈ Cn. lfp(λx.f(c1, ...,x, ..., cn)). If A is forward complete for
F then FA = λ�a ∈ An.lfp(λx.fA(a1, ...,x, ..., an)).

Let us remark that the above result can be also stated by duality for greatest fixpoints as
follows: if (C≥, α, γ, A≥) is a GI, F

def= λ�c ∈ Cn. gfp(λx.f(c1, ...,x, ..., cn)) and A is
forward complete for F then FA = λ�a ∈ An.gfp(λx.fA(a1, ...,x, ..., an)).
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By Theorems 3.4 and 4.3, given a language L and a semantic structure S for L, if
A is L-covered by S then A is forward complete for the constants/operators inAPL ∪
OpL iff SA is s.p. for L. Thus, in this case, by Theorem 5.1, if SA is s.p. for L and
OpL includes an operator f which can be expressed as a least/greatest fixpoint of
some operation g then the best correct approximation of f on A can be obtained as the
abstract least/greatest fixpoint of the best correct approximation of g on A.

Example 5.2. Let us consider L 6 ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EFϕ and the follow-
ing Kripke structure K with transition relation R which induces a concrete semantic
structure S.

1p �� 2q �� 3p �� 4q �� 5q �� 6r
��

Let us consider the partition P = {[1], [2], [3], [45], [6]} and the corresponding abstract
Kripke structure A depicted below where the transition relation is given by R∃∃.

[1]p �� [2]q �� [3]p �� [45]q ��
��

[6]r
��

Let SA be the abstract semantic structure induced by the abstract domain A = ℘(P )⊆.
It turns out that SA is s.p. for L because A is forward complete for (AP L and) OpL =
{∩, ,EF}: in fact, it is easy to check that A is forward complete for EF because EF
maps unions of blocks in P to unions of blocks in P . Since A is forward complete for
EF and EF(S) = lfp(λX.f(S,X)), where f(S,X) def= S ∪preR(X), by Theorem 5.1
we have that EFA = λS�.lfp(λX�.fA(S�, X�)) : ℘(P ) → ℘(P ). Moreover, as dis-
cussed above, fA(S�, X�) = αP (f(γP (S�), γP (X�))) = S� ∪P preR∃∃(X�) so that
EFA = λS�. lfp(λX�.S� ∪ preR∃∃(X�)), namely the best correct approximation EFA

can be computed as the least fixpoint characterization of the “finally” operator on the
above abstract Kripke structure A. ��

6 Applications

We are mainly interested in applying Theorem 5.1 to standard fixpoint-based operators
of well known temporal languages (cf. [3]), as recalled in Table 1.

Table 1. Temporal operators in fixpoint form

“Finally” AF(S) = lfp(λX.S ∪AX(X))
EF(S) = lfp(λX.S ∪EX(X))

“Globally” AG(S) = gfp(λX.S ∩AX(X))
EG(S) = gfp(λX.S ∩EX(X))

“(Strong) Until” AU(S, T ) = lfp(λX.T ∪ (S ∩AX(X)))
EU(S, T ) = lfp(λX.T ∪ (S ∩EX(X)))

“Weak Until” AUw (S, T ) = gfp(λX.T ∪ (S ∩AX(X)))
EUw (S, T ) = gfp(λX.T ∪ (S ∩ EX(X)))

“(Weak) Release” AR(S, T ) = gfp(λX.T ∩ (S ∪AX(X)))
ER(S, T ) = gfp(λX.T ∩ (S ∪EX(X)))

“Strong Release” ARs(S, T ) = lfp(λX.T ∩ (S ∪AX(X)))
ERs(S, T ) = lfp(λX.T ∩ (S ∪ EX(X)))
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6.1 Partitioning Abstractions

Let P ∈ Part(Σ) be any partition and let G = (℘(Σ)⊆, αP , γP , ℘(P )⊆) be the corre-
sponding partitioning GI. By Proposition 2.1 (i), G� = (℘(Σ)⊇, α�

P , γP , ℘(P )⊇) is
a GI where α�

P (S) = {B ∈ P | B ⊆ S}. Hence, while G over-approximates a set
S by the set of blocks in P which have a nonempty intersection with S, G� under-
approximates S by the set of blocks in P which are contained in S. Thus, we can apply
Theorem 5.1 to G for least fixpoints and to G� for greatest fixpoints. Since G is disjunc-
tive, Let us note that by Proposition 2.1 (ii), G is forward complete for some function
F iff G� is forward complete for F . Hence, the hypotheses of Theorem 5.1 for least
and greatest fixpoints actually coincide. Furthermore, in this case, the best correct ap-
proximations of F w.r.t. G and G� coincide. In order to distinguish which GI has been
applied, we use fA to denote the best correct approximation of some concrete function
f w.r.t. G while f�A denotes the best correct approximation of f w.r.t. G�.

For the standard temporal fixpoint-based operators in Table 1, the following result
shows that their best correct approximations on a s.p. partitioning abstract domain pre-
serve their characterizations as least/greatest fixpoints.

Corollary 6.1. Let P ∈ Part(Σ) and G = (℘(Σ)⊆, αP , γP , A = ℘(P )⊆) be the
corresponding partitioning GI. Assume that G is forward complete for some fixpoint-
based operator F in Table 1. Then, the corresponding best correct approximations of
F w.r.t. G are as follows:

AFA(S�) = lfp(λX�.S� ∪P p̃reA
R(X�))

EFA(S�) = lfp(λX�.S� ∪P preA
R(X�))

AGA(S�) = gfp(λX�.S� ∩P p̃re�A
R (X�))

EGA(S�) = gfp(λX�.S� ∩P pre�A
R (X�))

AUA(S�, T �) = lfp(λX�.T � ∪P (S� ∩P p̃reA
R(X�)))

EUA(S�, T �) = lfp(λX�.T � ∪P (S� ∩P preA
R(X�)))

AUA
w(S�, T �) = gfp(λX�.T � ∪P (S� ∩P p̃re�A

R (X�)))
EUA

w(S�, T �) = gfp(λX�.T � ∪P (S� ∩P pre�A
R (X�)))

ARA(S�, T �) = gfp(λX�.T � ∩P (S� ∪P p̃re�A
R (X�)))

ERA(S�, T �) = gfp(λX�.T � ∩P (S� ∪P pre�A
R (X�)))

ARA
s (S�, T �) = lfp(λX�.T � ∩P (S� ∪P p̃reA

R(X�)))
ERA

s (S�, T �) = lfp(λX�.T � ∩P (S� ∪P preA
R(X�)))

It turns out that the best correct approximations preA
R and p̃re�A

R can be characterized
through the abstract transition relation R∃∃ ⊆ P × P as follows.

Lemma 6.2. preA
R = preR∃∃ and p̃re�A

R = p̃reR∃∃ .

Let Op ⊆ {EX,AX,EF,AG,EU,AUw,AR,ERs} be a set of temporal fixpoint-based
operators and let L 6 ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | f(ϕ1, . . . , ϕar(f)), where f ∈ Op, be
the corresponding language. Let K = (Σ,R,AP, �) be a concrete Kripke structure and
S be the concrete semantic structure for L induced by K. Consider now a partition
P ∈ Part(Σ) and the corresponding abstract semantic structure SP = (℘(P ), IP ).
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Assume that SP is s.p. for L. As a consequence of the above results, it turns out that
one can define an abstract Kripke structure on P whose abstract transition relation is
R∃∃ which induces precisely SP .

Corollary 6.3. If SP is s.p. for L then SP is induced by the abstract Kripke structure
AP = (P,R∃∃,AP, �P ), where �P

def= λB ∈ P.{p ∈AP | B ∈ IP (p)}.

Thus, a strongly preserving abstract model checking of the language L can be per-
formed on the abstract Kripke structure AP .

Example 6.4. Let us consider L 6 ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | AGϕ and the following
Kripke structure K and let S be the concrete semantic structure for L induced by K.

Concrete
Kripke structure K 1p ��

���
���

� 2q
��

3p �� 4r

��

[2]q
��

Abstract
Kripke structure AP

[13]p

�������

�������

[4]r

��

Let us consider the partition P = {[13], [2], [4]} and the corresponding abstract seman-
tic structure SP = (℘(P ), IP ). It turns out that SP is s.p. for L. This is a consequence
of the fact that the abstract domain ℘(P ) is operator-wise forward complete for L hence
℘(P ) is language forward complete for L and in turn, by Theorem 3.4, SP is s.p. for L.
In fact, the following equalities show that ℘(P ) is forward complete for AG, because
AG maps unions of blocks in P to unions of blocks in P :

AG(∅) = AG({4}) = AG({1, 3}) = AG({1, 3, 4}) = ∅;
AG({2}) = AG({1, 2, 3}) = {2};
AG({2, 4}) = {2, 4};
AG({1, 2, 3, 4}) = {1, 2, 3, 4}.

Thus, by Corollary 6.3, it turns out that SP is induced by the abstract Kripke structure
AP = (P,R∃∃,APP , �P ) which is depicted above. Let us notice that P is not a bisim-
ulation on K because the states 1 and 3 belong to the same block [13] and 1�2 while
3 ��2. Thus, strong preservation of L on the abstract Kripke structure AP , with abstract
transition relation R∃∃, cannot be obtained as a consequence of standard strong preser-
vation results [2, 3, 13]. ��

Example 6.5. Let us consider L 6 ϕ ::= p | ϕ ∧ ϕ2 | ¬ϕ | EGϕ and the following
Kripke structure K and let S be the concrete semantic structure for L induced by K.

K : 1p �� 2p �� 3q
��

A∃∃ : [12]p ��
��

[3]q
��

A∀∃ : [12]p [3]q
��

In this case, EG is not included among the operators of Corollary 6.3. Let us consider
the partition P = {[13], [2], [4]}, the abstract domain A = ℘(P ) and the corresponding
abstract semantic structure SA = (A, IA). It turns out that SA is s.p. for L. As in
Example 6.4, by Theorem 3.4, this derives from the following equalities which show
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that A is forward complete for EG, because EG maps unions of blocks in P to unions
of blocks in P :

EG(∅) = EG({1, 2}) = ∅; EG({3}) = {3}; EG({1, 2, 3}) = {1, 2, 3}.

Let us point out here that both the abstract Kripke structures A∃∃ and A∀∃ on P depicted
above, whose abstract transition relations are, respectively, R∃∃ and R∀∃, are not s.p.
for L. This is shown by the following counterexamples:

[1, 2] |=A∃∃ EGp while 1 �|=K EGp; [1, 2] �|=A∀∃ EG(p∨ q) while 1 |=K EG(p∨ q).

On the other hand, we can exploit Corollary 6.1 so that EGA(S�) = gfp(λX�.S� ∩P

pre�A
R (X�)) , where pre�A

R = α�
P ◦ preR ◦γP . For instance, we have that

pre�A
R ({[3]}) = α�

P (preR(γP ({[3]}))) = α�
P (preR({3})) = α�

P ({2, 3}) = {[3]}.

Likewise, pre�A
R (∅) = pre�A

R ({[12]}) = ∅ and pre�A
R ({[12], [3]}) = {[12], [3]}. As

an example, we have that EGA({[3]}) = gfp(λX�.{[3]} ∩ pre�A
R (X�)) = {[3]}. ��

6.2 Disjunctive Abstractions

In model checking, disjunctive abstract domains have been implicitely used by Hen-
zinger et al.’s [14] algorithm for computing simulation equivalence: in fact, this algo-
rithm maintains, for any state s ∈ Σ, a set of states sim(s) ⊆ Σ which represents
exactly a disjunctive abstract domain. As observed in Section 3.2, any partitioning ab-
stract domain is disjunctive while the converse is not true.

Let G = (℘(Σ)⊆, α, γ, A) be a disjunctive GI. By Proposition 2.1 (i), G� =
(℘(Σ)⊇, α�, γ, A≥) is a GI where α�(S) = ∨{a ∈ A | γ(a) ⊆ S}. Thus, we can
apply Theorem 5.1 to G for least fixpoints and Theorem 5.1 to G� for greatest fixpoints.
Also, as already observed in Section 6.1, the hypotheses of Theorem 5.1 for least and
greatest fixpoints coincide and, in this case, the best correct approximations of some
concrete function w.r.t. G and G� coincide. We use fA to denote the best correct ap-
proximation of some concrete function f w.r.t. G while f�A denotes the best correct
approximation of f w.r.t. G�. Here, we can generalize Corollary 6.1 to disjunctive ab-
stract domains for the case of “finally” and “globally” operators.

Corollary 6.6. Let G = (℘(Σ)⊆, α, γ, A) be a disjunctive GI .Assume that G is forward
complete for some operator F ∈ {AF,EF,AG,EG}. Then, the corresponding best
correct approximations of F w.r.t. G are as follows:

AFA(S�) = lfp(λX�.S� ∪ p̃reA
R(X�)); EFA(S�) = lfp(λX�.S� ∪ preA

R(X�));

AGA(S�)=gfp(λX�.S� ∩ p̃re�A
R (X�)); EGA(S�) = gfp(λX�.S� ∩ pre�A

R (X�)).

Example 6.7. Let us consider the concrete Kripke structure K of Example 5.2 and the
language L 6 ϕ ::= p | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | EFϕ. Let Atoms def= {[1], [2], [3], [6], [245]}
and let A be the closure under arbitrary unions of Atoms. Let (℘(Σ)⊆, α, id, A⊆) be
the corresponding disjunctive GI where α on singletons in ℘(Σ) is as follows:

α({1}) = [1]; α({2}) = [2]; α({3}) = [3];
α({4}) = [245]; α({5}) = [245]; α({6}) = [6].
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It turns out that A is forward complete for EF because EF maps atoms to unions of
atoms and EF is additive:

EF({1}) = {1}; EF({2}) = {1, 2}; EF({3}) = {1, 2, 3};
EF({6}) = {1, 2, 3, 4, 5, 6}; EF({2, 4, 5}) = {1, 2, 3, 4, 5}.

Thus, we can apply Corollary 6.6 so that EFA(S�) = lfp(λX�.S�∪preA
R(X�)), where

preA
R = α ◦ preR ◦id. For instance, preA

R on the atom [245] is as follows:

preA
R([245]) = α(preR({2, 4, 5})) = α({1, 3, 4}) = [12345].

Likewise, we have that preA
R on Atoms is as follows:

preA
R([1]) = ∅; preA

R([2]) = [1]; preA
R([3]) = [2]; preA

R([6]) = [2456].

As an example, EFA([6]) = lfp(λX�.[6] ∪ preA
R(X�)) is computed as follows:

X�
0 = ∅;

X�
1 = [6] ∪ preA

R(∅) = [6] ∪∅ = [6];

X�
2 = [6] ∪ preA

R([6]) = [6] ∪ [2456] = [2456];

X�
3 = [6] ∪ preA

R([2456]) = [6] ∪ [123456] = [123456] (fixpoint)

How to obtain an abstract Kripke structure which is s.p. for L? This can be obtained
from the coarsest s.p. partition PL for L (cf. Section 3.3). As a consequence of results
in [17], it turns out that PL = {[1], [2], [3], [6], [45]} because ℘(PL) is exactly the least
partitioning refinement of A (cf. Section 3.2). One can define a s.p. abstract Kripke
structure A on PL by considering R∃∃ as abstract transition relation:

[1]p �� [2]q �� [3]p �� [45]q ��
��

[6]r
��

For the abstract Kripke structure A, EF�([6]) = lfp(λX�.{[6]}∪preR∃∃(X�)) is com-
puted as follows:

X�
0 = ∅;

X�
1 = {[6]} ∪ preR∃∃(∅) = {[6]};

X�
2 = {[6]} ∪ preR∃∃({[6]}) = {[6]} ∪ {[6], [45]} = {[6], [45]};

X�
3 = {[6]} ∪ preR∃∃({[6], [45]}) = {[6]} ∪ {[6], [45], [3]} = {[6], [45], [3]};

X�
4 ={[6]} ∪ preR∃∃({[6], [45], [3]})={[6]} ∪ {[6], [45], [3], [2]}={[6], [45], [3], [2]};

X�
5 = {[6]} ∪ preR∃∃({[6], [45], [3], [2]}) = {[6]} ∪ {[6], [45], [3], [2], [1]}

= {[6], [45], [3], [2], [1]} (fixpoint)

The point to observe here is that this standard approach needs a greater number of
iterations than our abstract interpretation-based approach to reach the fixpoint. ��
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Abstract. We present lightweight and generic symbolic methods to im-
prove the precision of numerical static analyses based on Abstract In-
terpretation. The main idea is to simplify numerical expressions before
they are fed to abstract transfer functions. An important novelty is that
these simplifications are performed on-the-fly, using information gathered
dynamically by the analyzer.

A first method, called “linearization,” allows abstracting arbitrary ex-
pressions into affine forms with interval coefficients while simplifying
them. A second method, called “symbolic constant propagation,” en-
hances the simplification feature of the linearization by propagating as-
signed expressions in a symbolic way. Combined together, these methods
increase the relationality level of numerical abstract domains and make
them more robust against program transformations. We show how they
can be integrated within the classical interval, octagon and polyhedron
domains. These methods have been incorporated within the Astrée sta-
tic analyzer that checks for the absence of run-time errors in embedded
critical avionics software. We present an experimental proof of their use-
fulness.

1 Introduction
Ensuring the correctness of software is a difficult but important task, especially
in embedded critical applications such as planes or rockets. There is currently
a great need for static analyzers able to provide invariants automatically and
directly on the source code. As the strongest invariants are not computable in
general, such tools need to perform sound approximations at the expense of
completeness. In this article, we will only consider the properties of numerical
variables and work in the Abstract Interpretation framework. A static analyzer
is thus parameterized by a numerical abstract domain, that is, a set of computer-
representable numerical properties together with algorithms to compute the se-
mantics of program instructions.

There already exist quit a few numerical abstract domains. Well-known ex-
amples include the interval domain [5] that discovers variable bounds, and the
polyhedron domain [8] for affine inequalities. Each domain achieves some cost
� This work was partially supported by the Astrée RNTL project and the APRON
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X ← [−10, 20];
Y ← X;
if (Y ≤ 0) { Y ← −X; }
// here, Y ∈ [0, 20]

Fig. 1. Absolute value computation example

X ← [0, 1];
Y ← [0, 0.1];
Z ← [0, 0.2];
T ← (X × Y )− (X × Z) + Z;
// here, T ∈ [0, 0.2]

Fig. 2. Linear interpolation computation example

versus precision balance. In particular, non-relational domains—e.g., the interval
domain—are much faster but also much less precise than relational domains—
able to discover variable relationships. Although the interval information seem
sufficient—it allows expressing most correctness requirements, such as the ab-
sence of arithmetic overflows or out-of-bound array accesses—relational invari-
ants are often necessary during the course of the analysis to find tight bounds.
Consider, for instance, the program of Fig. 1 that computes the absolute value of
X . We expect the analyzer to infer that, at the end of the program, Y ∈ [0, 20].
The interval domain will find the coarser result Y ∈ [−20, 20] because it cannot
exploit the information Y = X during the test Y ≤ 0. The polyhedron domain
is precise enough to infer the tightest bounds, but results in a loss of efficiency.
In our second example, Fig. 2, T is linearly interpolated between Y and Z, thus,
we have T ∈ [0, 0.2]. Using plain interval arithmetics, one finds the coarser result
T ∈ [−0.2, 0.3]. As the assignment in T is not affine, the polyhedron domain
cannot perform any better.

In this paper, we present symbolic enhancement techniques that can be ap-
plied to abstract domains to solve these problems and increase their robustness
against program transformations. In Fig. 1, our symbolic constant propagation is
able to propagate the information Y = X and discover tight bounds using only
the interval domain. In Fig. 2, our linearization technique allows us to prove
that T ∈ [0, 0.3] using the interval domain (this result is not optimal, but still
much better than T ∈ [−0.2, 0.3]). The techniques are generic and can be applied
to other domains, such as the polyhedron domain. However, the improvement
varies greatly from one example to another and enhanced domains do not enjoy
best abstraction functions. Thus, our techniques depend upon strategies, some
of which are proposed in the article.

Related Work. Our linearization can be related to affine arithmetics , a technique
introduced by Vińıcius et al. in [16] to refine interval arithmetics by taking into
account existing correlations between computed quantities. Both use a symbolic
form with linear properties to allow basic algebraic simplifications. The main
difference is that we relate directly program variables while affine arithmetics
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introduces synthetic variables. This allows us to treat control flow joins and
loops, and to interact with relational domains, which is not possible with affine
arithmetics. Our linearization was first introduced in [13] to abstract floating-
point arithmetics. It is presented here with some improvements—including the
introduction of several strategies.

Our symbolic constant propagation technique is similar to the classical con-
straint propagation proposed by Kildall in [11] to perform optimization. However,
scalar constants are replaced with expression trees, and our goal is not to im-
prove the efficiency but the precision of the abstract execution. It is also related
to the work of Colby: he introduces, in [4], a language of transfer relations to
propagate, combine and simplify, in a fully symbolic way, sequences of transfer
functions. We are more modest as we do not handle disjunctions symbolically
and do not try to infer symbolic loop invariants. Instead, we rely on the un-
derlying numerical abstract domain to perform most of the semantical job. A
major difference is that, while Colby’s framework statically transforms the ab-
stract equation system to be solved by the analyzer, our framework performs
this transformation on-the-fly and benefits from the information dynamically
inferred by the analyzer.

Overview of the Paper. The paper is organised as follows. In Sect. 2, we introduce
a language—much simplified for the sake of illustration—and recall how to per-
form a numerical static analysis parameterized by an abstract domain. Sect. 3
then explains how symbolic expression manipulations can be soundly incorpo-
rated within the analysis. Two symbolic methods are then introduced: expression
linearization, in Sect. 4, and symbolic constant propagation, in Sect. 5. Sect. 6
discusses our practical implementation within the Astrée static analyzer and
presents some experimental results. We conclude in Sect. 7.

2 Framework
In this section, we briefly recall the classical design of a static analyzer using
the Abstract Interpretation framework by Cousot and Cousot [6, 7]. This design
is specialised towards the automatic computation of numerical invariants, and
thus, is parameterized by a numerical abstract domain.

2.1 Syntax of the Language

For the sake of presentation, we will only consider in this article a very sim-
plified programming language focusing on manipulating numerical variables.
We suppose that a program manipulates only a fixed, finite set of n variables,
V def= {V1, . . . , Vn}, with values within a perfect mathematical set, I ∈ {Z,Q,R}.
A program P ∈ P(L × inst × L) is a single control-flow graph where nodes are
program points, in L, and arcs are labelled by instructions in inst. We denote
by e the entry program point. As described in Fig. 3, only two types of instruc-
tions are allowed: assignments (X ← expr) and tests (expr �� 0 ?), where expr
are numerical expressions and �� is a comparison operator. In the syntax of ex-
pressions, classical numerical constants have been replaced with intervals [a, b]
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expr ::= X X ∈ V
| [a, b] a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b
| expr � expr � ∈ {+,−,×, / }

inst ::= X ← expr X ∈ V
| expr 
� 0 ? 
� ∈ {=, �=, <,≤,≥, > }

Fig. 3. Syntax of our simple language

with constant bounds—possibly +∞ or −∞. Such intervals correspond to a non-
deterministic choice of a new value within the bounds each time the expression
is evaluated. This will be key in defining the concept of expression abstraction in
Sects. 3–5. Moreover, interval constants appear naturally in programs that fetch
input values from an external environment, or when modeling rounding errors
in floating-point computations.

Affine forms play an important role in program analysis as they are easy
to manipulate and appear frequently as program invariants. We enhance affine
forms with the non-determinism of intervals by defining interval affine forms as
the expressions of the form: [a0, b0] +

∑
k ([ak, bk]× Vk).

2.2 Concrete Semantics of the Language

The concrete semantics of a program is the most precise mathematical expression
of its behavior. Let us first define an environment as a function, in V → I,
associating a value to each variable. We choose a simple invariant semantics
that associates to each program point l ∈ L the set of all environments Xl ∈
P(V → I) that can hold when l is reached. Given an environment ρ ∈ (V → I),
the semantics � expr �(ρ) of an expression expr , shown in Fig. 4, is the set of values
the expression can evaluate to. It outputs a set to account for non-determinism.
When I = Z, the truncate function rounds the possibly non-integer result of the
division towards an integer by truncation, as it is common in most computer
languages. Divisions by zero are undefined, that is, return no result; for the
sake of simplicity, we have not introduced any error state. The semantics of
assignments and tests is defined by transfer functions {| inst |} : P(V → I) →
P(V → I) in Fig. 4. The assignment transfer function returns environments where
one variable has changed its value (ρ[V �→ x] denotes the function equal to ρ on

�X �(ρ) def= { ρ(X) }
� [a, b] �(ρ) def= { x ∈ I | a ≤ x ≤ b }
� e1 � e2 �(ρ) def= { x � y | x ∈ � e1 �(ρ), y ∈ � e2 �(ρ) } � ∈ {+,−,×}
� e1/e2 �(ρ) def= { truncate(x/y) | x ∈ � e1 �(ρ), y ∈ � e2 �(ρ), y �= 0 } if I = Z

� e1/e2 �(ρ) def= { x/y | x ∈ � e1 �(ρ), y ∈ � e2 �(ρ), y �= 0 } if I �= Z

{|X ← e |}(R) def= { ρ[X �→ v] | ρ ∈ R, v ∈ � e �(ρ) }
{| e 
� 0 ? |}(R) def= { ρ | ρ ∈ R and ∃ v ∈ � e �(ρ), v 
� 0 holds }

Fig. 4. Concrete semantics
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V \ {V } and that maps V to x). The test transfer function filters environments
to keep only those that may satisfy the test. We can now define the semantics
(Xl)l∈L of a program P as the smallest solution of the following equation system:⎧⎨⎩

Xe = V → I

Xl =
⋃

(l′,i,l)∈P

{| i |}(Xl′) when l �= e (1)

It describes the strongest invariant at each program point.

2.3 Abstract Interpretation and Numerical Abstract Domains

The concrete semantics is very precise but cannot be computed fully automat-
ically by a computer. We will only try to compute a sound overapproximation,
that is, a superset of the environments reached by the program. We use Abstract
Interpretation [6, 7] to design such an approximation.
Numerical Abstract Domains. An analysis is parameterized by a numerical ab-
stract domain that allows representing and manipulating selected subsets of en-
vironments. Formally it is defined as:

– a set of computer-representable abstract elements D�,
– a partial order �� on D� to model the relative precision of abstract elements,
– a monotonic concretization γ : D� → P(V → I), that assigns a concrete

property to each abstract element,
– a greatest element �� for �� such that γ(��) = (V → I),
– sound and computable abstract versions {| inst |}� of all transfer functions,
– sound and computable abstractions ∪� and ∩� of ∪ and ∩,
– a widening operator �� if D� has infinite increasing chains.

The soundness condition for the abstraction F � : (D�)n → D� of a n−ary op-
erator F is: F (γ(X�

1), . . . , γ(X�
n)) ⊆ γ(F �(X�

1, . . . , X
�
n)). It ensures that F � does

not forget any of F ’s behaviors. It can, however, introduce spurious ones.

Abstract Analysis. Given an abstract domain, an abstract version (1�) of the
equation system (1) can be derived as:⎧⎪⎨⎪⎩

X �
e = ��

X �
l ��

⋃�

(l′,i,l)∈P

{| i |}�(X �
l′ ) when l �= e (1�)

The soundness condition ensures that any solution of (1�) satisfies ∀ l ∈
L, γ(X �

l ) ⊇ Xl. The system can be solved by iterations, using a widening op-
erator �� to ensure termination. We refer the reader to Bourdoncle [2] for an
in-depth description of possible iteration strategies. The computed X �

l is almost
never the best abstraction—if it exists—of the concrete solution Xl. Unavoid-
able losses of precision come from the use of convergence acceleration ��, non-
necessarily best abstract transfer functions, and the fact that the composition of
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best abstractions is generally not a best abstraction. This last issue explains why
even the simplest semantics-preserving program transformations can drastically
affect the quality of a static analysis.

Existing Numerical Domains. There exists many numerical abstract domains. We
will be mostly interested in those able to express variable bounds. Such abstract
domains include the well-known interval domain [5] (able to express invariants of
the form

∧
i Vi ∈ [ai, bi]), and the polyhedron domain [8] (able to express affine

inequalities
∧

i

∑
j αijVi ≥ βj). More recent domains, in-between these two in

terms of cost and precision, include the octagon domain [12] (
∧

ij ±Vi±Vj ≤ cij),
the octahedron domain [3] (

∧
j

∑
i αijVi ≥ βj where αij ∈ {−1, 0, 1}), and the

Two Variable Per Inequality domain [15] (
∧

i αiVki + βiVli ≤ ci).

3 Incorporating Symbolic Methods

We suppose that we are given a numerical abstract domain D�. The gist of
our method is to replace, in the abstract transfer functions {|X ← e |}� and
{| e �� 0 ? |}�, each expression e with another one e′, in a sound way.

Partial Order on Expressions. To define formally the notion of sound expression
abstraction, we first introduce an approximation order ( on expressions. A nat-
ural choice is to consider the point-wise ordering of the concrete semantics � · �
defined in Fig. 4, that is: e1 ( e2

def⇐⇒ ∀ ρ ∈ (V → I), � e1 �(ρ) ⊆ � e2 �(ρ).
However, requiring the inclusion to hold for all environments is quite restrictive.
More aggressive expression transformations can be enabled by only requiring
soundness with respect to selected sets of environments. Our partial order ( is
now defined “up to” a set of environments R ∈ P(V → I):

Definition 1. R |= e1 ( e2
def⇐⇒ ∀ ρ ∈ R, � e1 �(ρ) ⊆ � e2 �(ρ).

We denote by R |= e1 = e2 the associated equality relation.

Sound Symbolic Transformations. We wish now to abstract some transfer func-
tion, e.g., {|V ← e |}, on an abstract environment R� ∈ D�. The following theorem
states that, if e′ overapproximates e on γ(R�), it is sound to replace e with e′ in
the abstract transfer functions:

Theorem 1. If γ(R�) |= e ( e′, then:
• ({|V ← e |} ◦ γ)(R�) ⊆ (γ ◦ {|V ← e′ |}�)(R�),
• ({| e �� 0 ? |} ◦ γ)(R�) ⊆ (γ ◦ {| e′ �� 0 ? |}�)(R�).

4 Expression Linearization

Our first symbolic transformation is an abstraction of arbitrary expressions into
interval affine forms i0 +

∑
k(ik × Vk), where the i’s stand for intervals.
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4.1 Definitions

Interval Affine Form Operators. We first introduce a few operators to manipulate
interval affine forms in a symbolic way. Using the classical interval arithmetic
operators—denoted with a I superscript—we can define point-wisely the addi-
tion � and subtraction � of affine forms, as well as the multiplication � and
division � of an affine form by a constant interval:

Definition 2.
• (i0 +

∑
k ik × Vk) � (i′0 +

∑
k i′k × Vk) def= (i0 +I i′0) +

∑
k(ik +I i′k)× Vk,

• (i0 +
∑

k ik × Vk) � (i′0 +
∑

k i′k × Vk) def= (i0 −I i′0) +
∑

k(ik −I i′k)× Vk,
• i � (i0 +

∑
k ik × Vk) def= (i×I i0) +

∑
k (i×I ik)× Vk,

• (i0 +
∑

k ik × Vk) � i
def= (i0/I i) +

∑
k (ik/I i)× Vk.

where the interval arithmetic operators are defined classically as:
• [a, b] +I [a′, b′] def= [a + a′, b + b′], • [a, b]−I [a′, b′] def= [a− b′, b− a′],
• [a, b]×I [a′, b′] def= [min(aa′, ab′, ba′, bb′),max(aa′, ab′, ba′, bb′)],
• [a, b]/I [a′, b′] def=⎧⎨⎩

[−∞,+∞] if 0 ∈ [a′, b′]
[min(a/a′, a/b′, b/a′, b/b′), max(a/a′, a/b′, b/a′, b/b′)] when I �= Z
[.min(a/a′, a/b′, b/a′, b/b′)/, 7max(a/a′, a/b′, b/a′, b/b′)8] when I = Z

The following theorem states that these operators are always sound and, in some
cases, complete—i.e., ( can be replaced by =:

Theorem 2. For all interval affine forms l1, l2 and interval i, we have:
• IV |= l1 + l2 = l1 � l2, • IV |= l1 − l2 = l1 � l2,
• IV |= i× l1 = i � l1, if I �= Z, • IV |= i× l1 ( i � l1, otherwise,
• IV |= l1/i = l1 � i, if I �= Z and 0 /∈ i, • IV |= l1/i ( l1 � i, otherwise.

When I = Z, we must conservatively round upper and lower bounds respectively
towards +∞ and −∞ to ensure that Thm. 2 holds. The non-exactness of the
multiplication and division can then lead to some precision degradation. For
instance, (X � 2)� 2 evaluates to [0, 2]×X as, when computing X � 2, the non-
integral value 1/2 must be abstracted into the integral interval [0, 1]. One solution
is to perform all computations in R, keeping in mind that, due to truncation,
l/[a, b] should be interpreted when 0 /∈ [a, b] as (l � [a, b]) � [−1 + x, 1 − x],
where x = 1/min(|a|, |b|). We then obtain the more precise result X + [−1, 1].

We now introduce a so-called“intervalization”operator, ι, to abstracts interval
affine forms into intervals. Given an abstract environment, it evaluates the affine
form using interval arithmetics. Suppose that D� provides us with projection
operators πk : D� → P(I) able to return an interval overapproximation for each
variable Vk. We define ι as:

Definition 3. ι(i0 +
∑

k(ik × Vk))(R�) def= i0 +I ∑I
k (ik ×I πk(R�)), where

each πk(R�) is an interval containing { ρ(Vk) | ρ ∈ γ(R�) }.
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The following theorem states that ι is a sound operator with respect to R�:
Theorem 3. γ(R�) |= l ( ι(l)(R�).

As πk performs a non-relational abstraction, ι incurs a loss of precision whenever
D� is a relational domain. Consider, for instance R� such that γ(R�) = { ρ ∈
({V1, V2} → [0, 1]) | ρ(V1) = ρ(V2) }. Then, � ι(V1 − V2)(R�) � is the constant
function [−1, 1] while �V1 − V2 � is 0.

Linearization. The linearization � e �(R�) of an arbitrary expression e in an ab-
stract environment R� can now be defined by structural induction as follows:

Definition 4.
• �V �(R�) def= [1, 1]× V , • � [a, b] �(R�) def= [a, b],
• � e1 + e2 �(R�) def= � e1 �(R�) � � e2 �(R�),
• � e1 − e2 �(R�) def= � e1 �(R�) � � e2 �(R�),
• � e1/e2 �(R�) def= � e1 �(R�) � ι(� e2 �(R�))(R�),

• � e1 × e2 �(R�) def=
{

either ι(� e1 �(R�))(R�) � � e2 �(R�)
or ι(� e2 �(R�))(R�) � � e1 �(R�) (see Sect. 4.3)

The ι operator is used to deal with non-linear constructions: the right argu-
ment of a division and either argument of a multiplication are intervalized. As a
consequence of Thms. 2 and 3, our linearization is sound:
Theorem 4. γ(R�) |= e ( � e �(R�).
Obviously, � · � generally incurs a loss of precision with respect to (. Also, � e � is
not monotonic in its e argument. Consider for instance X/X in the environment
R� such that πX(R�) = [1,+∞]. Although γ(R�) |= X/X ( [1, 1], we do not have
γ(R�) |= �X/X �(R�) ( � [1, 1] �(R�) as �X/X �(R�) = [0, 1]×X . It is important
to note that there is no useful notion of best abstraction of expressions for (.

4.2 Integration with a Numerical Abstract Domain

Given an abstract domain, D�, we can now derive a new abstract domain with
linearization, D�

L, identical to D� except for the following transfer functions:

{|V ← e |}�L(R�) def= {|V ← � e �(R�) |}�(R�)
{| e �� 0 ? |}�L(R�) def= {| � e �(R�) �� 0 ? |}�(R�)

The soundness of these transfer functions is guaranteed by Thms. 1 and 4.

Application to the Interval Domain. As all non-relational domains, the interval
domain [5], is not able to exploit the fact that the same variable occurs several
times in an expression. Our linearization performs some symbolic simplification,
and so, is able to partly correct this problem. Consider, for instance, the assign-
ment {|Y ← 3 ×X −X |} in an abstract environment such that X ∈ [a, b]. The
regular interval domain DI will assign [3a− b, 3b− a] to Y , while DI

L will assign
[2a, 2b] as � 3 ×X −X �(R�) = 2 ×X . This last answer is strictly more precise
whenever a �= b. Using the exactness of Thm. 2, one can prove that, when I �= Z,
the assignment in DI

L is always more precise than in DI . This may not be the
case for a test, or when I = Z.
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Application to the Octagon Domain. The octagon domain [12] is more precise
than the interval one, but it is more complex. As a consequence, it is quite difficult
to design abstract transfer functions for non-linear expressions. This problem can
be solved by using our linearization in combination with the efficient and rather
precise interval affine form abstract transfer functions proposed in our previous
work [14]. The octagon domain with linearization is able to prove, for instance,
that, after the assignment X ← T × Y in an environment such that T ∈ [−1, 1],
we have −Y ≤ X ≤ Y .

Application to the Polyhedron Domain. The polyhedron domain [8] is more pre-
cise than the octagon domain but cannot deal with full interval affine forms—
only the constant coefficient may safely be an interval. To solve this problem,
we introduce a function μ to abstract interval affine forms further by making
all variable coefficients singletons. For the sake of conciseness, we give a formula
valid only for I �= Z and finite interval bounds:

Definition 5.
μ ([a0, b0] +

∑
k[ak, bk]× Vk) (R�) def=(

[a0, b0] +I ∑I
k [(ak − bk)/2, (bk − ak)/2]×I πk(R�)

)
+
∑

k ((ak + bk)/2)× Vk

μ works by “distributing” the weight bk − ak of each variable coefficient into the
constant component, using variable bounds information from R�. One can prove
that μ is sound, that is, γ(R�) |= l ( μ(l)R�.

Application to Floating-Point Arithmetics. Real-life programming languages do
not manipulate rationals or reals, but floating-point numbers, which are much
more difficult to abstract. Pervasive rounding must be taken into account. As
most classical properties of arithmetic operators are no longer true, it is generally
not safe to feed floating-point expressions to relational domains. One solution
is to convert such expressions into real-valued expressions by making rounding
explicit. Rounding is highly non-linear but can be abstracted using intervals. For
instance, X + Y in the floating-point world can be abstracted into [1 − ε1, 1 +
ε1]×X +[1− ε1, 1+ ε1]×Y +[−ε2, ε2] using small constants ε1 and ε2 modeling,
respectively, relative and absolute errors. This fits in our linearization framework
which can be extended to treat soundly floating-point arithmetics. We refer the
reader to related work [13] for more information.

4.3 Multiplication Strategies

When encountering a multiplication e1 × e2 and neither � e1 �(R�) nor � e2 �(R�)
evaluates to an interval, we must intervalize either argument. Both choices are
valid, but influence greatly the precision of the result.

All-Cases Strategy. A first idea is to try both choices for each multiplication; we
get a set of linearized expressions. We have no notion of greatest lower bound
on expressions, so, we must evaluate a transfer function for all expressions in
parallel, and take the intersection ∩� of the resulting abstract elements in D�.
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Unfortunately, the cost is exponential in the number of multiplications in the
original expression, hence the need for deterministic strategies that always select
one interval affine form.

Interval-Size Strategy. A simple strategy is to intervalize the affine form that will
yield the narrower interval. This greedy approach tries to limit the amplitude
of the non-determinism introduced by multiplications. The extreme case holds
when the amplitude of one interval is zero, meaning that the sub-expression
is semantically a constant; intervalizing it will not result in any precision loss.
Finally, note that the relative amplitude (b− a)/|a+ b| may be more significant
than the absolute amplitude b−a if we want to intervalize preferably expressions
that are constant up to some small relative rounding error.

Simplification-Driven Strategy. Another idea is to maximize the amount of sim-
plification by not intervalizing, when possible, sub-expressions containing vari-
ables appearing in other sub-expressions. For instance, in X − (Y ×X), Y will
be intervalized to yield [1−maxY, 1−minY ]×X . Unlike the preceding greedy
approach, this strategy is global and treats the expression as a whole.

Homogeneity Strategy. We now consider the linear interpolation of Fig. 2. In
order to achieve the best precision, it is important to intervalize X in both mul-
tiplications. This yields T ← [0, 1]×Y + [0, 1]×Z and we are able to prove that
T ≥ 0—however, we find that T ≤ 0.3 while in fact T ≤ 0.2. The interval-size
strategy would choose to intervalize Y and Z that have smaller range than X ,
which yields the imprecise assignment T ← [−0.2, 0.1]×X + [0, 0.2]. Likewise,
the simplification-driven strategy may choose to keep X that appears in two
sub-expressions and also intervalize both Y and Z. To solve this problem, we
propose to intervalize the smallest set of variables that makes the expression
homogeneous, that is, arguments of + and − operators should have the same
degree. In order to make the (1 − X) sub-expression homogeneous, X is inter-
valized. This last strategy is quite robust: it keeps working if we change the
assignment into the equivalent T ← X × Y − X × Z + Z, or if we consider
bi-linear interpolations or interpolations with normalization coefficients.

4.4 Concluding Remark

Our linearization is not equivalent to a static program transformation. To cope
with non-linearity as best as we can, we exploit the information dynamically
inferred by the analysis: first, in the intervalization ι, then, in the multiplica-
tion strategy. Both algorithms take as argument the current numerical abstract
environment R�. As, dually, the linearization improves the precision of the next
computed abstract element, the dynamic nature of our approach ensures a pos-
itive feed-back.

5 Symbolic Constant Propagation

The automatic symbolic simplification implied by our linearization allows us to
gain much precision when dealing with complex expressions, without the burden
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of designing new abstract domains tailored for them. However, the analysis is
still sensitive to program transformations that decompose expressions and in-
troduce new temporary variables—such as common sub-expression elimination
or register spilling. In order to be immune to this problem, one must generally
use an expressive, and so, costly, relational domain. We propose an alternate,
lightweight solution based on a kind of constant domain that tracks assignments
dynamically and propagate symbolic expressions within transfer functions.

5.1 The Symbolic Constant Domain

Enriched Expressions. We denote by C the set of all syntactic expressions, en-
riched with one element �C denoting ‘any value.’ The flat ordering �C is defined
as X �C Y ⇐⇒ Y = �C or X = Y . The concrete semantics � · � of Fig. 4 is
extended to C as ��C �(ρ) = I. We also use two functions on expression trees:
occ : C → P(V) that returns the set of variables occurring in an expressing, and
subst : C × V × C → C that substitutes, in its first argument, every occurrence
of a given variable by its last argument. Their definition on non−�C elements
is quite standard and we do not present it here. They are extended to C as fol-
lows: occ(�C) def= ∅, subst(e, V,�C) equals e when V /∈ occ(e) and �C when
V ∈ occ(e).

Abstract Symbolic Environments. The symbolic constant domain is the set
DC def= V → C restricted as follows: there must be no cyclic dependencies
in a map SC ∈ DC , that is, pair-wise distinct variables V1, . . . , Vn such that
∀i, Vi ∈ occ(SC(Vi+1)) and Vn ∈ occ(SC(V1)). The partial order �C on DC is the
point-wise extension of that on C. Each element SC ∈ DC represents the set of
environments compatible with the symbolic information:

Definition 6. γC(SC) def= { ρ ∈ (V → I) | ∀k, ρ(Vk) ∈ �SC(Vk) �(ρ) }.

Main Theorem. Our approach relies on the fact that applying a substitution
from SC to any expression is sound with respect to γC(SC):

Theorem 5. ∀e, V, SC, γC(SC) |= e ( subst(e, V, SC(V )).

Abstract Operators. We now define the following operators on DC :
Definition 7.

• {|V ← e |}C(SC)(Vk) def=
{

subst(e, V, SC(V )) if V = Vk

subst(SC(Vk), V, SC(V )) if V �= Vk

• {| e �� 0 ? |}C(SC) def= SC,

• (SC ∪C T C)(Vk) def=
{
SC(Vk) if SC(Vk) = T C(Vk)
�C otherwise

• SC ∩ T C def= SC

Our assignment V ← e first substitutes V with SC(V ) in SC and e before adding
the information that V maps to the substituted e. This is necessary to remove
all prior information on V (no longer valid after the assignment) and prevent
the apparition of dependency cycles. As we are only interested in propagating
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assignments, tests are abstracted as the identity, which is sound but coarse. Our
union abstraction only keeps syntactically equal expressions. This corresponds
to the least upper bound with respect to �C. Our intersection keeps only the
information of the left argument. All these operators respect the non-cyclicity
condition. Note that one could be tempted to refine the intersection by mixing
information from the left and right arguments in order to minimize the number
of variables mapping to �C. Unfortunately, careless mixing may break the non-
cyclicity condition. We settled, as a simpler but safe solution, to keeping the
left argument. Finally, we do not need any widening: at each abstract iteration,
unstable symbolic expressions are directly replaced with �C when applying ∪C ,
and so, become stable.

5.2 Integration with a Numerical Abstract Domain

Given a numerical abstract domain D�, the domain D�×C is obtained by com-
bining D�

L with DC the following way:

Definition 8.
• D�×C def= D� ×DC,
• ��×C, ∪�×C and ∩�×C are defined pair-wise, and ��×C def= �� × ∪C ,
• γ�×C(R�, SC) def= γ�(R�) ∩ γC(SC),
• {|V ← e |}�×C(R�, SC) def= ({|V ← strat(e, SC) |}�L(R�), {|V ← e |}C(SC))
• {| e �� 0 ? |}�×C(R�, SC) def= ({| strat(e, SC) �� 0 ? |}�L(R�), {| e �� 0 ? |}C(SC))

Where strat(e, SC) is a substitution strategy that may perform sequences of sub-
stitutions of the form f �→ subst(f, V, SC(V )) in e, for any variables V .

All information in DC and D� are computed independently, except that the
symbolic information is used in the transfer functions for D�

L. The next section
discusses the choice of a strategy strat . Note that, although we chose in this
presentation to abstract the semantics of Fig. 4, our construction can be used on
any class of expressions, including floating-point and non-numerical expressions.

5.3 Substitution Strategies

Any sequence of substitutions extracted from the current symbolic constant in-
formation is sound, but some give better results than others. As for the inter-
valization of Sect. 4.3, we rely on carefully designed strategies.

Full Propagation. Thanks to the non-cyclicity of elements SC ∈ DC , we can
safely perform all substitutions f �→ subst(f, V, SC(V )) for all V in any order,
and reach a normal form. This gives a first basic substitution strategy. However,
because our goal is to perform linearization-driven simplifications, it is important
to avoid substituting with variable-free expressions or we may lose correlations
between multiple occurrences of variables. For instance, full substitution in the
assignment Z ← X − 0.5× Y with the environment SC = [X �→ [0, 1], Y �→ X ]
results in Z ← [0, 1] − 0.5 × [0, 1], and so, Z ∈ [−0.5, 1]. Avoiding variable-free
substitutions, this gives Z ← X − 0.5 ×X , and so, Z ∈ [0, 0.5], which is more
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precise. This refined strategy also succeeds in proving that Y ∈ [0, 20] in the
example of Fig. 1 by substituting Y with X in the test Y ≤ 0.

Enforcing Determinism and Linearity. Non-determinism in expressions is a ma-
jor source of precision loss. Thus, a strategy is to avoid substituting V with
SC(V ) whenever #(�SC(V ) � ◦ γ)(X�) > 1. As this property is not easily com-
puted, we propose the following sufficient syntactic criterion: SC(V ) should not
be �C nor contain a non-singleton interval. This strategy gives the expected
result in the example of Fig. 1. Likewise, one may wish to avoid substituting
with non-linear expressions, as they must be subsequently intervalized, which is
a cause of precision loss. However, disabling too many substitutions may prevent
the linearization step to exploit correlations. Suppose that we break the last as-
signment of Fig. 2 in three parts: U ← X × Y ; V ← (1 −X)× Z; T ← U − V .
Then, the interval domain with linearization and symbolic constant propagation
will not be able to prove that T ∈ [0, 0.3] unless we allow substituting, in T , U
and V with their non-linear symbolic value.

Gaining More Precision. More precision can be achieved by slightly altering
the definition of D�×C . A simple but effective idea is to allow several strategies,
compute several transfer functions in D� in parallel, and take the abstract inter-
section ∩� of the results. Another idea is to perform reductions from DC to D�

after each transfer function: X� is replaced with {|Vk − SC(Vk) = 0 ? |}�(X�) for
some k. Reductions can be iterated to increase the precision, following Granger’s
local iterations scheme [10].

6 Application to the Astrée Analyzer

Astrée is an efficient static analyzer focusing on the detection of run-time errors
for programs written in a subset of the C programming language, excluding re-
cursion, dynamic memory allocation and concurrent executions. It aims towards
a degree of precision sufficient to actually prove the absence of run-time errors.
This is achieved by specializing the analyzer towards specific program families,
introducing various abstract domains, and setting iteration strategy parameters.
Currently, the considered family of programs is that of safety, critical, embedded,
fly-by-wire avionic software, featuring large reactive loops running for billions of
iterations, thousands of global state variables, and pervasive floating-point arith-
metics. We refer the reader to [1] for more detailed informations on Astrée.

Integrating the Symbolic Methods. Astrée uses a partially reduced product of
several numerical abstract domains, together with both our two symbolic en-
hancement methods. Relational domains, such as the octagon [12] or digital
filtering [9] domains, rely on the linearization to abstract complex floating-point
expressions into interval affine forms on reals. The interval domain is refined by
combining three versions of each transfer function. Firstly, using the expression
unchanged. Secondly, using the linearized expression. Thirdly, applying symbolic
constant propagation followed by linearization. We use the simplification-driven
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multiplication strategy, as well as the full propagation strategy—not propagating
variable-free expressions.

Experimental Results. We present analysis results on a several programs. All the
analyses have been carried on an 64-bit AMD Opteron 248 (2 GHz) worksta-
tion running Linux, using a single processor. The following table compares the
precision and efficiency of Astrée before and after enabling our two symbolic
methods:

without enhancements with enhancements
code size
in lines

analysis
time

nb. of
iters. memory alarms

analysis
time

nb. of
iters. memory alarms

370 1.8s 17 16 MB 0 3.1s 17 16 MB 0
9 500 90s 39 80 MB 8 160s 39 81 MB 8

70 000 2h 40mn 141 559 MB 391 1h 16mn 44 582 MB 0
226 000 11h 16mn 150 1.3 GB 141 6h 36mn 86 1.3 GB 1
400 000 22h 9mn 172 2.2 GB 282 13h 52mn 96 2.2 GB 0

The precision gain is quite impressive as up to hundreds of alarms are removed.
In two cases, this increase in precision is sufficient to achieve zero alarm, which
actually proves the absence of run-time errors. Moreover, the increase in memory
consumption is negligible. Finally, in our largest examples, our enhancement
methods save analysis time: although each abstract iteration is more costly (up
to 25%) this is compensated by the reduced number of iterations needed to
stabilize our invariants as a smaller state space is explored.

Discussion. It is possible to use the symbolic constant propagation also in rela-
tional domains, but this was not needed in our examples to remove alarms. Our
experiments show that, even though the linearization and constant propagation
techniques on intervals are not as robust as fully relational abstract domains,
they are quite versatile thanks to their parametrization in terms of strategies,
and much simpler to implement than even a simple relational abstract domain.
Moreover, our methods exhibit a near-linear time and memory cost, which is
much more efficient than relational domains.

7 Conclusion

We have proposed, in this article, two techniques, called linearization and sym-
bolic constant propagation, that can be combined together to improve the preci-
sion of numerical abstract domains. In particular, we are able to compensate for
the lack of non-linear transfer functions in the polyhedron and octagon domains,
and for a weak or inexistent level of relationality in the octagon and interval
domains. Finally, they help making abstract domains robust against program
transformations. Thanks to their parameterization in terms of strategies, they
can be finely tuned to take into account semantics as well as syntactic program
features. They are also very lightweight in terms of both analysis and develop-
ment costs. We found out that, in many cases, it is easier and faster to design a
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couple of linearization and symbolic propagation strategies to solve a local loss of
precision in some program, while keeping the interval abstract domain, than to
develop a specific relational abstract domain able to represent the required local
properties. Strategies also proved reusable on programs belonging to the same
family. Practical results obtained within the Astrée static analyzer show that
our methods both increase the precision and save analysis time. They were key
in proving the absence of run-time errors in real-life critical embedded avionics
software.

Future Work. Because the precision gain strongly depends upon the multiplica-
tion strategy used in our linearization and the propagation strategy used in the
symbolic constant domain, a natural extension of our work is to try and design
new such strategies, adapted to different practical cases. A more challenging task
would be to provide theoretical guarantees that some strategies make abstract
domains immune to given classes of program transformations.
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[13] A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. In ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, 2004.
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[16] M. Vińıcius, A. Andrade, J. L. D. Comba, and J. Stolfi. Affine arithmetic. In
INTERVAL’94, 1994.



Synthesis of Reactive(1) Designs�

Nir Piterman1, Amir Pnueli2, and Yaniv Sa’ar3

1 EPFL - I&C - MTC, 1015, Lausanne, Switzerland
firstname.lastname@epfl.ch

2 Department of Computer Science, Weizmann Institute of Science, Rehovot, 76100, Israel
firstname.lastname@weizmann.ac.il

3 Department of Computer Science, Ben Gurion University, Beer-Sheva, Israel
saary@cs.bgu.ac.il

Abstract. We consider the problem of synthesizing digital designs from their LTL

specification. In spite of the theoretical double exponential lower bound for the
general case, we show that for many expressive specifications of hardware designs
the problem can be solved in time N3, where N is the size of the state space of the
design. We describe the context of the problem, as part of the Prosyd European
Project which aims to provide a property-based development flow for hardware
designs. Within this project, synthesis plays an important role, first in order to
check whether a given specification is realizable, and then for synthesizing part of
the developed system. The class of LTL formulas considered is that of Generalized
Reactivity(1) (generalized Streett(1)) formulas, i.e., formulas of the form:

( p1 ∧ · · · ∧ pm)→ ( q1 ∧ · · · ∧ qn)

where each pi, qi is a boolean combination of atomic propositions. We also con-
sider the more general case in which each pi, qi is an arbitrary past LTL formula
over atomic propositions.

For this class of formulas, we present an N3-time algorithm which checks
whether such a formula is realizable, i.e., there exists a circuit which satisfies the
formula under any set of inputs provided by the environment. In the case that
the specification is realizable, the algorithm proceeds to construct an automaton
which represents one of the possible implementing circuits. The automaton is
computed and presented symbolically.

1 Introduction

One of the most ambitious and challenging problems in reactive systems construction
is the automatic synthesis of programs and (digital) designs from logical specifications.
First identified as Church’s problem [Chu63], several methods have been proposed for
its solution ([BL69], [Rab72]). The two prevalent approaches to solving the synthesis
problem were by reducing it to the emptiness problem of tree automata, and viewing
it as the solution of a two-person game. In these preliminary studies of the problem,
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the logical specification that the synthesized system should satisfy was given as an S1S
formula.

This problem has been considered again in [PR89a] in the context of synthesizing
reactive modules from a specification given in Linear Temporal Logic (LTL). This fol-
lowed two previous attempts ([CE81], [MW84]) to synthesize programs from temporal
specification which reduced the synthesis problem to satisfiability, ignoring the fact that
the environment should be treated as an adversary. The method proposed in [PR89a] for
a given LTL specification ϕ starts by constructing a Büchi automaton Bϕ, which is then
determinized into a deterministic Rabin automaton. This double translation may reach
complexity of double exponent in the size of ϕ. Once the Rabin automaton is obtained,
the game can be solved in time nO(k), where n is the number of states of the automaton
and k is the number of accepting pairs.

The high complexity established in [PR89a] caused the synthesis process to be iden-
tified as hopelessly intractable and discouraged many practitioners from ever attempting
to use it for any sizeable system development. Yet there exist several interesting cases
where, if the specification of the design to be synthesized is restricted to simpler au-
tomata or partial fragments of LTL, it has been shown that the synthesis problem can
be solved in polynomial time. Representative cases are the work in [AMPS98] which
presents (besides the generalization to real time) efficient polynomial solutions (N2)
to games (and hence synthesis problems) where the acceptance condition is one of the
LTL formulas p, q, p, or q. A more recent paper is [AT04] which
presents efficient synthesis approaches for the LTL fragment consisting of a boolean
combinations of formulas of the form p.

This paper can be viewed as a generalization of the results of [AMPS98] and [AT04]
into the wider class of generalized Reactivity(1) formulas (GR(1)), i.e. formulas of the form

( p1 ∧ · · · ∧ pm) → ( q1 ∧ · · · ∧ qn) (1)

Following the developments in [KPP05], we show how any synthesis problem whose
specification is a GR(1) formula can be solved in time N3, where N is the size of the
state space of the design. Furthermore, we present a (symbolic) algorithm for extracting
a design (program) which implements the specification. We make an argument that the
class of GR(1) formulas is sufficiently expressive to provide complete specifications of
many designs.

This work has been developed as part of the Prosyd project (see www.prosyd.org)
which aims at the development of a methodology and a tool suit for the property-based
construction of digital circuits from their temporal specification. Within the prosyd
project, synthesis techniques are applied to check first whether a set of properties is
realizable, and then to automatically produce digital designs of smaller units.

2 Preliminaries

2.1 Linear Temporal Logic

We assume a countable set of Boolean variables (propositions) V . LTL formulas are
constructed as follows.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕUϕ
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As usual we denote ¬(¬ϕ ∨ ¬ψ) by ϕ ∧ ψ, TUϕ by ϕ and ¬ ¬ϕ by ϕ. A
formula that does not include temporal operators is a Boolean formula.

A model σ for a formula ϕ is an infinite sequence of truth assignments to proposi-
tions. Namely, if P ′ is the set of propositions appearing in ϕ, then for every finite set P
such that P ′ ⊆ P , a word in (2P )ω is a model. We denote by σ(i) the set of propositions
at position i, that is σ = σ(0), σ(1), . . .. We present an inductive definition of when a
formula holds in model σ at position i.

– For p ∈ P we have σ, i |= p iff p ∈ σ(i).
– σ, i |= ¬ϕ iff σ, i �|= ϕ
– σ, i |= ϕ ∨ ψ iff σ, i |= ϕ or σ, i |= ψ
– σ, i |= ϕ iff σ, i + 1 |= ϕ
– σ, i |= ϕUψ iff there exists k ≥ i such that σ, k |= ψ and σ, j |= ϕ for all j,

i ≤ j < k

For a formula ϕ and a position j ≥ 0 such that σ, j |= ϕ, we say that ϕ holds at position
j of σ. If σ, 0 |= ϕ we say that ϕ holds on σ and denote it by σ |= ϕ. A set of models
L satisfies ϕ, denoted L |= ϕ, if every model in L satisfies ϕ.

We are interested in the question of realizability of LTL specifications [PR89b]. As-
sume two sets of variablesX andY . IntuitivelyX is the set of input variables controlled
by the environment and Y is the set of system variables. With no loss of generality, we
assume that all variables are Boolean. Obviously, the more general case that X and Y
range over arbitrary finite domains can be reduced to the Boolean case. Realizability
amounts to checking whether there exists an open controller that satisfies the specifi-
cation. Such a controller can be represented as an automaton which, at any step, inputs
values of the X variables and outputs values for the Y variables. Below we formal-
ize the notion of checking realizability and synthesis, namely, the construction of such
controllers.

Realizability for LTL specifications is 2EXPTIME-complete [PR90]. We are inter-
ested in a subset of LTL for which we solve realizability and synthesis in polynomial
time. The specifications we consider are of the form ϕ = ϕe → ϕs. We require that ϕα

for α ∈ {e, s} can be rewritten as a conjunction of the following parts.

– ϕα
i - a Boolean formula which characterizes the initial states of the implementation.

– ϕα
t - a formula of the form

∧
i∈I Bi where each Bi is a Boolean combination of

variables from X ∪Y and expressions of the form v where v ∈ X if α = e, and
v ∈ X ∪ Y otherwise.

– ϕα
g - a formula of the form

∧
i∈I Bi where each Bi is a Boolean formula.

It turns out that most of the specifications written in practice can be rewritten to this for-
mat1. In Section 7 we discuss also cases where the formulas ϕα

g have also sub-formulas
of the form (p → q) where p and q are Boolean formulas, and additional cases
which can be converted to the GR(1) format.

1 In practice, the specification is usually given in this format. The specification is a collection of
assumptions and requirements with the semantics that all assumptions imply all requirements.
Every assumption or requirement is usually of a very simple formula similar to the required
form.
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2.2 Game Structures

We reduce the realizability problem of an LTL formula to the decision of winner in
games. We consider two-player games played between a system and an environment.
The goal of the system is to satisfy the specification regardless of the actions of the
environment. Formally, we have the following.

A game structure (GS) G : 〈V,X ,Y, Θ, ρe, ρs, ϕ〉 consists of the following compo-
nents.

• V = {u1, . . . , un} : A finite set of typed state variables over finite domains. With
no loss of generality, we assume they are all Boolean. We define a state s to be an
interpretation of V , assigning to each variable u ∈ V a value s[u] ∈ {0, 1}. We
denote by Σ the set of all states. We extend the evaluation function s[·] to Boolean
expressions over V in the usual way. An assertion is a Boolean formula over V . A
state s satisfies an assertion ϕ denoted s |= ϕ, if s[ϕ] = true. We say that s is a
ϕ-state if s |= ϕ.
• X ⊆ V is a set of input variables. These are variables controlled by the environ-

ment. Let DX denote the possible valuations to variables in X .
• Y = V \X is a set of output variables. These are variables controlled by the system.

Let DY denote the possible valuations for the variables in Y .
• Θ is the initial condition. This is an assertion characterizing all the initial states of

G. A state is called initial if it satisfies Θ.
• ρe(X ,Y,X ′) is the transition relation of the environment. This is an assertion, relat-

ing a state s ∈ Σ to a possible next input value ξ′ ∈ DX , by referring to unprimed
copies of X and Y and primed copies of X . The transition relation ρe identifies
valuation ξ′ ∈ DX as a possible input in state s if (s, ξ′) |= ρe(X ,Y,X ′) where
(s, ξ′) is the joint interpretation which interprets u ∈ V as s[u] and for v ∈ X
interprets v′ as ξ′[v].
• ρs(X ,Y,X ′,Y ′) is the transition relation of the system. This is an assertion, relat-

ing a state s ∈ Σ and an input value ξ′ ∈ DX to a next output value η′ ∈ DY ,
by referring to primed and unprimed copies of V . The transition relation ρs iden-
tifies a valuation η′ ∈ DY as a possible output in state s reading input ξ′ if
(s, ξ′,η′) |= ρs(V, V ′) where (s, ξ′,η′) is the joint interpretation which interprets
u ∈ X as s[u], u′ as ξ′[u], and similarly for v ∈ Y .
• ϕ is the winning condition, given by an LTL formula.

For two states s and s′ of G, s′ is a successor of s if (s, s′) |= ρe∧ρs. We freely switch
between (s, ξ′) |= ρe and ρe(s, ξ′) = 1 and similarly for ρs. A play σ of G is a maximal
sequence of states σ : s0, s1, . . . satisfying initiality namely s0 |= Θ, and consecution
namely, for each j ≥ 0, sj+1 is a successor of sj . Let G be an GS and σ be a play of G.
From a state s, the environment chooses an input ξ′ ∈ DX such that ρe(s, ξ′) = 1 and
the system chooses an output η′ ∈ DY such that ρs(s, ξ′,η′) = ρs(s, s′) = 1.

A play σ is winning for the system if it is infinite and it satisfies ϕ. Otherwise, σ is
winning for the environment.

A strategy for the system is a partial function f : Σ+×DX �→ DY such that if σ =
s0, . . . sn then for every ξ′∈DX such that ρe(sn, ξ

′)=1 we have ρs(sn, ξ
′, f(σ, ξ′)) =

1. Let f be a strategy for the system, and s0 ∈ Σ. A play s0, s1, . . . is said to be com-
pliant with strategy f if for all i ≥ 0 we have f(s0, . . . , si, si+1[X ]) = si+1[Y], where



368 N. Piterman, A. Pnueli, and Y. Sa’ar

si+1[X ] and si+1[Y] are the restrictions of si+1 to variable sets X and Y , respectively.
Strategy f is winning for the system from state s ∈ ΣG if all s-plays (plays departing
from s) which are compliant with f are winning for the system. We denote by Ws the
set of states from which there exists a winning strategy for the system. A strategy for
player environment, winning strategy, and the winning set We are defined dually. A GS

G is said to be winning for the system if all initial states are winning for the system.
Given an LTL specification ϕe → ϕs as explained above and sets of input and output

variablesX andY we construct a GS as follows. Let ϕα = ϕα
i ∧ϕα

t ∧ϕα
g for α ∈ {e, s}.

Then, for Θ we take ϕe
i ∧ϕs

i . Let ϕα
t =

∧
i∈I Bi, then ρα =

∧
i∈I τ(Bi), where the

translation τ replaces each instance of v by v′. Finally, we set ϕ = ϕe
g → ϕs

g . We
solve the game, attempting to decide whether the game is winning for the environment
or the system. If the environment is winning the specification is unrealizable. If the
system is winning, we synthesize a winning strategy which is a working implementation
for the system as explained in Section 4.

2.3 Fair Discrete Systems

We present implementations as a special case of fair discrete systems (FDS) [KP00]. An
FDS D : 〈V,Θ, ρ,J , C〉 consists of the following components.

• V = {u1, ..., un} : A finite set of Boolean variables. We define a state s to be
an interpretation of V . Denote by Σ the set of all states. Assertions over V and
satisfaction of assertions are defined like in games.
• Θ : The initial condition. This is an assertion characterizing all the initial states of

the FDS. A state is called initial if it satisfies Θ.
• ρ : A transition relation. This is an assertion ρ(V, V ′), relating a state s ∈ Σ to its
D-successor s′ ∈ Σ.
• J = {J1, . . . , Jm} : A set of justice requirements (weak fairness). Each require-

ment J ∈ J is an assertion which is intended to hold infinitely many times in every
computation.
• C = {(p1, q1), . . . , (pn, qn)} : A set of compassion requirements (strong fairness).

Each requirement (p, q) ∈ C consists of a pair of assertions, such that if a compu-
tation contains infinitely many p-states, it should also hold infinitely many q-states.

We define a run of the FDSD to be a maximal sequence of states σ : s0, s1, ..., satisfying
the requirements of

• Initiality: s0 is initial, i.e., s0 |= Θ.
• Consecution: For every j ≥ 0, the state sj+1 is a D-successor of the state sj .

The sequence σ being maximal means that either σ is infinite, or σ = s0, . . . , sk and sk

has no D-successor.
A run σ is defined to be a computation of D if it is infinite and satisfies the following
additional requirements:

• Justice: For each J ∈ J , σ contains infinitely many J-positions, i.e. positions
j ≥ 0, such that sj |= J .
• Compassion: For each (p, q) ∈ C, if σ contains infinitely many p-positions, it must

also contain infinitely many q-positions.
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We say that an FDS D implements specification ϕ if every run ofD is infinite, and every
computation of D satisfies ϕ. An FDS is said to be fairness-free if J = C = ∅. It is
called a just transition system (JDS) if C = ∅.

In general, we use FDS’s in order to formalize reactive systems. When we formalize
concurrent systems which communicate by shared variables as well as most digital
designs, the ensuing formal model is that of a JDS (i.e., compassion-free). Compassion
is needed only in the case that the program uses built-in synchronization constructs such
as semaphores or synchronous communication.

For every FDS, there exists an LTL formula ϕD , called the temporal semantics of D
which fully characterizes the computations ofD. It can be written as:

ϕD : Θ ∧ (ρ(V, V )) ∧
∧

J∈J
J ∧

∧
(p,q)∈C

( p→ q)

where ρ(V, V ) is the formula obtained from ρ(V, V ′) by replacing each instance of
primed variable x′ by the LTL formula x.
Note that in the case that D is compassion-free (i.e., it is a JDS), then its temporal
semantics has the form

ϕD : Θ ∧ (ρ(V, V )) ∧
∧

J∈J
J

It follows that the class of specifications we consider in this paper, as explained at
the end of Subsection 2.1, have the form ϕ = ϕe → ϕs where each ϕα, for α ∈
{e, s}, is the temporal semantics of an JDS. Thus, if the specification can be realized
by an environment which is a JDS and a system which is a JDS (in particular, if none
of them requires compassion for their implementation), then the class of specifications
we consider here are as general as necessary. Note in particular, that hardware designs
rarely assume compassion (strong fairness) as a built-in construct. Thus, we expect most
specifications to be realized by hardware designs to fall in the class of GR(1).

3 μ-Calculus and Games

In [KPP05], we consider the case of GR(1) games (called there generalized Streett(1)
games). In these games the winning condition is an implication between conjunctions
of recurrence formulas ( ϕ where ϕ is a Boolean formula). These are exactly the
types of goals in the games we defined in Section 2. We show how to solve such games
in cubic time [KPP05]. We re-explain here how to compute the winning regions of
each of the players and explain how to use the algorithm to extract a winning strategy.
We start with a definition of μ-calculus over game structures. We give the μ-calculus
formula that characterizes the set of winning states of the system. We explain how
we construct from this μ-calculus formula an algorithm to compute the set of winning
states. Finally, by saving intermediate values in the computation, we can construct a
winning strategy and synthesize an FDS that implements the goal.

3.1 μ-Calculus over Games Structures

We define μ-calculus [Koz83] over game structures. Let G: 〈V,X ,Y, Θ, ρe, ρs, ϕ〉 be a
GS. For every variable v ∈ V the formulas v and ¬v are atomic formulas. Let V ar =
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{X,Y, . . .} be a set of relational variables. The μ-calculus formulas are constructed as
follows.

ϕ ::= v | ¬v | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | ϕ | μXϕ | νXϕ

A formula ψ is interpreted as the set of G-states in Σ in which ψ is true. We write such
set of states as [[ψ]]eG where G is the GS and e : V ar → 2Σ is an environment. The
environment assigns to each relational variable a subset of Σ. We denote by e[X ← S]
the environment such that e[X ← S](X) = S and e[X ← S](Y ) = e(Y ) for Y �= X .
The set [[ψ]]eG is defined inductively as follows2.

• [[v]]eG = {s ∈ Σ | s[v] = 1}
• [[¬v]]eG = {s ∈ Σ | s[v] = 0}
• [[X ]]eG = e(X)
• [[ϕ ∨ ψ]]eG = [[ϕ]]eG ∪ [[ψ]]eG
• [[ϕ ∧ ψ]]eG = [[ϕ]]eG ∩ [[ψ]]eG

• [[ ϕ]]eG =
{
s ∈ Σ

∣∣∣∣ ∀x′, (s,x′) |= ρe → ∃y′ such that (s,x′,y′) |= ρs

and (x′,y′) ∈ [[ϕ]]eG

}
A state s is included in [[ ϕ]]eG if the system can force the play to reach a state
in [[ϕ]]eG. That is, regardless of how the environment moves from s, the system can
choose an appropriate move into [[ϕ]]eG.

• [[ ϕ]]eG =
{
s ∈ Σ

∣∣∣∣ ∃x′ such that (s,x′) |= ρe and
∀y′, (s,x′,y′) |= ρs → (x′,y′) ∈ [[ϕ]]eG

}
A state s is included in [[ ϕ]]eG if the environment can force the play to reach a
state in [[ϕ]]eG. As the environment moves first, it chooses an input x′ ∈ X such
that for all choices of the system the successor s is in [[ϕ]]eG.

• [[μXϕ]]eG = ∪iSi where S0 = ∅ and Si+1 = [[ϕ]]e[X←Si]
G

• [[νXϕ]]eG = ∩iSi where S0 = Σ and Si+1 = [[ϕ]]e[X←Si]
G

When all the variables in ϕ are bound by either μ or ν the initial environment is not
important and we simply write [[ϕ]]G. In case that G is clear from the context we write [[ϕ]].

The alternation depth of a formula is the number of alternations in the nesting of
least and greatest fixpoints. A μ-calculus formula defines a symbolic algorithm for com-
puting [[ϕ]] [EL86]. For a μ-calculus formula of alternation depth k, the run time of this
algorithm is O(|Σ|k). For a full exposition of μ-calculus we refer the reader to [Eme97].
We often abuse notations and write a μ-calculus formula ϕ instead of the set [[ϕ]].

In some cases, instead of using a very complex formula, it may be more readable to
use vector notation as in Equation (2) below.

ϕ = ν

[
Z1
Z2

] [
μY ( Y ∨ p ∧ Z2)
μY ( Y ∨ q ∧ Z1)

]
(2)

Such a formula, may be viewed as the mutual fixpoint of the variables Z1 and Z2 or
equivalently as an equal formula where a single variable Z replaces both Z1 and Z2 and
ranges over pairs of states [Lic91]. The formula above characterizes the set of states from

2 Only for finite game structures.
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which system can force the game to visit p-states infinitely often and q-states infinitely
often. We can characterize the same set of states by the following ‘normal’ formula3.

ϕ = νZ ([μY ( Y ∨ p ∧ Z)] ∧ [μY ( Y ∨ q ∧ Z)]) .

3.2 Solving GR(1) Games

Let G be a game where the winning condition is of the following form.

ϕ =
m∧

i=1

J1
i →

n∧
j=1

J2
j

Here J1
i and J2

j are sets of Boolean formulas. In [KPP05] we term these games as
generalized Streett(1) games and provide the following μ-calculus formula to solve
them. Let j ⊕ 1 = (j mod n) + 1.

ϕ = ν

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1

Z2

...

...

Zn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μY

(
m∨

i=1

νX(J2
1 ∧ Z2 ∨ Y ∨ ¬J1

i ∧ X)

)

μY

(
m∨

i=1

νX(J2
2 ∧ Z3 ∨ Y ∨ ¬J1

i ∧ X)

)
...
...

μY

(
m∨

i=1

νX(J2
n ∧ Z1 ∨ Y ∨ ¬J1

i ∧ X)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

Intuitively, for j ∈ [1..n] and i ∈ [1..m] the greatest fixpoint νX(J2
j ∧ Zj⊕1 ∨

Y ∨ ¬J1
i ∧ X) characterizes the set of states from which the system can force the

play either to stay indefinitely in ¬J1
i states (thus violating the left hand side of the im-

plication) or in a finite number of steps reach a state in the set J2
j ∧ Zj⊕1 ∨ Y . The

two outer fixpoints make sure that the system wins from the set J2
j ∧ Zj⊕1 ∨ Y .

The least fixpoint μY makes sure that the unconstrained phase of a play represented by
the disjunct Y is finite and ends in a J2

j ∧ Zj⊕1 state. Finally, the greatest fixpoint
νZj is responsible for ensuring that, after visiting J2

j , we can loop and visit J2
j⊕1 and

so on. By the cyclic dependence of the outermost greatest fixpoint, either all the sets in
J2

j are visited or getting stuck in some inner greatest fixpoint, where some J1
i is visited

only finitely many times.
We include in Fig. 1 a (slightly simplified) code of the implementation of this μ-

calculus formula in TLV (see Section 5). We denote Jα
i for α ∈ {1, 2} by Ji(i, α) and

by cox. We denote conjunction, disjunction, and negation by &, |, and ! respectively.
A GreatestFixpoint loop on variable u starts by setting the initial value of u to the set of
all states and a LeastFixpoint loop over u starts by setting u to the empty set of states.
For both types of fixpoints, the loop terminates if two successive values of u are the
same. The greatest fixpoint GreatestFixpoint(x <= z), means that the initial

3 This does not suggest a canonical translation from vector formulas to plain formulas. The same
translation works for the formula in Equation (3) below. Note that the formula in Equation (2)
and the formula in Equation (3) have a very similar structure.
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Func winm(m, n);
GreatestFixpoint(z)
For (j in 1...n)

Let r := 1;
LeastFixpoint (y)

Let start := Ji(j,2) & cox(z) | cox(y);
Let y := 0;
For (i in 1...m)
GreatestFixpoint (x <= z)

Let x := start | !Ji(i,1) & cox(x);
End -- GreatestFixpoint (x)
Let x[j][r][i] := x; // store values of x
Let y := y | x;

End -- For (i in 1...m)
Let y[j][r] := y; // store values of y
Let r := r + 1;

End -- LeastFixpoint (y)
Let z := y;
Let maxr[j] := r - 1;

End -- For (j in 1...m)
End -- GreatestFixpoint (z)
Return z;

End -- Func winm(m, n);

Fig. 1. TLV implementation of Equation (3)

value of x is z instead of the universal set of all states. We use the sets y[j][r] and
their subsets x[j][r][i] to define n strategies for the system. The strategy fj is defined
on the states in Zj . We show that the strategy fj either forces the play to visit J2

j and
then proceed to Zj⊕1, or eventually avoid some J1

i . We show that by combining these
strategies, either the system switches strategies infinitely many times and ensures that
the play be winning according to right hand side of the implication or eventually uses a
fixed strategy ensuring that the play does not satisfy the left hand side of the implication.
Essentially, the strategies are “go to y[j][r] for minimal r” until getting to a J2

j state and
then switch to strategy j ⊕ 1 or “stay in x[j][r][i]”.

It follows that we can solve realizability of LTL formulas in the form that interests
us in polynomial (cubic) time.

Theorem 1. [KPP05] Given sets of variables X , Y whose set of possible valuations is
Σ and an LTL formula ϕ with m and n conjuncts, we can determine using a symbolic
algorithm whether ϕ is realizable in time proportional to (nm|Σ|)3.

4 Synthesis

We show how to use the intermediate values in the computation of the fixpoint to produce
an FDS that implements ϕ. The FDS basically follows the strategies explained above.

Let X , Y , and ϕ be as above. Let G: 〈V,X ,Y, ρe, ρs, Θ, ϕg〉 be the GS defined by
X , Y , and ϕ (where V = X ∪ Y). We construct the following fairness-free FDS. Let



Synthesis of Reactive(1) Designs 373

D : 〈VD,X ,YD , ΘD, ρ〉 where VD = V ∪ {jx} and jx ranges over [1..n], YD = Y ∪
{jx}, ΘD = Θ ∧ (jx = 1). The variable jx is used to store internally which strategy
should be applied. The transition ρ is ρ1 ∨ ρ2 ∨ ρ3 where ρ1, ρ2, and ρ3 are defined as
follows.

Transition ρ1 is the transition taken when a J2
j state is reached and we change strat-

egy from fj to fj⊕1. Accordingly, all the disjuncts in ρ1 change jx. Transition ρ2 is
the transition taken in the case that we can get closer to a J2

j state. These transitions
go from states in some set y[j][r] to states in the set y[j][r′] where r′ < r. We take
care to apply this transition only to states s for which r > 1 is the minimal index such
that s ∈ y[j][r]. Transition ρ3 is the transition taken from states s ∈ x[j][r][i] such
that s |= ¬J1

i and the transition takes us back to states in x[j][r][i]. Repeating such
a transition forever will also lead to a legitimate computation because it violates the
environment requirement of infinitely many visits to J1

i -states. Again, we take care to
apply this transition only to states for which (r, i) are the (lexicographically) minimal
indices such that s ∈ x[j][r][i].

Let y[j][< r] denote the set
⋃

l∈[1..r−1] y[j][l]. We write (r′, i′) ≺ (r, i) to denote
that the pair (r′, i′) is lexicographically smaller than the pair (r, i). That is, either r′ < r
or r′ = r and i′ < i. Let x[j][≺(r, i)] denote the set

⋃
(r′,i′)≺(r,i) x[j][r′][i′]. The

transitions are defined as follows.

ρ1 =
∨

j∈[1..n]

(jx=j) ∧ z ∧ J2
j ∧ ρe ∧ ρs ∧ z′ ∧ (jx′=j⊕1)

ρ2(j) =
∨
r>1

y[j][r] ∧ ¬y[j][< r] ∧ ρe ∧ ρs ∧ y′[j][< r]

ρ2 =
∨

j∈[1..n]

(jx=jx′=j) ∧ ρ2(j)

ρ3(j) =
∨
r

∨
i∈[1..m]

x[j][r][i] ∧ ¬x[j][≺(r, i)] ∧ ¬J1
i ∧ ρe ∧ ρs ∧ x′[j][r][i]

ρ3 =
∨

j∈[1..n]

(jx=jx′=j) ∧ ρ3(j)

The conjuncts ¬y[j][< r] and ¬x[j][≺(r, i)] appearing in transitions ρ2(j) and ρ3(j)
ensure the minimality of the indices to which these transitions are respectively applied.

Notice that the above transitions can be computed symbolically. We include below
the TLV code that symbolically constructs the transition relation of the synthesized FDS

and places it in trans. We denote the conjunction of ρe and ρs by trans12.

To symb_strategy;
Let trans := 0;
For (j in 1...n)

Let jp1 := (j mod n) + 1;
Let trans := trans | (jx=j) & z & Ji(j,2) & trans12 &

next(z) & (next(jx)=jp1);
End -- For (j in 1...n)
For (j in 1...n)

Let low := y[j][1];
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For (r in 2...maxr[j])
Let trans := trans | (jx=j) & y[j][r] & !low &

trans12 & next(low) & (next(jx)=j);
Let low := low | y[j][r];

End -- For (r in 2...maxr[j])
End -- For (j in 1...n)
For (j in 1...n)

Let low := 0;
For (r in 2...maxr[j])

For (i in 1...m)
Let trans := trans | (jx=j) & x[j][r][i] & !low

& !ji(i,1) & trans12 &
next(x[j][r][i]) & (next(jx)=j);

Let low := low | x[j][r][i];
End -- For (i in 1...m)

End -- For (r in 2...maxr[j])
End -- For (j in 1...n)

End -- To symb_strategy;

4.1 Minimizing the Strategy

We have created an FDS that implements an LTL goal ϕ. The set of variables of this FDS

includes the given set of input and output variables as well as a ‘memory’ variable jx.
We have quite a liberal policy of choosing the next successor in the case of a visit to J2

j .
We simply choose some successor in the winning set. Here we minimize (symbolically)
the resulting FDS. A necessary condition for the soundness of this minimization is that
the specification be insensitive to stuttering4

Notice, that our FDS is deterministic. For every state and every possible assignment
to the variables in X ∪ Y there exists at most one successor state with this assignment.
Thus, removing transitions seems to be of lesser importance. We concentrate on remov-
ing redundant states.

As we are using the given sets of variables X and Y the only possible candidate
states for merging are states that agree on the values of variables in X ∪Y and disagree
on the value of jx. If we find two states s and s′ such that ρ(s, s′), s[X∪Y] = s′[X∪Y],
and s′[jx] = s[jx]⊕1, we remove state s. We direct all its incoming arrows to s′ and
remove its outgoing arrows. Intuitively, we can do that because for every computation
that passes through s there exists a computation that stutters once in s (due to the as-
sumption of stuttering insensitivity). This modified computation passes from s to s′ and
still satisfies all the requirements (we know that stuttering in s is allowed because there
exists a transition to s′ which agrees with s on all variables).

As mentioned this minimization is performed symbolically. As we discuss in Sec-
tion 5, it turns out that the minimization actually increases the size of the resulting BDDs.

4 A specification is insensitive to stuttering if the result of doubling a letter (or replacing a double
occurrence by a single occurrence) in a model is still a model. The specifications we consider
are allowed to use the next operator, thus they can be sensitive to stuttering. A specification
that requires that in some case an immediate response be made would be sensitive to stuttering.
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It seems to us that for practical reasons we may want to keep the size of BDDs minimal
rather than minimize the automaton. The symbolic implementation of the minimization
is given below. The transition obseq includes all possible assignments to V and V ′ such
that all variables except jx maintain their values. It is enough to consider the transitions
from j to j⊕1 for all j and then from n to j for all j to remove all redundant states.
This is because the original transition just allows to increase jx by one.

For (j in 1..n)
Let nextj := (j mod n)+1;
reduce(j,nextj);

End -- For (j in 1..n)

For (j in 1..n-1)
reduce(n,j)

End -- For (j in 1..n-1)

Func reduce(j,k)
Let idle := trans & obseq & jx=j & next(jx)=k;
Let states := idle forsome next(V);
Let add_trans :=

((trans & next(states) & next(jx)=j) forsome jx) &
next(jx)=k;

Let rem_trans := next(states) & next(jx)=j1 |
states & jx=j1;

Let add_init := ((init & states & jx=j1) forsome jx) &
jx=k;

Let rem_init := states & jx=j;
Let trans := (trans & !rem_trans) | add_trans;
Let init := (init & !rem_init) | add_init;
Return;

End -- Func reduce(j,k)

5 Experimental Results

The algorithm described in this paper was implemented within the TLV system [PS96].
TLV is a flexible verification tool implemented at the Weizmann Institute of Science.
TLV provides a programming environment which uses BDDs as its basic data type
[Bry86]. Deductive and algorithmic verification methods are implemented as proce-
dures written within this environment. We extended TLV’s functionality by implement-
ing the algorithms in this paper. We consider two examples. The case of an arbiter and
the case of a lift controller.

5.1 Arbiter

We consider the case of an arbiter. Our arbiter has n input lines in which clients re-
quest permissions and n output lines in which the clients are granted permission. We
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assume that initially the requests are set to zero, once a request has been made it cannot
be withdrawn, and that the clients are fair, that is once a grant to a certain client has
been given it eventually releases the resource by lowering its request line. Formally, the
assumption on the environment in LTL format is below.∧

i

(ri ∧ ((ri �=gi)→ (ri= ri)) ∧ ((ri ∧ gi)→ ri))

We expect the arbiter to initially give no grants, give at most one grant at a time (mutual
exclusion), give only requested grants, maintain a grant as long as it is requested, to
satisfy (eventually) every request, and to take grants that are no longer needed. Formally,
the requirement from the system in LTL format is below.

∧
i�=j

¬(gi ∧ gj) ∧
∧
i

⎛⎝gi ∧

⎧⎪⎪⎪⎪⎪⎩ ((ri=gi) → (gi= gi)) ∧
((ri ∧ gi)→ gi) ∧
((ri ∧ gi)→ gi)

⎫⎪⎪⎪⎪⎪⎭
⎞⎠

The resulting game is G: 〈V,X ,Y, ρe, ρs, ϕ〉 where

– X = {ri | i = 1, . . . , n}
– Y = {gi | i = 1, . . . , n}
– Θ =

∧
i(ri ∧ gi)

– ρe =
∧

i((ri �=gi)→ (r′i=ri))
– ρs =

∧
i�=j ¬(g′i ∧ g′j) ∧

∧
i((ri=gi)→ (g′i = gi))

– ϕ =
∧

i ((ri∧gi)→ ri)→
∧

i ((ri∧gi)→ gi)∧ ((ri∧gi)→ gi)

We simplify ϕ by replacing ((ri ∧ gi) → ri) by ¬(ri ∧ gi) and replacing
((ri ∧ gi)→ gi) and ((ri ∧ gi)→ gi) by (ri=gi). The first simplifi-

cation is allowed because whenever ri∧gi holds, the next value of gi is true. The second
simplification is allowed because whenever ri ∧ gi or ri ∧ gi holds, the next value of ri

is equal to the current. This results with the simpler goal:

ϕ =
∧
i

¬(ri ∧ gi)→
∧
i

(ri=gi)

In Fig. 2, we present graphs of the run time and size of resulting implementations for
the Arbiter example. Implementation sizes are measured in number of BDD nodes.

In Fig. 3 we include the explicit representation of the arbiter for two clients resulting
from the application of our algorithm.

5.2 Lift Controller

We consider the case of a lift controller. We build a lift controller for n floors. We
assume n button sensors. The lift may be requested on every floor, once the lift has been
called on some floor the request cannot be withdrawn. Initially, on all floors there are
no requests. Once a request has been fulfilled it is removed. Formally, the assumption
on the environment in LTL format is below.∧

i

(
bi ∧

(
(bi ∧ fi)→ bi

)
∧ ((bi ∧ ¬fi)→ bi)

)
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Fig. 2. Running times and program size for the Arbiter example
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Fig. 3. Arbiter for 2

We expect the lift to initially start on the first floor. We model the location of the lift
by an n bit array. Thus we have to demand mutual exclusion on this array. The lift can
move at most one floor at a time, and eventually satisfy every request. Formally, the
requirement from the system in LTL format is below.

(up→ sb) ∧ (f1 ∨ sb) ∧
∧

i�=j ¬(fi ∧ fj) ∧∧
i ((i=1 ∧ fi ∨ i �=1 ∧ ¬fi) ∧ (bi → fi) ∧ (fi → (fi ∨ fi−1 ∨ fi+1)))

where up =
∨

i(fi ∧ fi+1) denotes that the lift moves one floor up, and sb =
∨

i bi

denotes that at least one button is pressed. The requirement (up → sb) states that
the lift should not move up unless some button is pressed. The liveness requirement

(f1∨ sb) states that either some button is pressed infinitely many times, or the lift
parks at floor f1 infinitely many times. Together they imply that when there is no active
request, the lift should move down and park at floor f1.

In Fig. 4 we present graphs of the run time and the size of the resulting implemen-
tations for different number of floors. As before, implementation sizes are measured in
number of BDD nodes.
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Fig. 4. Running times and program size for the Lift example

6 Extensions

The class of specifications to which the N3-synthesis algorithm is applicable is wider
than the limited form presented in Equation (1). The algorithm can be applied to any
specification of the form (

∧m
i=1 ϕi)→ (

∧n
j=1 ψj), where each ϕi and ψj can be speci-

fied by an LTL formula of the form q for a past formula q. Equivalently, each ϕi

and ψj should be specifiable by a deterministic Büchi automaton. This is, for example,
the case of the original version of the Arbiter, where the liveness conjuncts were each a
response formula of the form (p→ q).

The way we deal with such a formula is to add to the game additional variables and
a transition relation which encodes the deterministic Büchi automaton. For example, to
deal with a formula (p→ q), we add to the game variables a new Boolean variable
x with initial condition x = 1, and add to the transition relation ρe the additional conjunct

x′ = (q ∨ x ∧ ¬p)

Table 1. Experiments for Arbiter

N Recurrence Properties Response Properties

4 0.05 0.33
6 0.06 0.89
8 0.13 1.77

10 0.25 3.04
12 0.48 4.92
14 0.87 7.30
16 1.16 10.57
18 1.51 15.05
20 1.89 20.70
25 3.03 43.69
30 4.64 88.19
35 6.78 170.50
40 9.50 317.33



Synthesis of Reactive(1) Designs 379

We replace in the specification the sub-formula (p→ q) by the conjunct x.
It is not difficult to see that this is a sound transformation. That is, the formula (p→

q) is satisfied by a sequence σ iff there exists an interpretation of the variable x
which satisfies the added transition relation and also equals 1 infinitely many times.

Indeed, the in Table 1 we present the performance results of running the Arbiter
example with the original specification, to which we applied the above transformation
from response to recurrence formulas. The first column presents the results, when the
liveness requirements are given as the recurrence formulas (ri = gi). In the sec-
ond column, we present the results for the case that we started with the original require-
ments (ri → )gi, and then transformed them into recurrence formulas according
to the recipe presented above.

7 Conclusions

We presented an algorithm that solves realizability and synthesis for a subset of LTL.
For this subset the algorithm works in cubic time. We also presented an algorithm which
reduces the number of states in the synthesized module for the case that the specification
is stuttering insensitive.

We have shown that the approach can be applied to wide class of formulas, which
covers the full set of generalized reactivity[1] properties. We expect both the system
and the environment to be realized by hardware designs. Thus, the temporal seman-
tics of both the system and the environment have a specific form and the implication
between the two falls in the set of formulas that we handle. Generalized reactivity[1]
certainly covers all the specifications we have so far considered in the Prosyd project.
We believe that modifications similar to the ones described in Section 6 would be
enough to allow coverage of specifications given in languages such as PSL or FORSPEC

[AO04, AFF+02].
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Abstract. This paper describes a framework, based on Abstract Interpretation,
for creating abstractions for model-checking. Specifically, we study how to ab-
stract models of μ-calculus and systematically derive abstractions that are con-
structive, sound, and precise, and apply them to abstracting Kripke structures.
The overall approach is based on the use of bilattices to represent partial and
inconsistent information.

1 Introduction

Abstraction plays a fundamental role in combating state-space explosion in model-
checking. The goal of abstraction is to construct an abstract model of a system which is
small enough to be effectively analyzed, and yet rich enough to yield conclusive results.
Success of current abstraction projects, such as SLAM [2] and Bandera [6], indicates
that abstraction is an effective technique for enabling model-checking of realistic soft-
ware systems.

In model-checking, a notion of abstracting a transition system is typically developed
as follows: (1) An abstract statespace is defined such that each abstract state corresponds
to a set of concrete states. This correspondence can be arbitrary, as in predicate abstrac-
tion [17], or influenced by the concrete statespace, as in symmetry reduction [12]. (2)
An abstract transition system is constructed by defining a transition relation over this
abstract statespace. (3) Finally, the resulting system is argued to be sound, i.e., it is
shown to preserve a fragment of the desired temporal logic.

The problem with the above approach is that it is not algorithmic: the techniques used
to construct the abstract systems require a certain amount of intuition of users, and extra
effort is needed to show that the resulting abstraction is correct. This makes it difficult
to understand a specific abstraction method and improve on it. For example, given an
abstraction that preserves universal CTL, how should it be changed to preserve the
entire CTL? It is also difficult to understand the relationship between different abstract
methods. For example, as shown in [25], predicate abstraction and symmetry reduction
differ only in their choice of abstract states. However, this insight was not apparent just
from the description of these methods.

Given the role abstraction plays in the model-checking process, we believe it is es-
sential to create a general methodology for systematically constructing and analyzing
abstractions. In the context of static analysis of programs, such a framework, called Ab-
stract Interpretation (AI), has already been proposed by [7]. It provides a collection of
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notations and tools to formalize the approximation of program semantics, as well as to
design and analyze program abstractions. The goal of this paper is to specialize the AI
framework to model-checking.

There are a number of ways to do this specialization, given the breadth of model-
checking approaches. Our goal here is to create abstractions that preserve properties
expressed in the modal μ-calculus [20] (Lμ). Following the recipes of AI, we system-
atically derive conditions under which an abstract Lμ model is the best abstraction of
a concrete one. We guarantee that these abstract models are (a) sound, i.e., if an Lμ

formula is satisfied in the abstract model it is satisfied in the concrete, (b) most pre-
cise, i.e., satisfy the most properties, and (c) have the desired structural characteristics,
e.g., a requirement that an abstraction of a transition system is a transition system as
well. These conditions are constructive and, as we show in this paper, can be derived al-
most mechanically. The algorithm for building a desired abstraction follows from these
conditions directly.

The logic Lμ includes negation, so that an Lμ formula¬ϕ is satisfied iff ϕ is refuted.
If we assume that every formula is either satisfied or refuted in an abstraction as well, it
may seem that preserving soundness for all Lμ formulas means that such an abstraction
must satisfy and refute exactly the same properties as the corresponding concrete model
(resulting in a bisimilar model). If the goal is to save space for model-checking, this
abstraction would be very limited. Thus, most existing abstractions are restricted to
fragments of Lμ, i.e., only to the universal or only to the existential properties (see,
e.g., [22]).

The insight we use in this paper is that an abstraction is inherently incomplete: some
formulas may be neither satisfied nor refuted by it. We propose to treat satisfaction and
refutation independently. If we classify all Lμ formulas using a pair 〈Sat,Ref〉, where
Sat contains all the formulas satisfied in an abstract model, while Ref contains all the
refuted ones, then Sat and Ref are not necessarily complements of each other. In fact,
Sat and Ref may not even be disjoint, allowing some formulas to be both satisfied and
refuted.

Associating knowledge about truth and falsity of every piece of evidence can be nat-
urally encoded using 4-valued Belnap logic [3] which enjoys nice mathematical prop-
erties associated with bilattices [15, 14]. That is, bilattices enable a uniform approach
for handling partial and inconsistent information, allowing reasoning about truth and
knowledge in a single theoretical framework. In this paper, by combining the theories
of AI with that of bilattices, we obtain a simple and elegant framework for deriving
abstractions for Lμ. Due to the generality of bilattices, our results apply not only to the
traditional two-valued interpretation of Lμ, but also to its multi-valued [4] and quanti-
tative [10] interpretations.

The contribution of this paper is a general technique, based on AI, for deriving ab-
stractions for model-checking. It allows understanding and comparing different tech-
niques, and provides a methodology for proving soundness and precision of the desired
abstraction. We then study this technique on two additional levels. First, we apply it
to Lμ models, and then specialize it to abstracting transition systems represented as
Kripke structures.
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The rest of this paper is organized as follows: after providing the necessary back-
ground in Section 2, we show how to lift abstraction between elements to abstraction
between sets of elements in Section 3. This gives us a general framework for approx-
imating interpretations of Lμ. In Section 4, we derive abstractions for model-theoretic
interpretations of Lμ, and then apply our technique to abstracting transition systems
in Section 5. In Section 6, we specialize the results of Section 5 to boolean transition
systems, and compare them to those obtained by Dams et al. [8]. We relate our tech-
nique with other abstraction approaches in Section 7 and summarize our contributions
in Section 8.

2 Background

In this section, we introduce the basic concepts of lattice theory, modal μ-calculus, and
abstract interpretation.

2.1 Lattices and Monotone Functions

A lattice is a partially ordered set L = (L,≤) in which every subset B of L has a least
upper bound, called join and denoted �B, and a greatest lower bound, called meet and
denoted �B [9]. A lattice is distributive if meet and join distribute over each other, i.e.,
(a � b) � c = (a � c) � (b � c), and (a � b) � c = (a � c) � (b � c).

A De Morgan algebra is a structure D = (L,≤,−), where (L,≤) is a distributive
lattice and− : L→ L is a negation that satisfies involution (−−a = a) and De Morgan
laws: −(a � b) = −a � −b, and −(a � b) = −a � −b.

We denote the space of functions from A to B by A→ B, or BA. For example, both
A → [B → C] and (CB)A denote the space of functions from A to functions from B
to C.

Let A be a set and L = (L,≤) be a lattice. The ordering and operations of L extend
pointwise to LA, i.e., f ≤ g ⇔ ∀a ∈ A · f(a) ≤ g(a). This turns LA into a lattice with
the same properties as L. In particular, if L is distributive or De Morgan, so is LA.

A function f between two partially ordered sets (A,≤) and (B,�) is monotone
(or, order-preserving) iff a ≤ b ⇒ f(a) � f(b), and anti-monotone iff a ≤ b ⇒
f(b) � f(a). We use upward (↑) and downward (↓) arrows to indicate monotone and
anti-monotone functions, respectively. For example, [A→ B]↑ denotes the space of all
monotone functions from A to B, and (BA)↓ denotes the space of all anti-monotone
functions. Monotone and anti-monotone functions are closed under pointwise meet and
join; thus, if B is a lattice, then so are [A→ B]↑ and [A→ B]↓.

2.2 Truth Domains and Sets

A truth-domain D is a collection of elements D, referred to as truth values, together
with a truth ordering� and a negation operator ¬ : D → D, such that D = (D,�,¬)
is a De Morgan algebra. The truth ordering orders the elements based on their truth
content; thus, a � b stands for “a is less true than b”. The meet (∧) and join (∨) of the
truth ordering are called conjunction and disjunction, respectively.



384 A. Gurfinkel, O. Wei, and M. Chechik

(a) (b) (c) (d)false

true

(¬ true)

(¬ false)

f

t

m d

(¬t)

(¬d)

(¬f)

(¬m)

1 (¬ 0)

0.5 (¬ 0.5)

0 (¬ 1)

pos&
odd

pos&
evn

neg&
odd

neg&
evn

pos odd evn neg

int

Fig. 1. (a)-(c) Truth domains: (a) 2-valued boolean logic, (b) Belnap logic, and (c) Fuzzy logic.
(d) An abstract domain for Z.

The best known truth domain is the classical boolean logic 2 with values true and
false. Its truth ordering is shown in the Hasse diagram in Figure 1(a), with negation
indicated in parentheses. Other examples include Belnap logic B, shown in Figure 1(b),
which extends boolean logic with two additional values: m and d, to represent “un-
known” and “inconsistent”, respectively; and Fuzzy logic F , shown in Figure 1(c). The
truth values of F are formed by the set of all real numbers in the closed interval [0, 1],
where 0 stands for false, 1 for true, and the remaining values stand for degrees of truth;
furthermore, negation is defined as ¬x � 1− x, so that ¬0 = 1 and ¬1 = 0.

Given a collection of elements U , a set over U is a function from U to a truth domain.
Thus, a boolean (or classical) set is a function from U to 2, a Belnap set is a function
from U to B, and a fuzzy set is a function from U to F . Set ordering and operations are
defined by pointwise extensions. Let S1, S2 : U → D be two sets. Then

S1 ⊆ S2 � ∀x · S1(x) � S2(x) S1 ∪ S2 � λx · S1(x) ∨ S2(x)
S1 � λx · ¬S1(x) S1 ∩ S2 � λx · S1(x) ∧ S2(x).

2.3 Modal μ-Calculus

In this section, we describe the modal μ-calculus [20], or Lμ.

Definition 1. Let Var be a set of variables and AP be a set of atomic propositions. The
logic Lμ(AP ) is the set of all formulas satisfying the grammar

ϕ ::= p | z | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | μz · ϕ(z),

where p ∈ AP , and z ∈ Var. Furthermore, z in μz · ϕ(z) must occur under the scope
of an even number of negations in ϕ(z).
Additionally, we define the following syntactic abbreviations:

ϕ ∨ ψ � ¬(¬ϕ ∧ ¬ψ) ϕ⇒ ψ � ¬ϕ ∨ ψ �ϕ � ¬♦¬ϕ νZ · ϕ(Z) � ¬μZ · ¬ϕ(¬Z)

The modal operator ♦ is typically interpreted as “an existence of an immediate fu-
ture”. For example, “p” means that p holds now, “♦p” means that there exists an imme-
diate future where p holds, and “�p” means that p holds in all immediate futures. The
quantifiers μ and ν stand for least and greatest fixpoint, respectively.

An occurrence of a variable z in a formula ϕ is bound if it appears in the scope of
a μ quantifier and is free otherwise. For example, z is free in p ∨ ♦z, and is bound in
μz · p ∨ ♦z. A formula ϕ is closed if it does not contain any free variables.
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A set-based interpretation of Lμ over a set domain DC is a mapping || · || from
closed Lμ formulas to D-sets over C. The elements of C are often called states, and
||ϕ||(c) = v is read as “the degree to which ϕ is satisfied by (or, true in) a state c is v”.

An Lμ model is a structureM = (DC , (pM)p∈AP ,♦M), whereDC is a set domain;
for each p ∈ AP , pM is in DC ; and ♦M : DC → DC is a ⊆-monotone function.
The set domain is called the universe of M, and pM and ♦M are interpretations of
atomic propositions and the ♦ operator, respectively. A modelM gives rise to an Lμ

interpretation || · ||M.
The interpretation ||ϕ||Mσ is defined inductively on the structure of the formula ϕ,

where σ : Var→ DC is an object assignment for free variables:

||p||Mσ � pM ||z||Mσ � σ(z)
||ϕ ∧ ψ||Mσ � ||ϕ||Mσ ∩ ||ψ||Mσ ||¬ϕ||Mσ � ||ϕ||Mσ
||μx · ϕ||Mσ � lfp⊆ λS · ||ϕ||Mσ[x 
→S] ||♦ϕ||Mσ � ♦M(||ϕ||Mσ )

where lfp⊆f is the ⊆-least fixpoint of f . For a closed Lμ formula ϕ, ||ϕ||Mσ = ||ϕ||Mσ′

for any σ and σ′. Thus, we write ||ϕ||M for that value, and define it to be the model-
based interpretation of ϕ.

Formulas of Lμ are often interpreted over Kripke structures. A Kripke structure is a
tuple K = (AP,C,D, I, R), where AP is a collection of atomic propositions, C is a
collection of elements (called states), D is a truth domain, I : AP → DC is a mapping
from atomic propositions to sets over C, and R : C → DC is a transition function
mapping each state to a set of its successors. For a transition function R, we define a
pre-image operator pre[R] : DC → DC and its dual p̃re[R] as:

pre[R](Q)(s) � ∨t∈C(R(s) ∩Q)(t) p̃re[R](Q) � pre[R](Q)

Intuitively, pre[R](Q)(s) is a degree to which the set R(s) of successors of s has a
non-empty intersection with Q. A Kripke structure K = (AP,C,D, I, R) gives rise to
an Lμ(AP ) modelM(K) = (DC , (pM(K))p∈AP ,♦M(K)), where pM(K) � I(p), and
♦M(K) � pre[R]. Finally, the interpretation || · ||K of Lμ in K is defined as ||ϕ||K �
||ϕ||M(K).

2.4 Abstract Interpretation

The framework of Abstract Interpretation (AI) provides a collection of tools for system-
atic design and analysis of semantic approximations [7]. The framework is very flexible
and can be applied in various ways. Below, we give a brief overview of AI, summarizing
the results used in our work.

Basics of Abstract Interpretation. Inputs to an AI framework are collections of con-
crete elements C and abstract elements A, called a concrete and an abstract domain,
respectively. A notion of approximation, or abstraction, is formalized by a soundness
relation ρ ⊆ A× C, where a ρ c is read as “a ρ-approximates c”.

A concretization function γ : A → 2C maps each abstract element to a set of con-
crete elements corresponding to it: γ(a) � {c | a ρ c}. An abstract element a is called
consistent if γ(a) �= ∅; otherwise, we say a is inconsistent. The elements of A can be
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thought of as properties, such as “positive” or “odd”, and γ(a) as a collection of con-
crete elements satisfying a. The concretization γ induces an approximation ordering
(ρ on A such that a (ρ b⇔ γ(a) ⊇ γ(b).

Intuitively, a (ρ b means that a approximates more concrete elements than b; there-
fore, a is less informative, or equivalently, less precise than b. When viewed as a prop-
erty, a is weaker than b. For example, knowing that an element is “positive” is less
informative than knowing that it is both “positive” and “odd”.

In this paper, an abstract domain A is equipped with an information ordering (A

such that (A,(A) is a lattice and a (A b ⇒ a (ρ b. Thus, we can study properties
of an abstract domain independently of any particular soundness relation. Furthermore,
we assume that A satisfies “the existence of a best approximation” [7], that is:

∀c ∈ C · ∃a ∈ A · (a ρ c ∧ ∀a′ ∈ A · a′ ρ c⇒ γ(a′) ⊇ γ(a))
and use α : C → A to denote an abstraction function that maps each concrete el-
ement to its best approximation. Note that for a given c, A may have several best
approximations; thus, α is not uniquely defined. In such cases, it is convenient to
use the (A-largest α, so that ρ and γ can be expressed as a ρ c ⇔ a (A α(c) and
c ∈ γ(a)⇔ a (A α(c), respectively.

A lower bound with respect to(ρ is called widening and is denoted by9. Intuitively,
for a set Q ⊆ A, 9Q is an abstract element representing the information common to
all elements of Q, i.e., γ(9Q) ⊇ ∪q∈Qγ(q). In particular, the greatest lower bound
�A of (A is a widening. A widening 9 is info-preserving if for any Q containing
no inconsistent elements, 9Q is the best representation of information common to all
elements of Q, i.e., ∀a ∈ A · γ(a) ⊇ ∪q∈Qγ(q)⇒ γ(a) ⊇ γ(9Q).

Abstract domains (A1,(1) and (A2,(2) are informationally equivalent if they rep-
resent the same degrees of information, that is, ∀a1 ∈ A1 · ∃a2 ∈ A2 · γ1(a1) = γ2(a2)
and ∀a2 ∈ A2 · ∃a1 ∈ A1 · γ1(a1) = γ2(a2).

For examples in this paper, we use the set of integers Z as a concrete domain, and the
domain A, shown in Figure 1(d), as the abstract domain. The soundness relation ρe ⊆
A × Z is self-explanatory, e.g., 2 is ρe-approximated by pos&evn, evn, pos, and int,
where pos&evn is its best abstract approximation. Similarly, γe(evn) is the set EVEN
of all even numbers, γe(neg) is the set NEG of all negative numbers, γe(neg&evn) is
NEG ∩ EVEN, etc.

Functional Abstraction. In practice, it is common to synthesize abstractions of com-
plex structures using abstractions of their parts. A particular application is abstraction
of functions, or functional abstraction [7].

Let A = A1 → A2 and C = C1 → C2 be collections of abstract and concrete func-
tions, where A1 and A2 are abstract domains approximating C1 and C2, respectively.
A soundness relation ρf ⊆ A × C is functional if g ρf -approximates f iff g preserves
soundness of f . Formally, ρf satisfies

g ρf f ⇔ ∀a1 ∈ A1 · ∀c1 ∈ γ1(a1) · g(a1) ρ2 f(c1) (functional soundness)

Let9 be a widening operator of A2, and α� : C → A be defined as

α(f)(a) � "c∈γ1(a)α2(f(c)) (functional abstraction)

Then α�(f) is a ρf -approximation of f , and its precision is determined by the precision
of the widening operator used.
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Theorem 1. [7] LetA, C, ρf , and α� be as above. If9 is info-preserving, then α�(f)
is the best ρf -approximation of f .

One of the main results of AI is that α� preserves fixpoints:

Theorem 2. [7] Let (C,�C) be a lattice, f : [C → C]↑ be a monotone function, and
(A,�A) be a lattice approximating C via ρC . If the join operator ∨A of A preserves
soundness, i.e., (αC(c1)∨AαC(c2)) (A αC(c1∨C c2), then the least fixpoint of α�(f)
ρC -approximates the least fixpoint of f : lfp�Aα�(f) ρC lfp�Cf .

Functional Abstraction and Monotone Functions. LetA = [A1 → A2] be as above,
and assume that A1 and A2 are equipped with information orderings(1 and(2, respec-
tively. Then the set A↑ = [A1 → A2]↑ of (-monotone functions is informationally
equivalent to A.Furthermore, if9 is an info-preserving widening of A2, then its point-
wise extension to functions is also an info-preserving widening ofA↑ [25]. Therefore, we
always restrict the abstract domain of functional abstraction to(-monotone functions.

3 Abstract Sets

Sets play the role of basic blocks in the definition of Lμ semantics. In this section, we
develop an abstraction of sets that preserves all set operations, including set comple-
ment. This abstraction gives us the necessary tools for abstracting Lμ models, which
we do in Section 4. But it is independent of Lμ and can be used anywhere abstract sets
are required.

We assume that C and A are a concrete and an abstract domain, respectively, re-
lated by a soundness relation ρe and an abstraction function αe. We aim to lift ρe to
a soundness relation ρs between concrete sets, i.e., functions from C into a fixed truth
domain D, and abstract sets, i.e., functions from A into some truth domain B (poten-
tially different from D). The goal of ρs is to preserve set membership: that is, if Sα

ρs-approximates S, then if a ∈ A ρe-approximates c, Sα(a) must approximate S(c).
As always, we also want to know when Sα is a best approximation of a given set S.

We view sets as functions, so it is natural to express ρs as a functional abstraction.
For this, we must first identify the notion of an abstract truth domain B and settle on the
meaning of “approximating truth values”.

3.1 Bilattices as Abstract Truth Domains

Intuitively, an abstract truth-domain B is a truth-domain and, therefore, has a truth or-
dering and a negation. It is also an abstract domain and needs an information ordering.
Furthermore, truth operations should not interfere with the information ordering. For
example, if a and b are in B and a is less informative than b, then negation of a (¬a)
must be less informative than ¬b.

A structure that captures our intuition is that of a bilattice, which has been introduced
by Ginsberg [15] to enable reasoning with partiality and inconsistency. Here, we briefly
describe distributive bilattices.
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Definition 2. [15] A distributive bilattice is a structure B = (B,(,�,¬) such that:
(1) Bi = (B,() is a lattice and Bt = (B,�,¬) is a De Morgan algebra; (2) meet (�)
and join (�) of Bi, and meet (∧) and join (∨) of Bt are monotone with respect to both
( and �; (3) all meets and joins distribute over each other; and (4) negation (¬) is
(-monotone.

The ordering( ranks elements of B with respect to information, and� ranks them with
respect to truth. Operations∧ and ∨ of Bt are called conjunction and disjunction. In the
spirit of AI, we refer to � and � as widening and narrowing, respectively.

De Morgan algebras have a natural connection to bilattices.

Theorem 3. [15, 14]. Let D = (D,≤,−) be a De Morgan algebra, and B(D) be a
structure (D ×D,(,�,¬) such that

〈a, b〉 � 〈c, d〉 � a ≤ c ∧ b ≤ d 〈a, b〉 � 〈c, d〉 � a ≤ c ∧ d ≤ b ¬〈a, b〉 � 〈b, a〉
Then, B(D) is a distributive bilattice. Furthermore, every distributive bilattice is iso-
morphic to B(D) for some De Morgan algebra D.

For a truth-domain D, an element 〈x, y〉 of B(D) is interpreted as a truth value
whose degree of truth is x and degree of falsity is y. For example, B(2) consists of
four elements: 〈t, f〉 representing true – maximal degree of truth and minimal degree of
falsity, 〈f, t〉 representing false, 〈f, f〉 representing lack of knowledge – minimal degree
of both truth and falsity, and 〈t, t〉 representing an inconsistency (or disagreement) –
maximal degree of both truth and falsity. It is easy to verify that B(2) is exactly Belnap
logic shown in Figure 1(b). For convenience, we introduce projections πt and πf defined
as πt(〈x, y〉) � x and πf(〈x, y〉) � y.

Guided by the above intuition, we say that B(D) is an abstract truth-domain corre-
sponding to a truth domainD. Intuitively, 〈x, y〉 ∈ B(D) approximates c ∈ D if x is no
more true than c, and y is no more false than c. In particular, 〈c,−c〉 is the best approx-
imation of c. Formally, this is captured by an abstraction function αt(c) � 〈c,−c〉, and
a soundness relation ρt � {(a, c) | a ( αt(c)}.

It is easy to verify that truth operations of B(D), including negation, preserve sound-
ness. That is, if a1 ( αt(c1) and a2 ( αt(c2), then a1 ∧ a2 ( αt(c1 ∧ c2), a1 ∨ a2 (
αt(c1 ∨ c2), and ¬a1 ( αt(¬c1). Furthermore, � is an info-preserving widening.

3.2 Set Abstraction

We now formally define the soundness relation ρs between concrete (C → D) and
abstract (A→ B(D)) sets as:

Sα ρs S � ∀a ∈ A · ∀c ∈ γe(a) · Sα(a) � αt(S(c)) (set soundness)

The soundness relation ρs is functional, and the corresponding abstraction function αs

follows immediately from Theorem 1:

αs(S)(a) � #c∈γe(a)αt(S(c)) (set abstraction)

Note that αs(S)(a) = 〈x, y〉 means that the elements in γe(a) belong to S with a truth
degree of at least x, and to S with a truth degree of at least y. In particular, if S is a
boolean set, then αs(S) is a Belnap set; αs(S)(a) is t iff γe(a) is contained in S, f iff
γe(a) is contained in S, m iff γe(a) is not contained in either S or S, and d iff γe(a) is
contained in both S and S.



Systematic Construction of Abstractions for Model-Checking 389

(a) (b)

Lμ
Interpre-

tation

Lμ
Model

Kripke
Structure

Section 4

Section 5

Concrete Abstract

Lμ → DC Lμ → B(D)A
↑

〈DC , (pC

p∈AP ),♦C〉 〈B(D)A
↑

, (pA

p∈AP ),♦A〉

〈C,D, IC,RC〉 〈A,B(D), IA,RA〉

ρi

ρm

ρK

|| · ||C || · ||A

ρs

ρs

ρs
ρ♦

ρT

odd

neg&
evn

pos&
evn

neg&
odd

pos&
odd

evn

t t

d

m

d

m

m t

m

d

m

d

m
d d

Fig. 2. (a) Abstracting Lμ: the top row summarizes soundness relations for abstracting Lμ inter-
pretations; the middle one – Lμ models, i.e., interpretions of atomic propositions and ♦ relation;
the bottom one – Lμ-preserving abstractions of Kripke structures. (b) A fragment of the abstrac-
tion αT (R1), where R1(x) = x + 1.

For example, an abstraction αs(EVEN) of a boolean set EVEN ∈ 2Z is

αs(EVEN)(a) �
t if γe(a) ⊆ EVEN

f if γe(a) ⊆ ODD

m otherwise

Note a difference between an abstract element evn and an abstract set αs(EVEN). The
former represents a property of being an even number, and γe(evn) = EVEN is the set
of all numbers having this property. On the other hand, αs(EVEN) represents a set that
contains all even and no odd numbers; hence, γs(αs(EVEN)) = {EVEN} is a singleton
containing the only set satisfying these conditions.

Recall that the set operations of B(D)A are pointwise extensions of the correspond-
ing operations of B(D); therefore, they preserve soundness. For example, if Sα ρs-
approximates S, then Sα ρs-approximates S, etc.

Finally, since ρs is functional, following the discussion in Section 2.4, we restrict
the domain of abstract sets to (-monotone functions, i.e., to B(D)A

↑ . Note that abstract
set operations preserve (-monotonicity and do not interfere with this restriction. This
gives us with a abstract domain for sets that (a) preserves all set operations and (b) has
an info-preserving widening. We use elements of this abstract domain as basic blocks
for designing Lμ-preserving abstractions in the next section.

4 Abstract Interpretation for Modal μ-Calculus

In this section, we develop an abstraction of Lμ models that is sound w.r.t. satisfaction
and refutation of all Lμ formulas, i.e., if an Lμ formula is satisfied (refuted) by the
abstract model, it is satisfied (refuted) by the concrete one. We start by formalizing the
notion of Lμ-preserving approximation in the language of AI, and then systematically
extend it to the desired abstraction. The top half of the diagram in Figure 2(a) illus-
trates the structures and relations discussed in this section, where solid lines represent
relations between structures, and dashed those between their components.



390 A. Gurfinkel, O. Wei, and M. Chechik

We assume that C is a collection of concrete elements, called states, andD is a truth
domain. Recall from Section 2.3 that an interpretation of Lμ || · || over a set domainDC

maps each closed Lμ formula to a D-set over C, where ||ϕ||(c) is the degree to which
a formula ϕ is true in a state c.

Let A be an abstract domain approximatingC via a soundness relation ρe, and B(D)
be an abstract truth domain approximating D via a soundness relation ρt as defined in
Section 3.1. Furthermore, let || · ||α be an interpretation of Lμ formulas as B(D)-sets
over A.

A natural way to extend the soundness relation ρe from states to Lμ interpretations
is to say that || · ||α approximates || · || if for every Lμ formula ϕ and every abstract state
a ∈ A, ||ϕ||α(a) approximates the degree to which ||ϕ|| is true for every concrete state
c corresponding to a. We denote this soundness relation by ρi and formalize it using the
set soundness relation ρs, defined in Section 3.2, as

|| · ||α ρi || · || � ∀ϕ ∈ Lμ · ||ϕ||α ρs ||ϕ|| (Lμ soundness)

In this paper, we are only interested in the model-based interpretations of Lμ. A
natural way to extend ρi to models is to say that a concrete model C is approximated by
an abstract model A if the corresponding Lμ interpretation || · ||C is approximated by
|| · ||A. Formally, we define a model soundness relation ρm as

A ρm C � || · ||A ρi || · ||C (model soundness)

In the rest of this section, we employ the AI framework to construct an abstract
model A that is a best ρm-approximation of a given concrete model C. As discussed in
Section 3, we restrict the universe of A to (-monotone functions from A to B(D).

We first outline the steps involved: (1) define a soundness relation ρ♦ between inter-
pretations of the ♦ operator and derive the corresponding abstraction function α♦; (2)
show that an abstract model A = (B(D)A

↑ , (p
A)p∈AP ,♦A) ρm-approximates a con-

crete model C = (DC , (pC)p∈AP ,♦C) if for each p ∈ AP , pA ρs-approximates pC ,
and ♦A ρ♦-approximates ♦C ; (3) conclude that the best approximation of C is given by
αm(C) � (B(D)A

↑ , (αs(pC))p∈AP , α♦(♦C)).

Step 1. For a given Lμ-model, an interpretation of modal formulas, i.e. formulas with ♦
but no fixpoint quantifiers, is determined by the model’s interpretation of the ♦ operator.
Thus, we define ρ♦ as follows:

♦A ρ♦ ♦C � ∀X ∈ B(D)A
↑ · ∀Y ∈ γs(X) · ♦A(X) ρs ♦C(Y ) (♦-soundness)

Following Theorem 1, its corresponding abstraction function α♦ is defined as

α♦(♦C)(X) � #Y ∈γs(X) αs(♦C(Y )) (♦-abstraction)

Step 2. To show that an abstract modelA ρm-approximates a concrete model C if each
component of A approximates the corresponding counterpart of C, we need to show
that for any formula ϕ, ||ϕ||A ρs-approximates ||ϕ||C .

Theorem 4. Let C = (DC , (pC)p∈AP ,♦C) be a concrete model, A = (B(D)A
,

(pA)p∈AP , ♦A) be an abstract model such that A approximates C via a soundness
relation ρe. Then,A ρm C ⇐ ∀p ∈ AP · pA ρs p

C ∧ ♦A ρ♦ ♦C .

The theorem is proved by structural induction on ϕ, using Theorem 2 for cases where
ϕ contains a fixpoint quantifier.
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Step 3. Finally, we define an abstraction function αm that maps each concrete model to
its best abstract approximation:

αm(C) � (B(D)A
↑ , (αs(pC))p∈AP , α♦(♦C)) (model abstraction)

For example, consider a concrete boolean model C = (2Z, pC ,♦C), where pC =
EVEN and ♦C = λS · {y | y + 1 ∈ S}. Then, ♦p is interpreted in C as ||♦p||C =
♦C(EVEN) = ODD, and in the abstraction of C as ||♦p||αm(C) =α♦(♦C)(αs(EVEN))=
αs(ODD).

The resulting abstraction function αm allows us to abstract Lμ models, obtaining ab-
stractions which are both sound and precise. However, αm depends on an interpretation
of ♦ modality, which we left unspecified. We study this subject below.

5 Abstraction of Kripke Structures

In practice, the ♦ modality is often interpreted using a Kripke structure. In this sec-
tion, we are interested in conditions under which a Kripke structure over an abstract
statespace (i.e., an abstract Kripke structure) is a best approximation of a given concrete
one. We show that the framework of AI provides an elegant and almost mechanical way
to answer this question.

Approximating Kripke Structures. Below, we aim to extend the soundness relation
ρm between models to a soundness relation ρK between Kripke structures, and derive a
corresponding abstraction function αK.

Throughout this section, we assume that C = (C,D, IC , RC) is a concrete Kripke
structure over concrete states C and a truth domain D, and A = (A,B(D), IA, RA)
is an abstract Kripke structure, where A is an abstract domain related to C via ρe, and
B(D) is an abstract truth domain related to D via ρt.

The soundness relation ρK on Kripke structures is defined as a restriction of the
model soundness relation ρm (see Figure 2(a)):

A ρK C �M(A) ρmM(C) (Kripke soundness)

By Theorem 4, ρK is decomposed over the components of the Kripke structure:

A ρK C ⇐ (∀p ∈ AP · IA(p) ρs IC(p)) ∧RA ρT RC

where the relation ρT between transition functions is defined as:

RA ρT RC � pre[RA] ρ♦ pre[RC] (transition soundness)

The abstraction functionαs corresponding to ρs has already been defined in Section 3.2.
Thus, the only missing ingredient for defining αK is the transition abstraction αT . Un-
fortunately, the soundness relation ρT is not functional; making Theorem 1 not ap-
plicable. However, we show below that ρT can be easily made functional. We begin by
introducing an intersection operator isct: isct(X)(S) � ∨t(X ∩ S)(t) which allows us
to express the pre-image of a transition function R as pre[R](Q) = λs · isct(R(s))(Q).
We then define a functional soundness relation ρisct (see Figure 3(a)):

isct(X) ρisct isct(Y ) � ∀S ∈ B(D)A
↑ · ∀Q ∈ γs(S) · isct(X)(S) ρt isct(Y )(Q)

Noticing that isct(X) is determined by a set X , we extend ρisct to a soundness
relation ρ∩ between sets (see Figure 3(b)):
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Fig. 3. (a) Soundness relations between ♦ modality and transition function; (b) Detail of (a):
relations ρisct and ρ∩

X ρ∩ Y � isct(X) ρisct isct(Y ) (successor soundness)

Finally, ρT is made functional:

RA ρT RC ⇔ pre[RA] ρ♦ pre[RC]
⇔ ∀a ∈ A · ∀c ∈ γe(s) · isct(RA(a)) ρisct isct(RC(c))
⇔ ∀a ∈ A · ∀c ∈ γe(s) ·RA(a) ρ∩ RC(c)

However, ρ∩ is still not functional! Thus, before applying Theorem 1 to construct
αT , we need to construct the abstraction function α∩ directly, i.e., without using Theo-
rem 1. We do so below.

Abstraction of Intersection. Intuitively, the ideal abstraction α∩ is such that the di-
agram in Figure 3(b) commutes. That is, α∩(X) = Y implies that αisct(isct(X)) =
isct(Y ). Note that ρisct is functional, thus the definition of αisct(isct(X)) follows from
Theorem 1. Following a standard technique of AI, we proceed to reorganize this de-
finition until the emergence of conditions under which Y ∈ B(D)A is the best ρ∩-
abstraction of X . This derivation is simple but long, and is omitted from the paper. For
details, please see full version of this paper [19]. Here, we only show the final result.

Theorem 5. Let C and (A,(A) be a concrete and an abstract domain related by ρe,
D and B(D) be truth-domains related by ρt, and for X ∈ DA, let α∩ be defined as

α∩(X)(a) � 〈∨c∈γe(a)X(c),∧c∈γ̃e(a)¬X(c)〉,

where γ̃e(a) � {c ∈ C | αe(c) (A a} is a dual-conretization function. Then,
αisct(isct(X)) = isct(α∩(X)).

To construct αT using Theorem 1, we need an info-preserving widening. The widen-
ing � on B(D)A – the pointwise extension of � of B(D) – is not info-preserving in
general. Instead, we restrict the abstract domain to the (-antimonotone functions, i.e.,
to B(D)A

↓ , since (a) B(D)A
↓ is informationally equivalent to B(D)A, and (b) it makes

pointwise widening � info-preserving. Note that α∩(X) is already (-antimonotone.

Abstraction of Transition Functions. Once the abstraction α∩ is defined, the abstrac-
tion of transition functions αT follows from Theorem 1:

αT (RC)(a) � #c∈γe(a)α∩(RC(c)) (transition abstraction)
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By expanding α∩, αT can be alternatively expressed as:

πt(αT (RC)(a)(b)) = ∧c∈γe(a) pre[RC ](γe(b))(c)
πf(αT (RC)(a)(b)) = ∧c∈γe(a) p̃re[RC ](¬γ̃e(b))(c)

That is, if RA = αT (RC), then a transition RA(a)(b) between abstract states a and b
is as true as the least degree with which all concrete states in γe(a) have a successor in
γe(b), and as false as the least degree with which all successors of states in γe(a) are
not in γ̃e(b).

Note that so far, we have made no assumptions on the concrete transition function.
However, if the concrete transition function RC is boolean, then RA = αT (RC) is
B(2)-valued and satisfies:

RA(a)(b) = 〈γe(a) ⊆ pre[RC](γe(b)), γe(a) ⊆ p̃re[RC](¬γ̃e(b))〉
For example, let R1(x) � x + 1. A fragment of its abstraction αT (R1) is shown in
Figure 2(b), where pos, neg and int are removed for clarity. For any even x, x +
1 is definitely odd, but it maybe positive or negative. Thus, the transition from evn
to odd is d, and transitions to pos&odd and to neg&odd are m. Note that the pre-
image of αT (R1) approximates the pre-image of R1, e.g., pre[αT (R1)](αs(EVEN)) =
αs(ODD).

Finally, the best abstract Kripke structure αK(C) of a concrete Kripke structure C =
(C,D, IC , RC) is obtained compositionally:

αK(C) � (A,B(D), αs ◦ IC, αT (RC)) (Kripke abstraction)

Thus, we were able to systematically derive rules for abstracting Kripke structures
by abstract Kripke structures.

Note that the diagram in Figure 3(a) does not commute, i.e., α♦(pre[R]) �=
pre[αT (R)]. Thus, for a given Kripke structure, its best abstraction by an abstract Lμ-
model is more precise than its best abstraction by an abstract Kripke structure. For
example, let R2 be

R2(x) �
2x if x ≥ 5 ∧ x ∈ ODD

−x if 0 ≤ x < 5 ∧ x ∈ ODD

−2 otherwise

and X � (POS ∩ EVEN) ∪ (NEG ∩ ODD). Then, α♦(pre[R2])(αs(X))(pos&odd) =
αs(POS ∩ ODD)(pos&odd) = t, but pre[αT (R2)](αs(X))(pos&odd) = m. This
shows that transition systems are not necessarily the best abstract domain for Lμ-
preserving abstractions.

6 Application: Abstraction of Classical Kripke Structures

In this section, we look at boolean Kripke structures and compare our abstraction to
that of Dams et al. [8], which provides an alternative way of computing the best Lμ-
preserving abstraction of Kripke structures.

We begin by addressing minor differences between the two approaches. First, the
goal of [8] is to preserve satisfaction of positive Lμ, i.e., a fragment of Lμ with negation
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restricted to atomic propositions. Second, Kripke structures are abstracted by Mixed
Transition Systems (MixTSs). Essentially, a MixTS is a Kripke structure with two sep-
arate transition relations, RC and RF , called constrained and free, respectively. The
interpretation of Lμ over MixTSs is the same as its interpretation over Kripke struc-
tures, with the exception that ♦ is interpreted as pre[RC ] and � – as p̃re[RF ].

Note that positive Lμ is as expressive as full Lμ: for every Lμ formula ϕ there exists
an equivalent positive formula NNF(ϕ), its negation normal form. Thus, an abstraction
that preserves positive Lμ easily extends to full Lμ. Furthermore, the next theorem
shows that MixTSs are equivalent to B(2)-valued Kripke structures.

Theorem 6. Let T be a MixTS with statespace A and transition functions RC and RF ,
and K be a B(2)-valued Kripke structure with the same statespace, and a transition
function RK such that RK(a)(b) = 〈RC(a)(b),¬RF (a)(b)〉. Then, for any Lμ formula
ϕ, ||ϕ||K = 〈||NNF(ϕ)||T , ||NNF(¬ϕ)||T 〉.

Thus, in the case of boolean Kripke structures, the abstraction developed in this paper is
equivalent to that of [8]: same structures are used as an abstract domain, and exactly the
same Lμ formulas are preserved. However, unlike the approach taken in [8], our work
systematically derives both the abstraction and the notion of abstract Kripke structures
from Lμ-preservation and the soundness relation ρs between concrete and abstract sets.

It is interesting to note that although the two abstractions are equivalent w.r.t satis-
faction of Lμ, they are not identical. For completeness, Dams et al. show that the most
precise MixTS abstracting a Kripke structure satisfies the following conditions:

RC(a, b) ⇔ b ∈ {#y∈Y αe(y) | Y ∈ min{Y ′ | R∀∃(γe(a), Y ′)}}
RF (a, b) ⇔ b ∈ {#y∈Y αe(y) | Y ∈ min{Y ′ | R∃∃(γe(a), Y ′)}}

where R∀∃(S, T ) � ∀s ∈ S · ∃t ∈ T · R(s)(t) and R∃∃(S, T ) � ∃s ∈ S · ∃t ∈
T ·R(s)(t). It is different from our abstraction αT , which, when put in this notation, is:

αT (R)(a)(b) = 〈R∀∃(γe(a),γe(b)),¬R∃∃(γe(a), γ̃e(b))〉

We believe that our characterization is simpler; however, it remains to be seen whether
it is also more useful in practice, e.g., if it leads to a smaller symbolic representation, or
easier to construct compositionally, etc. We leave this topic for future work.

7 Related Work

Over the years, many abstraction methods have been developed for Lμ model-checking
[5, 8, 12, 17, 21, 22, 24]. They concentrate on a specific model – transition systems and
most of them preserve soundness (satisfaction) for fragments of Lμ: if an abstract sys-
tem is an over-approximation of the concrete one, the abstraction is sound for all uni-
versal properties. Similarly, a sound abstraction for existential properties comes from
under-approximation.

The first approach for sound abstraction of full Lμ was proposed by Larsen and
Thompsen [21]. They have shown that Modal Transition Systems (MTS) can be used
to combine both over- and under-approximations. However, the goal of this work is not
abstraction, and it did not consider the problem of how to abstract a Kripke structure
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using an MTS. The construction problem is addressed by Dams et al. [8], who indepen-
dently proposed using MixTSs, a slight generalization of MTSs, as abstract models, and
provided conditions for constructing an MixTS with the best precision. Although this
work uses AI to describe the relationship between concrete and abstract statespaces, ab-
stract transition systems are not derived systematically; instead, the optimal conditions
are defined based on intuition, and both soundness and optimality of precision require
separate proofs.

Among the attempts of using AI to systematically derive best abstractions, the work
of Loiseaux et al. [22] and Schmidt [23] are the closest to ours. [22] showed how to
derive a simulation-based sound abstract transition system from Galois connections
within the AI framework, but their results apply only to the universal fragment of
Lμ. Motivated by the study of MixTSs, [23] showed how to capture over- and under-
approximations between transition systems using AI and systematically derived Dams’s
most precise results. However, the starting goal of this work was formalizing the over-
and the under-approximations, restricting the result to the specific Lμ models, namely,
transition systems. On the other hand, in our work we start from formalizing the no-
tion of soundness of Lμ interpretations – the most general and exact goal of abstrac-
tion for Lμ (via the soundness relation ρi in Section 4), and then systematically de-
rive conditions which guarantee the best precision of the abstraction. Thus, our re-
sults can be applied to different Lμ models, where abstracting transition systems is
just a special case.

Another important feature of our work is the use of bilattices. The approaches of
[8, 23] develop best over- and under-approximations separately, whereas our combina-
tion of AI with bilattices provides a uniform way for abstraction of both satisfaction and
refutation of Lμ. Multi-valued logic has been previously combined with abstraction in
the form of 3-valued transition systems (e.g. [16]). However, these results do not use
the framework of AI, and, in particular, only deal with soundness and not the precision
of the abstraction. Furthermore, 3-valued Kripke structures (unlike those based on Bel-
nap logic) lack monotonicity [24]: a more refined abstract domain does not necessarily
result in a more precise abstraction, and thus the most precise abstraction may not even
exist.

8 Conclusion

In this paper, we have shown that abstract interpretation provides a systematic way
for designing abstractions for model-checking. On one hand, our work can be seen as
recreating the pioneering work of Dams et al. [8] in a systematic setting where each
step in designing an abstraction and each loss of precision can be traced back to either
the choice of an abstract domain, or the requirements on the abstract structure. On
the other hand, our work also extends their results to non-traditional interpretations of
Lμ, such as its multi-valued [4] and quantitative [10] interpretations. To the best of
our knowledge, this is the first abstraction technique that can be applied to these non-
classical interpretations.

In this paper, we lay the basic groundwork for designing Lμ-preserving abstractions
using the framework of AI. However, our work can be easily extended in a number of
directions. We discuss a few of them below.
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We have shown that requiring that an abstraction of a transition system be a transition
system as well, comes with a loss of precision. Thus, it may be interesting to explore
how a transition system can be abstracted directly by an abstractLμ model. Such models
will require new model-checking algorithms, but will provide additional precision, and
possibly be easier to construct. For example, recent work on symmetry reduction [13]
argues that instead of constructing a reduced abstract model, the symmetry-reduced ♦
modality can be implemented directly by putting symmetry reduction inside the model-
checking algorithm. We believe that our framework can be used to extend this approach
to other, non-symmetry induced, abstract domains. Our work on a software model-
checker YASM [18] is a first step in this direction.

In designing abstractions of Kripke structures, we have assumed that the domain and
range of the transition function are abstracted by the same abstract domain. This need
not be the case. By using different but related abstract domains, we obtain a generaliza-
tion of “hyper-transition abstractions” [24, 11] to arbitrary abstract domains.

Although not shown explicitly in the paper, the pointwise extension of the bilattice
narrowing operator � to abstract structures provides a simple way to combine several,
not necessarily best, abstractions. This allows us to study incremental construction of
abstractions, such as the one in [1].

We believe that our framework provides an interesting starting point for exploring the
connection between AI and model-checking, and hope to continue this line of research
in the future.
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Abstract. Traditional scheduling models assume that the execution
time of a job in a periodic job-set is constant in every instance of its
execution. This assumption does not hold in real-time systems wherein
job execution time is known to vary. A second feature of traditional mod-
els is their lack of expressiveness, in that constraints more complex than
precedence constraints (for instance, relative timing constraints) cannot
be modeled. Thirdly, the schedulability of a real-time system depends
upon the degree of clairvoyance afforded to the dispatcher. In this pa-
per, we shall discuss Totally Clairvoyant Scheduling, as modeled within
the E-T-C scheduling framework [Sub05]. We show that this instantia-
tion of the scheduling framework captures the central issues in a real-time
flow-shop scheduling problem and devise a polynomial time sequential
algorithm for the same. The design of the polynomial time algorithm
involves the development of a new technique, which we term Mutable
Dynamic Programming. We expect that this technique will find applica-
tions in other areas of system design, such as Validation and Software
Verification.

1 Introduction

Real-time scheduling is concerned with the scheduling of computer jobs which
are part of periodic job-sets. The execution times of these jobs are known to
vary, as we move from one period to the next [AB98]. The most common cause
for this feature is the presence of input-dependent loops in the program; the
time taken to execute the loop structure for(i=1 to N), will in general be
lesser when N=10, than when N=1000. A second reason for this variance is
the statistical error associated with measuring execution times [LTCA89]. Con-
sequently the traditional approach of assuming a fixed execution time for jobs
[Pin95] may not be appropriate “hard” in real-time situations, where scheduling
policies should hold regardless of the actual time taken to execute by each job.
Traditional models suffer from a second drawback, viz., the inability to spec-
ify complex constraints such as relative timing constraints. The literature on
deterministic scheduling focuses almost exclusively on ready-time, deadline and
precedence constraints [GLLK79]. In real-time applications though, there is of-
ten the necessity to constrain jobs through relationships of the form: Start Job
� The research of this author was supported in part by the Air Force of Scientific
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J5 at least 5 units after Job J2 terminates, Start Job J5 within 12 units of Job
J2 starting. Such relationships cannot be captured through precedence graphs,
which are by definition, Directed Acyclic Graphs, whereas systems of relative
timing constraints in real-time scheduling clearly contain cycles.

An important feature of any scheduling model is the schedulability predicate,
i.e., what it means for a job-set to be schedulable [Sub05]. In fact, the complexity
of the scheduling problem under consideration is determined in large part by the
type of guarantee that we wish to provide. In this paper, our focus is on providing
a polynomial time algorithm for Totally Clairvoyant Scheduling in the presence
of relative timing constraints.

The principal contributions of this paper are as follows:

(a) Modeling a flow-shop problem as an instance of Totally Clairvoyant schedul-
ing with relative timing constraint,

(b) Developing a polynomial time algorithm for this problem, and
(c) Introducing a new algorithmic technique called Mutable Dynamic Program-

ming (See Sections §4 and §6).

It is to be noted that at its heart, the Totally Clairvoyant Scheduling problem
is concerned with the verification of a quantified expressions. Such quantified
expressions are often found in the modeling of continuous real-time and embedded
systems and hence our algorithm can be thought of as an efficient verification
mechanism for these kinds of problems.

2 Statement of Problem

In this section, we detail a formal description of the problem under consideration.

2.1 Job Model

Assume an infinite time-axis divided into windows of length L, starting at time
t = 0. These windows are called periods or scheduling windows. There is a set
of non-preemptive, ordered jobs, J = {J1, J2, . . . , Jn} that executes in each
scheduling window. The occurrences of the same job in different windows are
referred to as instances of that job. The jobs must execute in the sequence
J1, J2, . . . , Jn.

2.2 Constraint Model

The constraints on the jobs are described by System (1):

A · [�s �e]T ≤ �b, �e ∈ E, (1)

where,

(a) A is an m×2 ·n rational matrix, �b is a rational m− vector, (A, �b) is called
the initial constraint matrix.
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(b) E is an axis-parallel hyper-rectangle (aph) which is represented as the prod-
uct of n closed intervals [li, ui], i.e.,

E = [l1, u1]× [l2, u2]× . . .× [ln, un] (2)

We are modeling the fact that the execution time of a task can take any
value in the range [li, ui] during actual execution and is not a fixed constant.
Observe that E can be represented as a polyhedral system M · �e ≤ �m, hav-
ing 2 · n constraints and n variables.

(c) �s = [s1, s2, . . . , sn]T is the start time vector of the jobs, and
(d) �e = [e1, e2, . . . , en]T ∈ E is the execution time vector of the jobs. We re-

iterate that �e could be different in different windows, i.e., different task
instances of the same job could have different execution times (within the
specified interval [li, ui] for Ji) in different scheduling windows. However, in
any particular period, the execution time of the job is fixed and known at
the start of the period.

The jobs are non-preemptive; hence the finish time of job Ji (with start time
si) is si + ei. The expressive power of the scheduling framework is therefore
not enhanced by introducing separate finish time variables to model constraints.
The ordering on the jobs is achieved by the constraint set: si + ei ≤ si+1 ∀i =
1, 2, . . . , n−1; these constraints are part of the A matrix. In the absence of order-
ing, the constraints on the job system cannot be captured through a polynomial-
sized linear system, unless P=NP, since integer variables will be required to enforce
non-preemption [Hoc96, Pin95].

We only permit relative timing constraints between jobs. These constraints
are of the form: si +ei ≤ sj +ej +a, si +ei ≤ sj +a, si ≤ sj +ej +a, si ≤ sj +a,
where a is an arbitrary integer and express relative timing (distance) constraints
between the jobs Ji and Jj . As indicated, the constraints can exist between start
or finish times of the jobs. Note that these constraints are a superset of absolute
constraints, i.e., constraints of the form: si ≤ a, si ≥ a or si + ei ≤ a, si + ei ≥ a,
where a is some positive integer.

The above constraints have also been called “standard” constraints [GPS95]
in the literature. We shall be using the terms “standard constraint” and relative
constraint interchangeably, for the rest of the discussion.

2.3 Query Model

In the real-time applications that we consider such as Flow-Shop (see Section
§3), it is possible to calculate with sufficient accuracy the execution times of the
jobs in the current period and a few periods into the future. Totally Clairvoyant
Scheduling assumes knowledge of the execution time of every job in the job-set,
at the start of each scheduling window; the execution time vector may be differ-
ent in different windows. We wish to enforce the condition that the constraints
described by System (1) are met in each scheduling window, regardless of the
actual execution times of the jobs. Further, the start-time vector can depend
upon the execution time vector of that window.
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We are now in a position to formally state the Totally Clairvoyant schedula-
bility query:

Q : ∀�e = [e1, e2, . . . , en] ∈ E ∃�s = [s1, s2, . . . , sn] A · [�s �e]T ≤ �b ? (3)

The focus of this paper is on the design of a polynomial time procedure to
decide Query (3) (henceforth Q).

3 Motivation

In this section, we show that a practical real-time scheduling problem can be
captured as an instance of Totally Clairvoyant scheduling, with relative timing
constraints.

M1 M2 M3 Mn

Objects of different sizes

Buffer A Buffer B Buffer C

Relative Timing Constraints

Flow direction [Solid arrows]

[dashed arrows]

Fig. 1. Bounded-buffer Flow Shop

Figure (1) represents a bounded buffer flow shop. The flow shop consists of
n machines M1 through Mn and one or more feed-buffers (or feeders). In our
example these buffers are A, B and C. Objects to be tooled also called jobs are
placed in these buffers. The timeline on which the flow shop operates is divided
into equal length portions called periods. At the start of each period, the job in
the each buffer moves to the buffer ahead of it, while the job in the first buffer
(Buffer A) enters machine M1. Within the period, the job moves sequentially
from machine Mi to machine Mi+1, respecting the relative timing constraints
(represented by the curved, broken arrows) and finally exits at machine Mn

before the end of the period. Relative timing constraints are used to capture
relationships such as heating and cooling requirements; for instance the require-
ment that the object should wait 5 units of time after exiting machine M1, before
it enters machine M2 is represented as: s2 ≥ s1 + e1 + 5, where s2 is the time at
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which the object enters M2 and s1 + e1 is the time at which it exits M1. This
process is repeated in every period with new objects continuously entering the
flow at the last buffer. (This example is taken from [Pin95].) Let si denote the
time at which the machine Mi begins operating on the current job and let ei

denote the time it takes to complete its operation on the job.
Observe that the operation time of machine Mi on a job, i.e., ei is a non-

decreasing function of the job size. As shown Figure (1), the buffer pipeline is
populated by jobs of different sizes and hence ei is different for different jobs.
Design Problem: Given

1. Timing constraints between the flow shop machines,
2. Lower and Upper bounds on the operation time of by each machine,

Does there exist a valid schedule i.e., a schedule that respects the timing

constraints, for any job with size sz, where szli ≤ sz ≤ szui, i = 1, 2, . . . , n?
The flow-shop example in this section is easily modeled as a Totally Clair-

voyant scheduling problem, with the machines acting as the jobs with variable
execution times.

4 Related Work

In [Sub05], we introduced the E-T-C scheduling framework as a model to iden-
tify and represent issues in real-time scheduling. Within the framework of that
model, Zero-Clairvoyant scheduling has been addressed in [Sub02] and Partially
Clairvoyant Scheduling has been detailed in [GPS95, CA00]. This is the first pa-
per on Totally Clairvoyant scheduling. We point out that the variable elimination
techniques used for Partially Clairvoyant scheduling do not seem to work in case
of Totally Clairvoyant scheduling for the following reason: Standard constraints
are preserved under job elimination in Partially Clairvoyant scheduling, whereas
they are not preserved under job elimination in Totally Clairvoyant Schedul-
ing. This has led us to develop a novel approach for the Totally Clairvoyant
scheduling problem, which we term Mutable Dynamic Programming.

Orthogonal approaches to the issues of clairvoyance and speed have been
discussed extensively in [KP00]. A number of online scheduling models with and
without clairvoyance are discussed in [FW98]; however their primary concern is
optimizing performance metrics in the presence of multiple processors, whereas
we are concerned with checking feasibility on a single processor.

5 The Complement Problem

A simple technique to test the schedulability of a Totally Clairvoyant system is
as follows: Let �e1, �e2, . . . �el be the extreme points of E. Substitute each extreme
point of E in the constraint system A · [�s �e]T ≤ �b and declare Q to be true if
and only if each of the resulting linear systems (in the start-time variables) is
feasible; since any execution time vector �e′ ∈ E can be expressed as a convex
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combination of the extreme points of E. Unfortunately such a strategy takes
Ω(2n) time, since E has 2n extreme points. In this section, we shall study the
complement of Query (3); our insights into the complement problem will be used
to develop a polynomial time algorithm in Section §6.

Let us rewrite Query (3) as:

∀�e ∈ E ∃�s G ·�s + H · �e ≤ �b, �s ≥ �0? (4)

The complement of Query (4) is:

∃�e ∈ E ∀�s G ·�s + H · �e �≤ �b, �s ≥ �0? (5)

where the notation A · �x �≤ �b means that at least one of the constraints is vi-
olated. By applying Farkas’ Lemma [Sch87], we know that Query (5) is true if
and only if the query:

∃�y ∃�e ∈ E �y ·G ≥ �0, �y · (�b−H · �e) < 0, �y ≥ �0? (6)

is true.
Construct the weighted directed graph G =< V,F, c > as follows:

1. Corresponding to each start time variable si add the vertex vi to V
2. Corresponding to each constraint of the form lp : si(+ei) ≤ sj(+ej)+k, add

a directed edge of the form vi � vj having cost clp = (ej)− (ei) + k.

G is called the constraint graph corresponding to the constraint system
A · [�s �e]T ≤ �b.

Remark 5 1 In the above construction, it is possible that there exist multiple
edges between the same pair of vertices; hence, technically, G is a constraint
multi-graph.

Definition 1. Let p = vi � vj � . . . vq denote a simple path in G; the co-static
cost of p is calculated as follows:

1. Symbolically add up the costs on all the edges that make up the path p to get
an affine function f(p) = �r · �e− k, (�r = [r1 r2 . . . rn]T ,�e = [e1 e2 . . . en]T )
for suitably chosen �r and k. Note that each ri belongs to the set {0, 1,−1},
since on any simple path, which is not a cycle, each vertex is encountered
exactly once. Consequently, an execution time variable can be encountered
at most twice, and if it is encountered twice, then the two occurrences will
have opposite sign and cancel each other out.

2. Compute a numerical value for f(p) by substituting ei = li, if ri ≥ 0 and
ei = ui otherwise. This computed value is called the co-static cost of p. In
other words, the co-static cost of path p is
minE f(p) = minE(�r · �e− k).

The co-static cost of a simple cycle is calculated similarly; if the cost of a cycle C
in G is negative, then C is called a negative co-static cycle. The only difference
between a simple path and a simple cycle is that one vertex occurs twice in this
cycle. But even in this case, it is easily seen that ri ∈ {0, 1,−1}.

. .
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Theorem 1. A Totally Clairvoyant Scheduling Constraint System over a system
of relative constraints has a solution if and only if its constraint graph does not
have a simple negative co-static cycle.

Proof: Assume that the constraint graph has a co-static negative cycle C1 de-
fined by {v1 � v2 � . . . � vk � v1}; the corresponding set of constraints in
the constraint set are:

s1 − s2 ≤ f1(e1, e2)
s2 − s3 ≤ f2(e2, e3)

...
...

...
sk − s1 ≤ fk(ek, e1)

Now, assume that there exists a solution �s to the constraint system. Adding up
the inequalities in the above system, we get ∀�e ∈ E 0 ≤

∑k
i=1 fi(ei, ei+1), where

the indexes are modulo k. But we know that C1 is a negative co-static cycle; it
follows that min�e∈E

∑k
i=1 fi(ei, ei+1) < 0; thus, we cannot have

∀�e ∈ E
∑k

i=1 fi(ei, ei+1) ≥ 0, contradicting the hypothesis.
Now consider the case, where there does not exist a negative co-static cycle.

Let G�e =< V,F, c�e > denote the constraint graph that results from substitut-
ing �e ∈ E into the constraint system defined by System (1). It follows that for
all �e ∈ E, G�e does not have any negative cost cycles. Hence for each �e ∈ E, the
corresponding constraint system in the start-time variables has a solution (the
vector of shortest path distances, see [CLR92]). In other words, the schedulabil-
ity query Q is true. �

Our efforts in the next section, will be directed towards detecting the existence
of negative co-static cycles in the constraint graph corresponding to a Totally
Clairvoyant Scheduling Constraint system; this problem is henceforth called P1.

6 Mutable Dynamic Programming

In this section, we propose an algorithm for P1, based on Mutable Dynamic
Programming. The key idea is to find the path of least co-static cost (shortest
path) from each vertex vi ∈ V to itself. By Theorem (1), we know that the
constraint system is infeasible if and only if at least one of these paths has
negative co-static cost.

We motivate the development of our algorithm by classifying the edges that
exist between vertices in the initial constraint graph. An edge vi � vj represent-
ing a constraint between jobs Ji and Jj must be one of the following types:

1. Type I edge: The weight of the edge does not depend upon either ei or ej ,
i.e., the corresponding constraint is expressed using only the start times of
Ji and Jj . For instance, the edge corresponding to the constraint si +4 ≤ sj

is a Type I edge.
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2. Type II edge: The weight of the edge depends upon both ei and ej , i.e., the
corresponding constraint is expressed using only the finish times of Ji and
Jj . For instance, the edge corresponding to the constraint si+ei+8 ≤ sj +ej

is a Type II edge.
3. Type III edge: The weight of the edge depends upon ei, but not on ej , i.e.,

the corresponding constraint is expressed using the finish time of Ji and
the start time of Jj . For instance, the edge corresponding to the constraint
si + ei + 25 ≤ sj is a Type III edge.

4. Type IV edge: The weight of the edge depends upon ej , but not on ei, i.e.,
the corresponding constraint is expressed using the start time of Ji and the
finish time of Jj . For instance, the edge corresponding to the constraint
si + 13 ≤ sj + ej is a Type IV edge.

Lemma 1. There exists at most one non-redundant vi � vj edge of Type II.

Proof: Without loss of generality, we assume that i < j, i.e., job Ji occurs in
the sequence before job Jj . For the sake of contradiction, let us suppose that
there exist 2 non-redundant Type II vi � vj edges; we denote the corresponding
2 constraints as l1 : si + ei +k1 ≤ sj + ej and l2 : si + ei +k2 ≤ sj + ej; note that
they can be written as: l1 : si − sj ≤ ej − ei − k1 and l2 : si − sj ≤ ej − ei − k2.
Let us say that k1 ≥ k2, so that −k1 ≤ −k2.

We now show that l2 can be eliminated from the constraint set without af-
fecting its feasibility. Note that for any fixed values of ei and ej , l1 dominates l2
in the following sense: If l1 is satisfied, then l2 is also satisfied. Likewise, if there
is a cycle of negative co-static cost through the edge representing l2, then there
is a cycle of even lower co-static cost through the edge representing l1. Hence l2
can be eliminated from the constraint set, without affecting its feasibility. The
case in which i > j can be argued in similar fashion. �

Corollary 1. There exists at most one non-redundant vi � vj edge each of
Types I, III and IV.

Proof: Identical to the proof of Lemma (1). �

Corollary 2. The number of non-redundant constraints in the initial constraint
matrix which is equal to the number of non-redundant edges in the initial con-
straint graph is at most O(n2).

Proof: It follows from Corollary (1) that there can exist at most 4 i � j con-
straints and hence at most 4 vi � vj edges between every pair of vertices vi, vj ,
i, j = 1, 2, . . . , n, i �= j. Hence the total number of edges in the initial constraint
graph cannot exceed O(8 · n·(n−1)

2 ) = O(n2). �

We extend the taxonomy of edges discussed above to classifying paths in a
straightforward way; thus a Type I path from vertex vi to vertex vj is a path
whose cost does not depend on either ei or ej. Paths of Types II, III and IV are
defined similarly.
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Table 1. Computing the type of a path from the types of its sub-paths

vi � vk vk � vj vi � vj

Type I Type I Type I
Type I Type II Type IV
Type I Type III Type I
Type I Type IV Type IV

Type II Type I Type III
Type II Type II Type I (if j = i)
Type II Type II Type II (if j �= i)
Type II Type III Type III
Type II Type IV Type I (if j = i)
Type II Type IV Type II (if j �= i)

Type III Type I Type III
Type III Type II Type I (if j = i)
Type III Type II Type II (if j �= i)
Type III Type III Type III
Type III Type IV Type I (if j = i)
Type III Type IV Type II (if j �= i)

Type IV Type I Type I
Type IV Type II Type IV
Type IV Type III Type I
Type IV Type IV Type IV

Table 1 shows how to compute the type of a path, given the types of the
sub-paths that constitute it.

We restrict our attention to paths and cycles of Type I; we shall see that our
arguments carry over to paths and cycles of other types. As discussed above,
there are at most 4 edges vi � vj , for any vertex pair (vi, vj). We define

wij(I) = symbolic cost of the Type I edge between vi and vj , if such an edge exists

= ∞, otherwise.

wij(II), wij(III) and wij(IV ) are similarly defined. Note that Lemma (1) and
Corollary (1) ensure that wij(R) is well-defined for R = I, II, III, IV . By con-
vention, wii(R) = 0, i = 1, 2, . . . , n; R = I, III, IV . Note that a path of Type
II from a vertex vi to itself, is actually a Type I path!

Initialize the n × n × 4 matrix W as follows: W[i][j][R] = wij(R), i =
1, 2, . . . , n; j = 1, 2, . . . , n R = I, II, III, IV . Note that the entries of W are
not necessarily numbers; for instance, if there exists a constraint of the form
si + ei + 7 ≤ sj + ej , then wij(II) = −ei + ej − 7.

Let pk
ij(I) denote the path of Type I from vertex vi to vertex vj having the

smallest co-static cost, with all intermediate vertices in the set {v1, v2, . . . , vk},
for some k > 0; note that p0

ij = wij(I). We refer to pk
ij as the shortest Type I
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Path, from vi to vj , with all intermediate vertices in the set {v1, v2, . . . , vk}.
Further, let ck

ij(I) denote the co-static cost and dk
ij(I) denote the corresponding

symbolic cost; observe that ck
ij(I) = minE dk

ij(I) and that given dk
ij(I), c

k
ij(I) can

be computed in O(n) time, through substitution. The quantities, pk
ij(R), dk

ij(R)
and ck

ij(R), R = II, III, IV are defined similarly.
Let us study the structure of pk

ij(I). We consider the following two cases.

(a) Vertex vk is not on pk
ij(I) - In this case, the shortest Type I path from vi to vj

with all the intermediate vertices in {v1, v2, . . . , vk} is also the shortest Type
I path from vi to vj with all the intermediate vertices in {v1, v2, . . . , vk−1},
i.e., pk

ij(I) = pk−1
ij (I) and dk

ij(I) = dk−1
ij (I).

(b) Vertex vk is on pk
ij(I) - Let us assume that j �= i, i.e., the path pk

ij is not
a cycle. From Table 1, we know that one of the following must hold (See
Figure (2)):

vi

vj

vk

Fig. 2. Shortest path of Type I from vi to vj through vk

(a) vi � vk is of Type I and vk � vj is of Type I - Let p1 denote the
sub-path of pk

ij from vi to vk and let p2 denote the sub-path of pk
ij from

vk to vj . We claim that p1 must be the shortest Type I path from vi

to vk with all the intermediate vertices in the set {v1, v2, . . . , vk−1}, i.e.,
pk−1

ik (I). To see this, let us assume that p1 is not optimal and that there
exists another Type I path of smaller co-static cost. Clearly this path
can be combined with the existing Type I path from vk to vj to get
a shorter Type I path from vi to vj , contradicting the optimality of
pk

ij(I). The same argument holds for the optimality of the sub-path of
p2. This property is called the Optimal Substructure property. We thus
have, pk

ij(I) = pk−1
ik (I)

⊕
pk−1

kj (I) and dk
ij(I) = dk−1

ik + dk−1
kj , where the⊕

operator indicates that the combination of the 2 paths.
(b) vi � vk is of Type I and vk � vj is of Type III - We argue in a fashion

similar to the above case to derive: pk
ij(I) = pk−1

ik (I)
⊕

pk−1
kj (III) and

dk
ij(I) = dk−1

ik (I) + dk−1
kj (III).

(c) vi � vk is of Type IV and vk � vj is of Type I - It follows that
pk

ij(I) = pk−1
ik (IV )

⊕
pk−1

kj (I) and dk
ij(I) = dk−1

ik (IV ) + dk−1
kj (I).

(d) vi � vk is of Type IV and vk � vj is of Type III - It follows that
pk

ij(I) = pk−1
ik (IV )

⊕
pkj(III) and dk

ij(I) = dk−1
ik (IV ) + dk−1

kj (III).
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Clearly, if vk is on pk
ij(I), then

dk
ij(I) = min

E
{dk−1

ik (I) + dk−1
kj (I), dk−1

ik (I) + dk−1
kj (III),

dk−1
ik (IV ) + dk−1

kj (I), dk−1
ik (IV ) + dk−1

kj (III)} (7)

Remark 6 1 dk
ij(I) represents the symbolic cost of the shortest Type I path from

vi to vj, with all intermediate vertices in the set {v1, v2, . . . , vk}. Thus, the minE

operator is used merely to select the appropriate path pairs. In particular, in the
calculation of dk

ij(I), it does not reduce dk
ij(I) to a numeric value, although ck

ij(I)
is a numeric value. It is this form of Dynamic Programming that we refer to as
Mutable Dynamic Programming.

Putting the 2 cases together, we have

dk
ij(I) = min

E
{dk−1

ij (I), dk−1
ik (I) + dk−1

kj (I), dk−1
ik (I) + dk−1

kj (III),

dk−1
ik (IV ) + dk−1

kj (I), dk−1
ik (IV ) + dk−1

kj (III)} (8)

Now consider the case that the path pk
ij(I) is a cycle, i.e., j = i. From Table

1, we know that one of the following must hold:

1. vi � vk is of Type I and vk � vi is of Type I - This case has been handled
above.

2. vi � vk is of Type II and vk � vi is of Type II, i.e., dk
ii(I) = dk−1

ik (II) +
dk−1

ki (II).
3. vi � vk is of Type II and vk � vi is of Type IV, i.e., dk

ii(I) = dk−1
ik (II) +

dk−1
ki (IV ).

4. vi � vk is of Type III and vk � vi is of Type II, i.e., dk
ii(I) = dk−1

ik (III) +
dk−1

ki (II).
5. vi � vk is of Type III and vk � vi is of Type IV, i.e., dk

ii(I) = dk−1
ik (III) +

dk−1
ki (IV ).

Note that the case k = 0, corresponds to the existence (or lack thereof) of a
Type I edge from vi to vj . Thus, the final recurrence relation to calculate the
cost of pk

ij(R), R = I, II, III, IV is:

dk
ij(I) = wij(I), if k = 0

= min
E
{dk−1

ik (I) + dk−1
ki (I), dk−1

ik (II) + dk−1
ki (II), dk−1

ik (II) + dk−1
ki (IV ),

dk−1
ik (III) + dk−1

ki (II), dk−1
ik (III) + dk−1

ki (IV ))}, if j = i

= min
E
{dk−1

ij (I), dk−1
ik (I) + dk−1

kj (I), dk−1
ik (I) + dk−1

kj (III),

dk−1
ik (IV ) + dk−1

kj (I), dk−1
ik (IV ) + dk−1

kj (III)}, otherwise (9)

. .
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Using similar analyses, we derive recurrence relations for dk
ij(R), R=II, III,

IV as follows:

dk
ij(II) = wij(II), if k = 0

= min
E
{dk−1

ij (II), dk−1
ik (II) + dk−1

kj (II), dk−1
ik (II) + dk−1

kj (IV ),

dk−1
ik (III) + dk−1

kj (II), dk−1
ik (III) + dk−1

kj (IV )}, otherwise (10)

dk
ij(III) = wij(III), if k = 0

= min
E
{dk−1

ij (III), dk−1
ik (II) + dk−1

kj (I), dk−1
ik (II) + dk−1

kj (III)

dk−1
ik (III) + dk−1

kj (I), dk−1
ik (III) + dk−1

kj (III)}, otherwise (11)

dk
ij(IV ) = wij(IV ), if k = 0

= min
E
{dk−1

ij (IV ), dk−1
ik (I) + dk−1

kj (II), dk−1
ik (I) + dk−1

kj (IV ),

dk−1
ik (IV ) + dk−1

kj (II), dk−1
ik (IV ) + dk−1

kj (IV )}, otherwise (12)

Note that for a specific k, the values of the execution time variables, cor-
responding to the inner vertices of the path from vi to vk are fixed, by the
application of the minE operator.

Algorithm (6.1) summarizes the above discussion on the identification of a
negative co-static cycle in the constraint graph G. We note that Dn

ij(I) repre-
sents the shortest Type I vi � vj path with all the intermediate vertices in the
set {v1, v2, . . . , vn}, i.e., it is the shortest Type I vi � vj path. Eval-Loop()
evaluates the co-static cost of each of the diagonal entries and declares the G
to be co-static negative cycle free, if all entries have non-negative cost. Fur-
ther, we need not consider the case j = i separately, in the computations of
dk

ij(R), R = II, III, IV .

Remark 6 2.We reiterate that the dk
ij values are symbolic, while the ck

ij values
are numeric. The minE operator is applied only to select the appropriate sub-
path; the dk

ij cost is computed in the symbolic sense only. Once the correct sub-
paths have been selected, as per the principle of optimality, we can move on to
the next stage. On account of the structure in the edge costs, the selection and
addition procedures can be implemented in O(n) time.

6.1 Complexity

The complexity of Algorithm (6.1) is determined by Step (7 :) within the O(n3)
triple loop. It is easy to see that if the symbolic costs are stored in arrays, Step
(7 :) can be implemented in O(n) time; it follows that Steps (1 : −10 :) can be
implemented in time at most O(n4). Step (13 :) takes time at most O(n) and
hence Steps (11 : −18 :) take time at most O(n2).

.
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Function Detect-CoStatic-Negative-Cycle(G)
1: Initialize W.
2: Set D0 = W.
3: for (k = 1 to n) do
4: {We are determining Dk}
5: for (i = 1 to n) do
6: for (j = 1 to n) do
7: Compute Dk

ij(I), Dk
ij(II), Dk

ij(III), Dk
ij(IV ) using the relations (9), (10),

(11), (12).
8: end for
9: end for

10: end for
11: for (i = 1 to n) do
12: for ( R = I to IV ) do
13: if (Eval-Loop(Dn

ii(R)) < 0) then
14: return( true )
15: end if
16: end for
17: end for
18: return( false )

Algorithm 6.1. Algorithm for identifying negative co-static cycles in the constraint
graph

Theorem 2. The schedulability query for an instance of a Totally Clairvoyant
scheduling problem with n jobs and m strict relative (standard) constraints can
be decided in O(n4) time.

7 Conclusions

In this paper, we discussed uncertainty issues in a real-time flow shop scheduling
problem and designed a polynomial time algorithm for the same. The algorithm
was based on a novel form of Dynamic Programming, called Mutable Dynamic
Programming, which we believe may be useful in other application domains
involving uncertainty and symbolic computation.

Some of the interesting open theoretical questions are as follows:

(a) What is the complexity of Totally Clairvoyant scheduling in the presence of
more general constraints such as Network Constraints [Sub01]?,

(b) What is the complexity of finding a schedule minimizing metrics such as
Sum of Start Times and Sum of Completion Times?

(c) Can we improve on the O(n4) bound derived in this paper to test Totally
Clairvoyant schedulability.

We once again reiterate the importance of this technique to problems in Symbolic
Model checking and Verification. Problems in these domains can be modeled as
constraint verification problems and Mutable Dynamic Programming is a new
procedure for these problems.
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Abstract. In this paper we introduce a new (non-Turing powerful)
formal model of recursive concurrent programs called well-formed com-
municating recursive state machines (CRSM). CRSM extend recursive
state machines (RSM) by allowing a restricted form of concurrency: a
state of a module can be refined into a finite collection of modules (work-
ing in parallel) in a potentially recursive manner. Communication is only
possible between the activations of modules invoked on the same fork.
We study the model checking problem of CRSM with respect to speci-
fications expressed in a temporal logic that extends CaRet with a par-
allel operator (ConCaRet). We propose a decision algorithm that runs
in time exponential in both the size of the formula and the maximum
number of modules that can be invoked simultaneously. This matches
the known lower bound for deciding CaRet model checking of RSM,
and therefore, we prove that model checking CRSM with respect to Con-
CaRet specifications is Exptime-complete.

1 Introduction

Computer programs often involve the concurrent execution of multiple threads
interacting with each other. Each thread can require recursive procedure calls
and thus make use of a local stack. In general, combining recursion and task
synchronization leads to Turing-equivalent models. Therefore, there have been
essentially two approaches in the literature that address the problem of ana-
lyzing recursive concurrent programs: (i) abstraction (approximate) techniques
on ‘unrestricted models’ (e.g. see [5, 14]), and (ii) precise techniques for ‘weaker
models’ (with decidable reachability), obtained by imposing restrictions on the
amount of parallelism and synchronization.

In the second approach, many non Turing-equivalent formalisms, suitable to
model the control flow of recursive concurrent programs, have been proposed.
One of the most powerful is constituted by Process Rewrite Systems (PRS, for
short) [13], a formalism based on term rewriting, which subsumes many common
infinite–state models such as Pushdown Processes, Petri Nets, and PA processes.
PRS can be adopted as a formal model for programs with dynamic creation and
(a restricted form of) synchronization of concurrent processes, and with recursive
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procedures (possibly with return values). PRS can accommodate both parallel-
call commands and spawn commands for the dynamic creation of threads: in a
parallel-call command, the caller thread suspends its activation waiting for the
termination of all called processes, while in a spawn command, the caller thread
can pursue its execution concurrently to the new activated threads. However,
there is a price to pay to this expressive power: for the general framework of
PRS, the only decidability results known in the literature concern the reach-
ability problem between two given terms and the reachable property problem
[13]. Model checking against standard propositional temporal logics is undecid-
able also for small fragments. Moreover, note that the best known upper bound
for reachability of Petri nets (which represent a subclass of PRS) requires non
primitive recursive space [9]. In [6], symbolic reachability analysis is investigated
and the given algorithm can be applied only to a strict subclass of PRS, i.e, the
synchronization–free PRS (the so–called PAD systems) which subsume Push-
down Processes, synchronization–free Petri nets, and PA processes. In [10, 11],
symbolic reachability analysis of PA processes is used to allow the interpro-
cedural data-flow analysis of programs represented by systems of parallel flow
graphs (parallel FGS, for short), which extend classical sequential flow graphs
by parallel-call commands. In [7], Dynamic Pushdown Networks (DPN) are pro-
posed for flow analysis of multithreaded programs. DPN allows spawn commands
and can encode parallel FGS. An extention of this model that captures the mod-
elling power of PAD is also considered.

In this paper, we consider a different abstract model of concurrent programs
with finite domain variables and recursive procedures, the well-formed commu-
nicating recursive state machines (CRSM). A CRSM is an ordered collection of
finite–state machines (called modules) where a state can represent a call, in a
potentially recursive manner, to a finite collection of modules running in parallel.
A parallel call to other modules models the activation of multiple threads in a
concurrent program (fork). When a fork happens, the execution of the current
module is stopped and the control moves into the modules activated in the fork.
On termination of such modules, the control return to the calling module and
its execution is resumed (join). CRSM allow the communication only between
module instances that are activated on the same fork and do not have ongoing
procedure calls. In our model, we allow multiple entries and exits for each mod-
ule, which can be used to handle finite–domain local variables and return values
from procedure calls (see [1]).

Intuitively, CRSM correspond to the subclass of PRS obtained by disallowing
rewrite rules which model spawn commands. Also, note that CRSM extend par-
allel FGS since they also allow (a restricted form of) synchronization and return
values from (parallel) procedure calls. With respect to DPN, CRSM allow syn-
chronization. Moreover, CRSM extend both the recursive state machines (RSM)
[1] by allowing parallelism and the well-structured communicating (finite-state)
hierarchical state machines [3] by allowing recursion. We recall that RSM corre-
spond to pushdown systems, and the related model checking problem has been
extensively studied in the literature [17, 4, 1]. CRSM are strictly more expressive
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than RSM. In fact, it is possible to prove that synchronization-free CRSM cor-
respond to a complete normal form of Ground Tree Rewriting systems [8] and
thus the related class of languages is located in the Chomsky hierarchy strictly
between the context-free and the context-sensitive languages [12].

In this paper, we address the model-checking problem of CRSM with respect
to specifications expressed in a new logic that we call ConCaRet. ConCaRet
is a linear-time temporal logic that extends CaRet [2] with a parallel oper-
ator. Recall that CaRet extends standard LTL allowing the specification of
non-regular context-free properties that are useful to express correctness of pro-
cedures with respect to pre- and post-conditions. The model checking of RSM
with respect to CaRet specification is known to be Exptime-complete [2].

The semantics of ConCaRet is given with respect to (infinite) computations
of CRSM. In our model, threads can fork, thus a global state (i.e., the stack con-
tent and the current local state of each active thread) of a CRSM is represented
as a ranked tree. Hence, a computation corresponds to a sequence of these ranked
trees. As in CaRet, we consider three different notions of local successor, for
any local state along a computation, and the corresponding counterparts of the
usual temporal operators of LTL logic: the abstract successor captures the local
computation within a module removing computation fragments corresponding
to nested calls within the module; the caller denotes the local state (if any) cor-
responding to the “innermost call” that has activated the current local state; a
(local) linear successor of a local state is the usual notion of successor within the
corresponding thread. In case the current local state corresponds to a fork, its
successors give the starting local states of the activated threads. With respect to
the paths generated by the linear successors, we allow the standard LTL modali-
ties coupled with existential and universal quantification. Note that ConCaRet
has no temporal modalities for the global successor (i.e., the next global state
in the run). In fact, this operator would allow us to model unrestricted synchro-
nization among threads and thus, the model checking of ConCaRet formulas
would become undecidable. In ConCaRet we also allow a parallel operator
that can express properties about communicating modules such as “every time
a resource p is available for a process I, then it will be eventually available for
all the processes in parallel with I” (in formulas, �( p→‖ �a p)).

We show that model-checking CRSM against ConCaRet is decidable. Our
approach is based on automata-theoretic techniques: given a CRSM S and a
formula ϕ, we construct a Büchi CRSM S¬ϕ (i.e., a CRSM equipped with gen-
eralized Büchi acceptance conditions) such that model checking S against ϕ is
reduced to check the emptiness of the Büchi CRSM S¬ϕ. We solve this last prob-
lem by a non-trivial reduction to the emptiness problem for a straightforward
variant of classical Büchi Tree Automata. Our construction of S¬ϕ extends the
construction given in [2] for a RSM and a CaRet formula. Overall, our model
checking algorithm runs in time exponential in both the maximal number ρ of
modules that can invoked simultaneously and the size of the formula, and thus
matches the known lower bound for deciding CaRet model checking. Therefore,
we prove that the model-checking problem of CRSM with respect to ConCaRet
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specifications is Exptime-complete. The main difference w.r.t. RSM is the time
complexity in the size of the model that for RSM is polynomial, while for CRSM,
it is exponential in ρ.

Due to the lack of space, for the omitted details we refer the reader to [18].

2 Well-Formed Communicating Recursive State Machines

In this section we define syntax and semantics of well-formed Communicating
Recursive State Machines (CRSM, for short).

Syntax. A CRSM is an ordered collection of finite–state machines (FSM) aug-
mented with the ability of refining a state with a collection of FSM (working in
parallel) in a potentially recursive manner.

Definition 1. A CRSM S over a set of propositions AP is a tuple 〈(S1, . . . , Sk),
start〉, where for 1 ≤ i ≤ k, Si = 〈Σi, Σ

s
i , Ni, Bi, Yi, Eni, Exi, δi, ηi〉 is a module

and start ⊆
⋃k

i=1 Ni is a set of start nodes. Each module Si is defined as follows:

– Σi is a finite alphabet and Σs
i ⊆ Σi is the set of synchronization symbols;

– Ni is a finite set of nodes and Bi is a finite set of boxes (with Ni∩Bi = ∅);
– Yi : Bi → {1, . . . , k}+ is the refinement function which associates with every

box a sequence of module indexes;
– Eni ⊆ Ni (resp., Exi ⊆ Ni) is a set of entry nodes (resp., exit nodes);
– δi : (Ni∪Retnsi)×Σi → 2Ni∪Callsi is the transition function, where Callsi =
{(b, e1, . . . , em) | b ∈ Bi, ej ∈ Enhj for any 1 ≤ j ≤ m, and Yi(b) =
h1 . . . hm} denotes the set of calls and Retnsi = {(b,x1, . . . ,xm) | b ∈ Bi,
xj ∈ Exhj for any 1 ≤ j ≤ m, and Yi(b) = h1 . . . hm} denotes the set of
returns of Si; we assume w.l.o.g. that exits have no outgoing transitions, and
entries have no incoming transitions, and Eni ∩ Exi = ∅;

– ηi : Vi → 2AP is the labelling function, with Vi = Ni ∪ Callsi ∪ Retnsi (Vi

is the set of vertices).

We assume that (Vi ∪ Bi) ∩ (Vj ∪ Bj) = ∅ for i �= j. Also, let Σ =
⋃i=k

i=1 Σi,
Σs =

⋃i=k
i=1 Σs

i , V =
⋃i=k

i=1 Vi, Calls =
⋃i=k

i=1 Callsi, Retns =
⋃i=k

i=1 Retnsi,
N =

⋃i=k
i=1 Ni, B =

⋃i=k
i=1 Bi, En =

⋃i=k
i=1 Eni, and Ex =

⋃i=k
i=1 Exi. Functions

η : V → 2AP , Y : B → {1, . . . , k}+, and δ : (N ∪ Retns) × Σ → 2N∪Calls are
defined as the natural extensions of functions ηi, Yi and δi (with 1 ≤ i ≤ k).

The set of states of a module is partitioned into a set of nodes and a set
of boxes. Performing a transition to a box b can be interpreted as a (parallel)
procedure call (fork) which simultaneously activates a collection of modules (the
list of modules given by the refinement function Y applied to b). Since Y gives a
list of module indexes, a fork can activate different instances of the same module.
Note that a transition leading to a box specifies the entry node (initial state)
of each activated module. All the module instances, which are simultaneously
activated in a call, run in parallel, whereas the calling module instance suspends
its activity waiting for the return of the (parallel) procedure call. The return
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of a parallel procedure call to a box b is represented by a transition from b
that specifies an exit node (exiting state) for each module copy activated by the
procedural call (a synchronous return or join from all the activated modules).

Figure 1 depicts a simple CRSM consisting of two modules S1 and S2. Module
S1 has two entry nodes u1 and u2, an exit node u4, an internal node u3 and one
box b1 that is mapped to the parallel composition of two copies of S2. The
module S2 has an entry node w1, an exit node w2, and two boxes b2 and b3
both mapped to one copy of S1. The transition from node u1 to box b1 in S1 is
represented by a fork transition having u1 as source and the entry nodes of the
two copies of S2 as targets. Similarly, the transition from box b1 to node u4 is
represented by a join transition having the exit nodes of the two copies of S2 as
sources and u4 as target.

In our model, the communication is allowed only between module instances
that are activated on the same fork and are not busy in a (parallel) procedure
call. As for the communicating (finite-state) hierarchical state machines [3], the
form of communication we allow is synchronous and maximal in the sense that if
a component (module) takes a transition labelled by a synchronization symbol σ,
then each other parallel component which has σ in its synchronization alphabet
must be able to take a transition labelled by σ. For instance, assuming that the
symbols σ1 and σ2 in Figure 1 are synchronization symbols, the two copies of S2
which refine box b1 either both take the transition labelled by σ1 activating a
copy of S1 with start node u1 or both take the transition labelled by σ2 activating
a copy of S1 with start node u2. Transitions labelled by symbols in Σ \ Σs are
instead performed independently without any synchronization requirement. A
synchronization-free CRSM is a CRSM in which Σs = ∅.

The rank of S, written rank(S), is the maximum of {|Y (b)| | b ∈ B}. Note
that if rank(S) = 1, then S is a Recursive State Machine (RSM) as defined in [1].

S1

b1: S2‖S2

� � � �

��u2
�
u3

��u1

��u4

�

�
�����

�

��� �
�

S2

��w1 ��w2

�
� �b2 : S1

�
� �b3 : S1

�
��	

	
σ1

�
���

�σ2

Fig. 1. A sample CRSM

Semantics. We give some notation first. A tree t is a prefix closed subset of N∗

such that if y · i ∈ t, then y · j ∈ t for any 0 ≤ j < i. The empty word ε is the
root of t. The set of leaves of t is leaves(t) = {y ∈ t | y · 0 /∈ t}. For y ∈ t, the set
of children of y (in t) is children(t, y) = {y · i ∈ t} and the set of siblings of y (in
t) is siblings(t, y) = {y} ∪ {y′ · i ∈ t | y = y′ · j for some j ∈ N}. For y, y′ ∈ N∗,
we write y ≺ y′ to mean that y is a proper prefix of y′.
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The semantics of a CRSM S is defined in terms of a Labelled Transition Sys-
tem KS = 〈Q,R〉. Q is the set of (global) states which correspond to activation
hierarchies of instances of modules, and are represented by finite trees whose
locations are labelled with vertices and boxes of the CRSM . Leaves correspond
to active modules and a path in the tree leading to a leave y (excluding y) corre-
sponds to the local call stack of the module instance associated with y. Formally,
a state is a pair of the form (t,D) where t is a (finite) tree and D : t → B ∪ V
is defined as follows:

– if y ∈ leaves(t), then D(y) ∈ V (i.e. a vertex of S);
– if y ∈ t \ leaves(t) and children(t, y) = {y · 0, . . . , y ·m}, then D(y) = b ∈ B,

Y (b) = h0 . . . hm, and D(y · j) ∈ Bhj ∪ Vhj for any j = 0, . . . ,m.

The global transition relation R ⊆ Q × (2N
∗ × 2N

∗
) × Q is a set of tuples of

the form 〈(t,D), (�, �′), (t′, D′)〉 where (t,D) (resp., (t′, D′)) is the source (resp.,
target) of the transition, � keeps track of the elements of t corresponding to the
(instances of) modules of S performing the transition, and: for an internal move
�′ = �, for a call, �′ points to the modules activated by the (parallel) procedure
call, and for a return from a call, �′ points to the reactivated caller module.
Formally, 〈(t,D), (�, �′), (t′, D′)〉 ∈ R iff one of the following holds:

Single internal move: t = t′, there is y ∈ leaves(t) and σ ∈ Σ \Σs such that
� = �′ = {y}, D′(y) ∈ δ(D(y), σ), and D′(z) = D(z) for any z ∈ t \ {y}.

Synchronous internal move: t′ = t, there are y ∈ t with siblings(t, y) =
{y1, . . . , ym}, σ ∈ Σs, and indexes k1, . . . , kp ∈ {1, . . . ,m} such that the
following holds: � = �′ = {yk1 , . . . , ykp} ⊆ leaves(t), D′(z) = D(z) for any
z ∈ t \ {yk1 , . . . , ykp}, D′(ykj ) ∈ δ(D(ykj ), σ) for any 1 ≤ j ≤ p, and for
any j ∈ {1, . . . ,m} \ {k1, . . . , kp}, σ is not a synchronization symbol of the
module associated with D(yj).

Module call: there is y ∈ leaves(t) such that D(y) = (b, e0, . . . , em) ∈ Call,
t′ = t ∪ {y · 0, . . . , y ·m}, � = {y}, �′ = {y · 0, . . . , y ·m}, D′(z) = D(z) for
any z ∈ t \ {y}, D′(y) = b, and D′(y · j) = ej for any 0 ≤ j ≤ m.

Return from a call: there is y ∈ t \ leaves(t) such that � = children(t, y) =
{y ·0, . . . , y ·m} ⊆ leaves(t), �′ = {y}, (D(y), D(y ·0), . . . , D(y ·m)) ∈ Retns,
t′ = t \ {y · 0, . . . , y · m}, D′(z) = D(z) for any z ∈ t′ \ {y}, and D′(y) =
(D(y), D(y · 0), . . . , D(y ·m)).

For v ∈ V , we denote with 〈v〉 the global state ({ε}, D) where D(ε) = v. A
run of S is an infinite path in KS from a state of the form 〈v〉.

2.1 Local Successors

Since we are interested in the local transformation of module instances, as in [2],
we introduce different notions of local successor of module instances along a run.

We fix a CRSM S and a run of S π = q0
(�0,�′0)−→ q1

(�1,�′1)−→ q2 . . . with qi = (ti, Di) for
any i. We denote by Qπ the set {(i, y) | y ∈ leaves(ti)}. An element (i, y) of Qπ,
called local state of π, represents an instance of a module that at state qi is
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active and in the vertex Di(y). Note that the set {(i, y′) | y′ ≺ y} represents the
(local) stack of this instance. Now, we define two notions of next local state
(w.r.t. a run).

For (i, y) ∈ Qπ, next�π(i, y) gives the set of module instances, called linear
successors of (i, y), that are obtained by the first transition affecting (i, y). Note
that such a transition may occur at j ≥ i or may not occur at all. In the
former case next�π(i, y) is a singleton unless Di(y) ∈ Calls, and then the linear
successors correspond to the entry nodes of the called modules. Formally, if
{m ≥ i | y ∈ �m} = ∅ then next�π(i, y) = ∅, otherwise next�π(i, y) is given by:

{(h + 1, y′) | h = min{m ≥ i | y ∈ �m}, y′ ∈ �′h, and either y′ ( yory ( y′}.
Note that if rank(S) = 1 (i.e. S is a RSM), then the linear successor corre-

sponds to the (standard) global successor.
For each (i, y) ∈ Qπ, we also give a notion of abstract successor, denoted

nextaπ(i, y). If (i, y) corresponds to a call that returns, i.e., Di(y) ∈ Calls and
there is a j > i such that y ∈ leaves(tj) and Dj(y) ∈ Retns, then nextaπ(i, y) =
(h, y) where h is the smallest of such j (the local state (h, y) corresponds to the
matching return). For internal moves, the abstract successor coincides with the
(unique) linear successor, i.e., if next�π(i, y) = {(j, y)}, then nextaπ(i, y) = (j, y)
(note that in this case Di(y) ∈ Retns ∪ N \ Ex). In all the other cases, the
abstract successor is not defined and we denote this with nextaπ(i, y) = ⊥. The
abstract successor captures the local computations inside a module A skipping
over invocations of other modules called from A.

Besides linear and abstract successor, we also define a caller of a local state
(i, y) as the ‘innermost call’ that has activated (i, y). Formally, the caller of
(i, y) (if any), written next−π (i, y), is defined as follows (notice that only local
states of the form (i, ε) have no callers): if y = y′ · m for some m ∈ N, then
next−π (i, y) = (j, y′) where j is the maximum of {h < i | y′ ∈ th and Dh(y′) ∈
Calls}; otherwise, next−π (i, y) is undefined, written next−π (i, y) = ⊥.

The above defined notions allow us to define sequences of local moves (i.e.
moves affecting local states) in a run. For (i, y) ∈ Qπ, the set of linear paths
of π starting from (i, y) is the set of (finite or infinite) sequences of local states
r = (j0, y0)(j1, y1) . . . such that (j0, y0) = (i, y), (jh+1, yh+1) ∈ next�π(jh, yh)
for any h, and either r is infinite or leads to a local state (jp, yp) such that
next�π(jp, yp) = ∅. Analogously, the notion of abstract path (resp. caller path) of
π starting from (i, y) can be defined by using in the above definition the abstract
successor (resp. caller) instead of the linear successor. Note that a caller path is
always finite and uniquely determines the content of the call stack locally to the
instance of the module active at (i, y).

For module instances involved in a call, i.e., corresponding to pairs (i, y)
such that y ∈ ti \ leaves(ti), we denote the local state (if any) at which the call
pending at (i, y) will return by returnπ(i, y). Formally, if y ∈ leaves(tj) for some
j > i, then returnπ(i, y) = {(h, y)} where h is the smallest of such j, otherwise
returnπ(i, y) = ⊥. Also, we denote the local state corresponding to the call
activating the module instance at (i, y) by callπ(i, y). Formally, callπ(i, y) :=
(h, y) where h is the maximum of {j < i | y ∈ tj and Dj(y) ∈ Calls}.
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Let Evolve be the predicate over sets of vertices and boxes defined as follows:
Evolve({v1, . . . , vm}) holds iff either (1) there are σ ∈ Σ \ Σs and 1 ≤ i ≤
m such that vi ∈ N ∪ Retns and δ(vi, σ) �= ∅ (single internal move), or (2)
there is σ ∈ Σs such that the set H = {1 ≤ i ≤ m | vi ∈ N ∪ Retns and
δ(vi, σ) �= ∅} is not empty and for each i ∈ {1, . . . ,m} \H , σ does not belong
to the synchronization alphabet of the module associated with vi (synchronized
internal move). In the following, we focus on maximal runs of CRSM. Intuitively,
a maximal run represents an infinite computation in which each set of module
instances activated by the same parallel call that may evolve (independently or
by a synchronous internal move) is guaranteed to make progress.
Formally, a run π is maximal if for all (i, y) ∈ Qπ, the following holds:

– if Di(y) ∈ Calls, then next�π(i, y) �= ∅ (a possible module call must occur);
– if y �= ε and Di(y′) ∈ Ex for all y′ ∈ siblings(ti, y), then next�π(i, y) �= ∅

(i.e., if a return from a module call is possible, then it must occur);
– if y �= ε, siblings(ti, y) = {y0, . . . , ym} and for each 0 ≤ j ≤ m, next�π(i, yj) =
∅ if (i, yj) ∈ Qπ and returnπ(i, yj) = ⊥ otherwise, then the condition
Evolve({Di(y0), . . . , Di(ym)}) does not hold.

3 The Temporal Logic ConCaRet

Let AP be a finite set of atomic propositions. The logic ConCaRet over AP is
the set of formulas inductively defined as follows:

ϕ ::= p | call | ret | int | ¬ϕ | ϕ ∨ ϕ | ©b ϕ | ϕ Ub ϕ | ‖ϕ
where b ∈ {∃, ∀, a,−} and p ∈ AP .

A formula is interpreted over runs of an CRSM S = 〈(S1, . . . , Sk), start〉. Let

π = q0
(�0,�′0)−→ q1

(�1,�′1)−→ . . . be a run of S where qi = (ti, Di) for i ≥ 0. The truth
value of a formula w.r.t. a local state (i, y) of π is defined as follows:

– (i, y) |=π p iff p ∈ η(Di(y)) (where p ∈ AP );
– (i, y) |=π call (resp. ret, int) iff Di(y) ∈ Calls (resp. Di(y) ∈ Retns,

Di(y) ∈ N);
– (i, y) |=π ¬ϕ iff it is not the case that (i, y) |=π ϕ;
– (i, y) |=π ϕ1 ∨ ϕ2 iff either (i, y) |=π ϕ1 or (i, y) |=π ϕ2;
– (i, y) |=π ©bϕ (with b ∈ {a,−}) iff nextbπ(i, y) �= ⊥ and nextbπ(i, y) |=π ϕ;
– (i, y) |=π ©∃ϕ iff there is (j, y′) ∈ next�π(i, y) such that (j, y′) |=π ϕ;
– (i, y) |=π ©∀ϕ iff for all (j, y′) ∈ next�π(i, y), (j, y′) |=π ϕ;
– (i, y) |=π ϕ1Uaϕ2 (resp. ϕ1U−ϕ2) iff given the abstract (resp. caller) path

(j0, y0)(j1, y1) . . . starting from (i, y), there is h ≥ 0 such that (jh, yh) |=π

ϕ2 and for all 0 ≤ p ≤ h− 1, (jp, yp) |=π ϕ1;
– (i, y) |=π ϕ1U∃ϕ2 (resp. ϕ1U∀ϕ2) iff for some linear path (resp., for all

linear paths) (j0, y0)(j1, y1) . . . starting from (i, y), there is h ≥ 0 such that
(jh, yh) |=π ϕ2 and for all 0 ≤ p ≤ h− 1, (jp, yp) |=π ϕ1;

– (i, y) |=π‖ϕ iff for all y′ ∈ siblings(th, y)\{y} with h = min{j ≤ i | (j, y) ∈
Qπ and next�π(j, y) = next�π(i, y)}, it holds that:
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− if Dh(y′) ∈ V , then (h, y′) |=π ϕ;
− if Dh(y′) ∈ B, then callπ(h, y′) |=π ϕ.

We say the run π satisfies a formula ϕ, written π |= ϕ, if (0, ε) |=π ϕ (recall that
t0 = {ε}). Moreover, we say S satisfies ϕ, written S |= ϕ, iff for any u ∈ start
and for any maximal run π of S starting from 〈u〉, it holds that π |= ϕ. Now, we
can define the model-checking question we are interested in:

Model checking problem: Given a CRSM S and a ConCaRet formula ϕ,
does S |= ϕ?

For each type of local successor (forward or backward), the logic provides the cor-
responding versions of the usual (global) next operator© and until operator U .
For instance, formula ©−ϕ demands that the caller of the current local state
satisfies ϕ, while ϕ1U−ϕ2 demands that the caller path (that is always finite)
from the current local state satisfies ϕ1U ϕ2. Moreover, the linear modalities
are branching-time since they quantify over the possible linear successors of the
current local state. Thus, we have both existential and universal linear versions
of the standard modalities © and U . Finally, the operator ‖ is a new modality
introduced to express properties of parallel modules. The formula ‖ φ holds at
a local state (i, y) of a module instance I iff, being h ≤ i the time when vertex
Di(y) was first entered and such that I has been idle from h to i, any module
instance (different from I) in parallel with I and not busy in a module call (at
time h) satisfies ϕ at time h, and any module instance in parallel with I and
busy in a module call (at time h) satisfies ϕ at the call time.

Note that the semantic of the parallel operator ensures the following desirable
property for the logic ConCaRet: for each pair of local states (i, y) and (j, y)
such that i < j and next�π(j, y) = next�π(i, y) (i.e., associated with a module
instance which remains idle from i to j), the set of formulas that hold at (i, y)
coincides with the set of formulas that hold at (j, y).

We conclude this section illustrating some interesting properties which can be
expressed in ConCaRet. In the following, as in standard LTL, we will use �bϕ
as an abbreviation for true Ubϕ, for b ∈ {∃, ∀, a,−}. Further, for b ∈ {a,−}, let
�bϕ stand for ¬�b¬ϕ, �∀ϕ stand for ¬�∃¬ϕ, and �∃ϕ stand for ¬�∀¬ϕ.

Besides the stack inspection properties and pre/post conditions of local com-
putations of a module as in CaRet [2], in ConCaRet, we can express pre- and
post- conditions for multiple threads activated in parallel. For instance, we can
require that whenever module A and module B are both activated in parallel and
pre-condition p holds, then A and B need to terminate, and post-condition q is
satisfied upon the synchronous return (parallel total correctness). Assuming that
parallel-calls to the modules A and B are characterized by the proposition pA,B,
this requirement can be expressed by the formula �∀[(call ∧ p∧ pA,B)→©aq

]
.

Linear modalities refer to the branching-time structure of CRSM computations.
They can be used, for instance, to express invariance properties of the kind “every
time a call occurs, then each activated module has to satisfy property ϕ”. Such a
property can be written as �∀(call→©∀ϕ). We can also express simple global
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eventually properties of the kind “every time the computation starts from mod-
ule A, then module B eventually will be activated”, expressed by the formula
tA → �∃tB. However, we can express more interesting global properties such
as recurrence requirements. For instance, formula �∀�∀(call→©∀¬tA) asserts
that module A is activated a finite number of times. Therefore, the negation of
this formula requires an interesting global recurrence property: along any maxi-
mal infinite computation module A is activated infinitely many times.

The parallel modality can express alignment properties among parallel threads.
For instance, formula �∀[call → ©∃(�a (φ ∧ ‖ φ))

]
requires that when a

parallel-call occurs, there must be an instant in the future such that the same
property φ holds in all the parallel threads activated by the parallel-call. In par-
ticular, with such formula we could require the existence of a future time at which
all threads activated by the call will be ready for a maximal synchronization on
a symbol. More generally, with the parallel operator we can express reactivity
properties of modules, namely the ability of a module to continuously interact
with its parallel components. We can also express mutual exclusion properties:
among the modules activated in a same procedure call, at most a module can
access a shared resource p (in formulas, �∀(p→‖ ¬p)).

4 Büchi CRSM

In this section, we extend CRSM with acceptance conditions and address the
emptiness problem for the resulting class of machines (i.e., the problem about
the existence of an accepting maximal run from a start node). Besides stan-
dard acceptance conditions on the finite linear paths of a maximal run π, we
require a synchronized acceptance condition on modules running in parallel,
and a generalized Büchi acceptance condition on the infinite linear paths of π.
We call this model a Büchi CRSM (B-CRSM for short). Formally, a B-CRSM
S = 〈(S1, . . . , Sk), start,F ,Pf ,Psync〉 consists of a CRSM 〈(S1, . . . , Sk), start〉
together with the following acceptance conditions:

– F = {F1, . . . , Fn} is a family of accepting sets of vertices of S;
– PF is the set of terminal vertices;
– Psync is a predicate defined over pairs (v,H) such that v is a vertex and H

is a set of vertices such that |H | ≤ rank(S).

Let π = q0
(�0,�′0)−→ q1

(�1,�′1)−→ q2 . . . be a run of S with qi = (ti, Di) for i ≥ 0.
For each i ≥ 0 and y ∈ ti, we denote by v(i, y) the vertex of S defined as
follows: if (i, y) ∈ Qπ (i.e., (i, y) is a local state), then v(i, y) := Di(y); otherwise,
v(i, y) := Dh(y) where (h, y) := callπ(i, y). We say that the run π is accepting
iff the following three conditions are satisfied:

1. for any infinite linear path r = (i0, y0)(i1, y1) . . . of π and F ∈ F , there are
infinitely many h ∈ N such that Dih

(yh) ∈ F (generalized Büchi acceptance);
2. for any local state (i, y) ∈ Qπ such that next�π(i, y) = ∅, condition Di(y) ∈ PF

holds (terminal acceptance);
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3. for any i ≥ 0 and y ∈ �′i, Psync(v(i + 1, y), {v(i + 1, y1), . . . , v(i + 1, ymi)})
holds,where {y1, . . . , ymi} is siblings(ti+1, y) \ {y} (synchronized acceptance)

We say the run π is monotone iff for all i ≥ 0, qi+1 is obtained from qi

either by a module call or by an internal move. Note that in a monotone path
either the tree ti+1 is equal to ti (for an internal move) or it is obtained from ti
by adding some children to a leaf (for a module call).

We decide the emptiness problem for B-CRSM in two main steps:

1. First, we give an algorithm to decide the problem about the existence of
accepting monotone maximal runs starting from a given vertex;

2. Then, we reduce the emptiness problem to the problem addressed in Step 1.

4.1 Deciding the Existence of Accepting Monotone Maximal Runs

We show how to decide the existence of accepting monotone maximal runs in
B-CRSM by a reduction to the emptiness problem for Invariant Büchi tree au-
tomata. These differ from the standard formalism of Büchi tree automata [15]
for a partitioning of states into invariant and non-invariant states, with the con-
straint that transitions from non-invariant to invariant states are forbidden. Also,
the standard Büchi acceptance condition is strengthened by requiring in addition
that an accepting run must have a path consisting of invariant states only.

Formally, an (alphabet free) invariant Büchi tree automaton is a tuple U =
〈D, P, P0,M, F, Inv〉, where D ⊂ N\ {0} is a finite set of branching degrees, P is
the finite set of states, P0 ⊆ P is the set of initial states, M : P ×D → 2P∗

is the
transition function with M(s, d) ∈ 2P d

, for all (s, d) ∈ P×D, F ⊆ P is the Büchi
condition, and Inv ⊆ P is the invariance condition. Also, for any s ∈ P \Inv and
d ∈ D, we require that if s′ occurs in M(s, d), then s′ ∈ P\Inv. A complete D-tree
is an infinite tree t ⊆ N∗ such that for any y ∈ t, the cardinality of children(t, y)
belongs to D. A path of t is a maximal subset of t linearly ordered by ≺. A run of
U is a pair (t, r) where t is a complete D-tree, r : t→ P is a P -labelling of t such
that r(ε) ∈ P0 and for all y ∈ t, (r(y · 0), r(y · 1), . . . , r(y · d)) ∈ M(r(y), d + 1),
where d + 1 = |children(t, y)|. The run (t, r) is accepting iff: (1) there is a path
ν of t such that for every y ∈ ν, r(y) ∈ Inv, and (2) for any path ν of t, the set
{y ∈ ν | r(y) ∈ F} is infinite.

The algorithm in [16] for checking emptiness in Büchi tree automata can
be easily extended to handle also the invariance condition, thus we obtain the
following.

Proposition 1. The emptiness problem for invariant Büchi tree automata is
logspace-complete for Ptime and can be decided in quadratic time.

In the following, we fix a B-CRSM S = 〈(S1, . . . , Sk), start,F ,PF ,Psync〉.
Remark 1. Apart from a preliminary step computable in linear time (in the size
of S), we can restrict ourselves to consider only accepting monotone maximal
runs π of S starting from call vertices. In fact, if π starts at a non-call vertex v
of a module Sh, then either π stays within Sh forever, or π enters a call v′ of Sh
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that never returns. In the first case, one has to check the existence of an accept-
ing run in the generalized Büchi (word) automaton given by Ah = 〈Vh, δh,Fh〉,
where Fh is the restriction of F to the set Vh. This can be done in linear time
[15]. In the second case, one has to check that there is a call v′ reachable from v
in Ah, and then that there is an accepting monotone maximal run in S from v′.

Now, we construct an invariant Büchi tree automaton U capturing the
monotone accepting maximal runs of S starting from calls. The idea is to model a
monotone run π of S as an infinite tree (a run of U) where each path corresponds
to a linear path of π. There are some technical issues to be handled.

First, there can be finite linear paths. We use symbol � to capture terminal
local states of π. Therefore, the subtree rooted at the node corresponding to a
terminal local state is completely labelled by �. Also, since we are interested in
runs of S, we need to check that there is at least one infinite linear path in π.
We do this using as invariant set the set of all U states except the state �.

Second, when a module call associated with a box b occurs, multiple module
instances I1, . . . , Im are activated and start running. We encode these local runs
(corresponding to linear paths of π) on the same path of the run of U by using
states of the form (b, v1, . . . , vm, i1, . . . , im, j), where v1, . . . , vm are the current
nodes or calls of each module, and i1, . . . , im, j are finite counters used to check
the fulfillment of the Büchi condition (see below). Since in monotone runs there
are no returns from calls, when a module Ij (with 1 ≤ j ≤ m) moves to a call
vertex v (by an internal move), we can separate the linear paths starting from v
from the local runs associated with all modules I1, . . . , Im except Ij . Therefore,
in order to simulate an internal move (in the context of modules I1, . . . , Im), U
nondeterministically splits in d+1 copies for some 0 ≤ d ≤ m such that d copies
correspond to those modules (among I1, . . . , Im) which move to call vertices, and
the d+1-th copy goes to a state s of the form (b, v′1, . . . , v′m, i′1, . . . , i′m, j′) which
describes the new status of modules I1, . . . , Im. Note that in s, we continue to
keep track of those modules which are busy in a parallel call. This is necessary for
locally checking the fulfillment of the synchronized acceptance condition Psync.

The Büchi condition F of S is captured with the Büchi condition of U along
with the use of finite counters implemented in the states. For the ease of presen-
tation, we assume that F consists of a single accepting set F . Then, we use states
of the form (v, i) to model a call v, where the counter i is used to check that linear
paths (in the simulated monotone run of S) containing infinite occurrences of
calls satisfy the Büchi condition. In particular, it has default value 0 and is set to
1 if either v ∈ F or a vertex in F is visited in the portion of the linear path from
the last call before entering v. In the second case, the needed information is kept
in the counters ih of the states of the form (b, v1, . . . , vm, i1, . . . , im, j). Counter
ih has default value 0 and is set to 1 if a node in F is entered in the local com-
putation of the corresponding module. Counter j ∈ {0, . . . ,m} is instead used
to check that the Büchi condition of S is satisfied for linear paths corresponding
to infinite local computations (without nested calls) of the modules refining the
box b. Moreover, in order to check that a node vh corresponds to a terminal
node (i.e., a node without linear successors in the simulated monotone run of
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S), U can choose nondeterministically to set the corresponding counter ih to −1.
Consistently, U will simulate only the internal moves from vertices v1, . . . , vm in
which the module instance associated with vh does not evolve. Thus, we have
the following lemma.

Lemma 1. For a call v, there is an accepting monotone maximal run of S from
〈v〉 iff there is an accepting run in U starting from (v, 0).

When the Büchi condition consists of n > 1 accepting sets, the only changes in
the above construction concern the counters: we need to check that each set is
met and thus the 0− 1 counters become counters up to n and the other counter
is up to m ·n. Therefore, denoting ρ = rank(S), nV the number of vertices of S
and nδ the number of transitions of S, we have that the number of U states is
O(ρ·nρ+1 ·nρ+1

V ) and the number of U transitions is O(ρ2 ·n2ρ+2 ·nV ·(nV +nδ)ρ).
Thus, by Proposition 1, Remark 1, and Lemma 1 we obtain the following result.

Lemma 2. The problem of checking the existence of accepting monotone max-
imal runs in a B-CRSM S can be decided in time O(ρ4 · n4ρ+4 · (nV + nδ)2ρ+2).

4.2 The Emptiness Problem for Büchi CRSM

In this subsection, we show that the emptiness problem for Büchi CRSM can
be reduced to check the existence of accepting monotone maximal runs. We
fix a B-CRSM S = 〈(S1, . . . , Sk), start,F ,PF ,Psync〉. Moreover, nV (resp., nδ)
denotes the number of vertices (resp., transitions) of S. Also, let ρ := rank(S).

For F ⊆ V , a finite path of KS π = q0
(�0,�′0)−→ q1

(�0,�′0)−→ . . . qn (with qi = (ti, Di)
for any 0 ≤ i ≤ n, and t0 = {ε}) is F -accepting iff π satisfies the synchronized
acceptance condition Psync and all the linear paths of π starting from the local
state (0, ε) contain occurrences of local states (i, z) such that Di(z) ∈ F . For a
box b ∈ B, we say π is a b-path if Di(ε) = b for all 1 ≤ i ≤ n− 1.
We need the following preliminary result.

Lemma 3 (Generalized Reachability Problem). Given F ⊆ V , the set
of pairs (v, v′) such that v = (b, e1, . . . , em) is a call, v′ = (b,x1, . . . ,xm) is a
matching return, and there is an F -accepting b-path from 〈v〉 to 〈v′〉, can be
computed in time O(n2

V · 4ρ · (nV + nδ)ρ).

Now, we show how to solve the emptiness problem for B-CRSM using the re-
sults stated by Lemmata 2 and 3. Starting from the B-CRSM S with F =
{F1, . . . , Fn}, we construct a new B-CRSM S′ such that emptiness for S reduces
to check the existence of accepting monotone maximal runs in S′.
S′ = 〈(S′

1, . . . , S
′
k), start,F ′,P ′

f ,P ′
sync〉, with F ′ = {F ′

1, . . . , F
′
n}, is defined

as follows. For 1 ≤ i ≤ k, S′
i is obtained extending the set of nodes and the

transition function of Si as follows. For any call v = (b, e1, . . . , em) of Si and
matching return v′ = (b,x1, . . . ,xm) such that there is a V -accepting b-path
in S from 〈v〉 to 〈v′〉, we add two new nodes uc

new and ur
new, and the edge

(uc
new,⊥, ur

new), where ⊥ is a fresh non-synchronization symbol. We say uc
new
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(resp., ur
new) is associated with the call v (resp., return v′). Moreover, for any

edge in Si of the form (u, σ, v) (resp., of the form (v′, σ, u)) we add in S′
i the

edge (u, σ, uc
new) (resp., the edge (ur

new, σ, u)). Also, for 1 ≤ i ≤ n, if there is an
Fi-accepting b-path from 〈v〉 to 〈v′〉, then we add ur

new to F ′
i (F ′

i also contains
all elements of Fi). Still, if v′ ∈ Pf , then we add ur

new to P ′
f (P ′

f also contains all
elements of Pf). Note that uc

new /∈ Pf . In fact, if an accepting maximal run of
S′ has a local state labelled by uc

new, then the linear successor of this local state
is defined and is labelled by ur

new. Finally, P ′
sync(v′0, {v′1, . . . , v′m}) (with m ≤

rank(S)) holds iff there are v0, . . . , vm ∈ V such that Psync(v0, {v1, . . . , vm})
holds and for all 0 ≤ j ≤ m, either v′j = vj , or vj is a return (resp., a call) and
v′j is a “new” node associated with it. Thus, we obtain the following result.

Lemma 4. For any node u of S, there is an accepting maximal run in S from
〈u〉 iff there is an accepting monotone maximal run in S′ from 〈u〉.
Note that the number of new nodes is bounded by 2n2

V , the number of new edges
is bounded by nV · nδ + n2

V , and by Lemma 3, S′ can be constructed in time
O(|F| · n2

V · 4ρ · (nV + nδ)ρ). Thus, by Lemmata 2 and 4 we obtain the main
result of this section.

Theorem 1. Given a B-CRSM S, the problem of checking the emptiness of S
can be decided in time O

(
(|F| · (nV + nδ) )O(ρ)

)
.

5 Model Checking CRSM Against ConCaRet

In this section, we solve the model-checking problem of CRSM against Con-
CaRet using an automata-theoretic approach: for a CRSM S and a ConCaRet
formula ϕ, we construct a B-CRSM Sϕ which has an accepting maximal run iff S
has a maximal run that satisfies ϕ. More precisely, an accepting maximal run of
Sϕ corresponds to a maximal run π of S where each local state is equipped with
the information concerning the set of subformulas of ϕ that hold at it along π.

The construction proposed here follows and extends that given in [2] for
CaRet. The extensions are due to the presence of the branching-time modalities
and the parallel operator ‖. For branching-time modalities we have to ensure that
the existential (resp. universal) next requirements are met in some (in each) lin-
ear successor of the current local state. This is captured locally in the transitions
of Sϕ. Parallel formulas are handled instead by the synchronization predicate.

The generalized Büchi condition is used to guarantee the fulfillment of liveness
requirements ϕ2 in until formulas of the form ϕ1 Ub ϕ2 where b ∈ {a, ∃, ∀} (caller-
until formulas do not require such condition since a caller-path is always finite).
For existential until formulas ϕ′, when ϕ′ is asserted at a local state (i, y), we
have to ensure that ϕ′ is satisfied in at least one of the linear paths from (i, y).
In order to achieve this and ensure the acceptance of all infinite linear paths
from (i, y) we use a fresh atomic proposition τϕ′ .

For every vertex/edge in S, we have 2O(|ϕ|·rank(S)) vertices/edges in Sϕ. Also,
the number of accepting sets in the generalized Büchi conditions is at most O(|ϕ|)
and rank(Sϕ) = rank(S). Since there is a maximal run of S satisfying formula ϕ



426 L. Bozzelli, S. La Torre, and A. Peron

iff there is an accepting maximal run of Sϕ, model checking S against ϕ is reduced
to check emptiness for the Büchi CRSM S¬ϕ. For rank(S) = 1, the considered
problem coincides with the model checking problem of RSM against CaRet
that is Exptime-complete (even for a fixed RSM). Therefore, by Theorem 1, we
obtain the following result.

Theorem 2. For a CRSM S and a formula ϕ of ConCaRet, the model check-
ing problem for S against ϕ can be decided in time exponential in |ϕ|·(rank(S))2.
The problem is Exptime-complete (even when the CRSM is fixed).
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Abstract. Motivated by applications to program verification, we study
a decision procedure for satisfiability in an expressive fragment of a the-
ory of arrays, which is parameterized by the theories of the array ele-
ments. The decision procedure reduces satisfiability of a formula of the
fragment to satisfiability of an equisatisfiable quantifier-free formula in
the combined theory of equality with uninterpreted functions (EUF),
Presburger arithmetic, and the element theories. This fragment allows a
constrained use of universal quantification, so that one quantifier alterna-
tion is allowed, with some syntactic restrictions. It allows expressing, for
example, that an assertion holds for all elements in a given index range,
that two arrays are equal in a given range, or that an array is sorted.
We demonstrate its expressiveness through applications to verification of
sorting algorithms and parameterized systems. We also prove that sat-
isfiability is undecidable for several natural extensions to the fragment.
Finally, we describe our implementation in the πVC verifying compiler.

1 Introduction

Software verification — whether via the classical Floyd-Hoare-style proof method
with some automatic invariant generation, or through automatic methods like
predicate abstraction — relies on the fundamental technology of decision pro-
cedures. Therefore, the properties of software that can be proved automatically
are to a large extent limited by the expressiveness of the underlying fragments
of theories for which satisfiability is decidable and can be checked efficiently.

Arrays are a basic data structure of imperative programming languages. The-
ories for reasoning about the manipulation of arrays in programs have been
studied intermittently for about as long as computer science has been a recog-
nized field [5]. Nonetheless, the strongest predicate about arrays that appears in
a decidable fragment is equality between two unbounded arrays [7]. For software
verification, unbounded equality is not enough: for example, assertions such as
that two subarrays are equal or that all elements of a subarray satisfy a certain
property are not uncommon in normal programming tasks. We study a fragment
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of a theory of arrays that allows expressing such properties and many others,
and for which satisfiability is decidable.

Various theories of arrays have been addressed in past work. Research in
satisfiability decision procedures has focused on the quantifier-free fragments
of array theories, as the full theories are undecidable (see Section 5). In our
discussion, we use the sorts array, elem, and index for arrays, elements, and in-
dices, respectively. The syntax a[i] represents an array read, while a{i ← e}
represents the array with position i modified to e, for array a, elem e, and
index i. McCarthy proposed the main axiom of arrays, read-over-write [5]:

(∀ array a)(∀ elem e)(∀ index i, j)[
i = j → a{i← e}[j] = e

∧ i �= j → a{i← e}[j] = a[j]

]
An extensional theory of arrays has been studied formally, most recently in [7]
and [1]. The extensional theory relates equations between arrays and equations
between their elements:

(∀ array a, b)[(∀ index i) a[i] = b[i] → a = b]

In [8], a decidable quantifier-free fragment of an array theory that allows a
restricted use of a permutation predicate is studied. Their motivation, as with our
work, is that verification of software requires decision procedures for expressive
assertion languages. They use their decision procedure to prove that various
sorting algorithms return a permutation of their input. In the conclusion of [8],
they suggest that a predicate expressing the sortedness of arrays would be useful.

The main theory of arrays that we study in this paper is motivated by prac-
tical requirements in software verification. We use Presburger arithmetic for our
theory of indices, so the abstract sort index is concrete for us. Additionally, the
theory is parameterized by the element theories used to describe the contents
of arrays. Typical element theories include the theory of integers, the theory of
reals, and the theory of equality.

Our satisfiability decision procedure is for a fragment, which we call the array
property fragment, that allows a constrained use of universal quantification. We
characterize the fragment in Section 2, but for now we note that the decidable
fragment is capable of expressing array equality, the usual equality in an exten-
sional theory of arrays; bounded equality, equality between two subarrays; and
various properties, like sortedness, of (sub)arrays.

The satisfiability procedure reduces satisfiability of a formula of the array
property fragment to satisfiability of a quantifier-free formula in the combined
theory of equality with uninterpreted functions (EUF), Presburger arithmetic,
and the element theories. The original formula is equisatisfiable to the reduced
formula. For satisfiability, handling existential quantification is immediate. Uni-
versally quantified assertions are converted to finite conjunctions by instantiating
the quantified index variables over a finite set of index terms. The main insight
of the satisfiability decision procedure, then, is that for a given formula in the
fragment, there is a finite set of index terms such that instantiating universally
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quantified index variables from only this set is sufficient for completeness (and,
trivially, soundness).

After presenting and analyzing this decision procedure, we study a theory
of maps, which are like arrays except that indices are uninterpreted. Therefore,
the decidable fragment of the theory is less powerful for reasoning about arrays;
however, it is more expressive than, for example, the quantifier-free fragment of
the extensional theory presented in [7]. In particular, it is expressive enough to
reason about hashtables.

The paper is organized as follows. Section 2 defines the theory and the frag-
ment that we study. Section 3 describes the decision procedure for satisfiability
of the fragment. In Section 4, we prove that the procedure is sound and com-
plete. We also prove that when satisfiability for quantifier-free formulae of the
combined theory of EUF, Presburger arithmetic, and array elements is in NP,
then satisfiability for bounded fragments is NP-complete. In Section 5, we prove
that several natural extensions to the fragment result in fragments for which
satisfiability is undecidable; we identify one slightly larger fragment for which
decidability remains open. Section 6 presents and analyzes a parametric theory
of maps. Section 7 motivates the theories with several applications in software
verification. We implemented the procedure in our verifying compiler πVC; we
describe our experience and results in Section 7.4.

2 An Array Theory and Fragment

We introduce the theory of arrays and the array property fragment for which
satisfiability is decidable.

Definition 1 (Theories). The theory of arrays uses Presburger arithmetic, TZ,
for array indices, and the parameter element theories T 1

elem, . . . , Tm
elem, for m > 0,

for its elements. The many-sorted array theory for the given element theories is
called T

{elemk}k

A . We usually drop the superscript.
Recall that the signature of Presburger arithmetic is

ΣZ = {0, 1,+,−,=, <} .

Assume each T k
elem has signature Σk

elem. TA then has signature

ΣA = ΣZ ∪
⋃
k

Σk
elem ∪ {·[·], ·{· ← ·}}

where the two new functions are read and write, respectively. The read a[i]
returns the value stored at position i of a, while the write a{i ← e} is the
array a modified so that position i has value e. For multidimensional arrays, we
abbreviate a[i] · · · [j] with a[i, . . . , j].

The theory of equality with uninterpreted functions (EUF), TEUF, is used in
the decision procedure.
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Definition 2 (Terms and Sorts). Index variables and terms have sort Z and
are Presburger arithmetic terms. Element variables and terms have sort elemk,
for some element theory T k

elem. Array variables and terms have functional sorts
constructed from the Z and elemk sorts:

– One-dimensional sort : Z→ elemk, for some element theory T k
elem

– Multidimensional sort : Z→ · · · → elemk, for some element theory T k
elem; e.g.,

a two-dimensional array has sort Z→ Z→ elemk

For element term e, both a and a{i ← e} are array terms; the latter term
is a with position i modified to e. For array term a and index term i, a[i] is
either an element term if a has sort Z → elemk, or an array term if a has a
multidimensional sort; e.g., if a has sort Z → Z → elemk, then a[i, j] is an
element term of sort elemk, while a[i] is an array term of sort Z→ elemk.

Definition 3 (Literal and Formula). A TA-literal is either a TZ-literal or a
T k

elem-literal; literals can contain array subterms. A formula ψ in TA is a quantified
Boolean combination of TA-literals.

Notationally, we say ψ[t] is the formula that contains subterm t. t ∈ ψ is true
iff ψ contains subterm t.

We study satisfiability for a fragment of TA that is a subset of the ∃∗∀∗
Z
-fragment

of TA, where the subscript on ∀ indicates that the quantifier is only over index
variables. We call this fragment the array property fragment.

Definition 4 (Array Property). An array property is a formula of the form

(∀i)(ϕI(i)→ ϕV (i))

where i is a vector of index variables, and ϕI(i) and ϕV (i) are the index guard
and the value constraint, respectively. The height of the property is the number
of quantified index variables in the formula.

The form of an index guard ϕI(i) is constrained according to the grammar

iguard → iguard ∧ iguard | iguard ∨ iguard | atom
atom → expr ≤ expr | expr = expr
expr → uvar | pexpr

pexpr → Z | Z · evar | pexpr + pexpr

where uvar is any universally quantified variable, and evar is any existentially
quantified integer variable.

The form of a value constraint ϕV (i) is also constrained. Any occurrence of
a quantified index variable i ∈ i in ϕV (i) must be as a read into an array, a[i],
for array term a. Array reads may not be nested; e.g., a1[a2[i]] is not allowed.

Definition 5 (Array Property Fragment). The array property fragment of
TA consists of all existentially-closed Boolean combinations of array property
formulae and quantifier-free TA-formulae. The height of a formula in the fragment
is the maximum height of an array property subformula.
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Example 1 (Equality Predicates). Extensionality can be encoded in the array
property fragment. We present = and bounded equality as defined predicates. In
the satisfiability decision procedure, instances of defined predicates are expanded
to their definitions in the first step.

Equality. a = b: Arrays a and b are equal.

(∀i)(a[i] = b[i])

Bounded Equality. beq(�, u, a, b): Arrays a and b are equal in the interval
[�, u].

(∀i)(� ≤ i ≤ u → a[i] = b[i])

Example 2 (Sorting Predicates). More specialized predicates can also be defined
in the array property fragment. Consider the following predicates for specifying
properties useful for reasoning about sortedness of integer arrays in the array
property fragment of T {Z}

A .

Sorted. sorted(�, u, a): Integer array a is sorted (nondecreasing) between ele-
ments � and u.

(∀i, j)(� ≤ i ≤ j ≤ u → a[i] ≤ a[j])

Partitioned. partitioned(�1, u1, �2, u2, a): Integer array a is partitioned such
that all elements in [�1, u1] are less than or equal to every element in [�2, u2].

(∀i, j)(�1 ≤ i ≤ u1 < �2 ≤ j ≤ u2 → a[i] ≤ a[j])

The literal u1 < �2 can be expressed as u1 ≤ �2 − 1 so that the syntactic
restrictions are met.

Example 3 (Array Property Formula). The following formula is in the array
property fragment of T {Z}

A :

(∃ array a)(∃w,x, y, z, k, �, n ∈ Z)[
w < x < y < z ∧ 0 < k < � < n ∧ �− k > 1

∧ sorted(0, n− 1, a{k← w}{�← x}) ∧ sorted(0, n− 1, a{k← y}{�← z})

]
.

3 Decision Procedure SATA

We now define the decision procedure SATA for satisfiability of formulae from
the array property fragment. After removing array writes and skolemizing exis-
tentially quantified variables, SATA rewrites universally quantified subterms to
finite conjunctions by instantiating the quantified variables over a set of index
terms. The next definitions construct the set of index terms that is sufficient for
making this procedure complete.
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Definition 6 (Read Set). The read set for formula ψ is the set

R def= {t : ·[t] ∈ ψ}

for t representing index terms that are not universally quantified index variables.

Definition 7 (Bounds Set). The bounds set B for formula ψ is the set of
Presburger arithmetic terms that arise as root pexprs (i.e., pexpr terms whose
parent is an expr) during the parsing of all index guards in ψ, according to the
grammar of Def. 4.

The read set R is the set of index terms at which some array is read, while the
bounds set B is the set of index terms that define boundaries on some array for
an array property (e.g., the boundaries of an interval in which array elements
are sorted).

Definition 8 (Index Set). For a formula ψ, define

Iψ
def=
{
{0} if R = B = ∅
R ∪ B otherwise

The procedure reduces the satisfiability of array property formula ψ to the sat-
isfiability of a quantifier-free (TEUF ∪ TZ ∪

⋃
k T k

elem)-formula.

Definition 9 (SATA).

1. Replace instances of defined predicates with their definitions, and convert to
negation normal form.

2. Apply the following rule exhaustively to remove writes:

ψ[a{i← e}]
ψ[b] ∧ b[i] = e ∧ (∀j)(j �= i → a[j] = b[j])

for fresh b (write)

To meet the syntactic requirements on an index guard, we rewrite the third
conjunct as

(∀j)(j ≤ i− 1 ∨ i + 1 ≤ j → a[j] = b[j]) .

3. Apply the following rule exhaustively:

ψ[(∃i)(ϕI(i) ∧ ¬ϕV (i))
ψ[ϕI(j) ∧ ¬ϕV (j)]

for fresh j (exists)

4. Apply the following rule exhaustively, where Iψ3 is determined by the formula
constructed in Step 3.

ψ[(∀i)(ϕI(i)→ ϕV (i))]

ψ

⎡⎢⎣ ∧
i∈In

ψ3

(ϕI(i)→ ϕV (i))

⎤⎥⎦
(forall)



What’s Decidable About Arrays? 433

z
y

x
w

↑ k ↑ ↑ � ↑

Fig. 1. Unsorted arrays

5. Associate with each n-dimensional array variable a a fresh n-ary uninterpreted
function fa, and replace each array read a[i, . . . , j] by fa(i, . . . , j). Decide
this formula’s satisfiability using a procedure for quantifier-free formulae of
TEUF ∪ TZ ∪

⋃
k T k

elem.

Step 2 introduces new index terms (i− 1 and i + 1, above).

Example 4 (New Indices). Consider again the array property formula

w < x < y < z ∧ 0 < k < � < n ∧ �− k > 1
∧ sorted(0, n− 1, a{k← w}{�← x}) ∧ sorted(0, n− 1, a{k← y}{�← z})

(which is existentially closed). The first step of SATA replaces the sorted literals
with definitions; the second applies write to remove array writes. For readability,
we write the index guards resulting from write using disequalities:

w < x < y < z ∧ 0 < k < � < n ∧ �− k > 1
∧ (∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j])
∧ (∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j])
∧ (∀i)(i �= � → b[i] = c[i]) ∧ c[�] = x
∧ (∀i)(i �= k → a[i] = b[i]) ∧ b[k] = w
∧ (∀i)(i �= � → d[i] = e[i]) ∧ e[�] = z
∧ (∀i)(i �= k → a[i] = d[i]) ∧ d[k] = y

Then R = {k, �}, B = {0, n − 1, � − 1, � + 1, k − 1, k + 1}, and Iψ = {0, n −
1, k− 1, k, k + 1, �− 1, �, �+ 1}. Note that R and B do not include i or j, which
are universally quantified, while B contains the terms produced by converting
disequalities to disjunctions of inequalities. Applying forall to each array property
subformula converts universal quantification to finite conjunction over Iψ . We
have in particular that

c[k + 1] ≤ c[�] = x < y = d[k] ≤ d[k + 1] ,

yet c[k + 1] = b[k + 1] = a[k + 1] = d[k + 1], a contradiction. Thus, the original
formula is T

{Z}
A -unsatisfiable. The index term k + 1 is essential for this proof.

We visualize this situation in Figure 1. Arrows indicate positions represented
by the new indices introduced in Step 2. Pictorially, for both modified versions
of a to be sorted requires that the two parallel lines in Figure 1 be one line. To
prove that sortedness is impossible requires considering elements in the interval
between k and �, not just elements at positions k and �.
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4 Correctness

We prove the soundness and completeness of SATA. Additionally, we show that if
satisfiability of quantifier-free (TEUF∪TZ∪

⋃
k T k

elem)-formulae is in NP, then satis-
fiability for each bounded fragment, in which all array properties have maximum
height N , is NP-complete.

We refer to the formula constructed in Step n of SATA by ψn; e.g., ψ5 is the
final quantifier-free formula constructed in Step 5.

Lemma 1 (Complete). If ψ5 is satisfiable, then ψ is satisfiable.

Proof. Suppose that I is an interpretation such that I |= ψ5; we construct an
interpretation J such that J |= ψ. To this end, we define under I a projection
operation, proj : Z→ II

ψ3
: proj(z) = tI such that t ∈ Iψ3 ; and either tI ≤ z and

(∀s ∈ Iψ3)(s
I ≤ tI ∨ sI > z), or tI > z and (∀s ∈ Iψ3)(s

I ≥ tI). That is, proj(z)
is the nearest neighbor to z in tI , with preference for left neighbors. Extend proj
to tuples of integers in the natural way: proj(z1, . . . , zk) = (proj(z1), . . . , proj(zk)).

Equate all non-array variables in J and I; note that proj is now defined the
same under I and J . For each k-dimensional array a of ψ, set aJ [z] = fJ

a (proj(z)).
We now prove that J |= ψ.

The manipulations in Steps 1, 3, and 5 are trivial. Step 2 implements the
definition of array write, so that the resulting formula is equivalent to the original
formula. Thus, we focus on Step 4. We prove that if J |= ψ4, then J |= ψ3.

Suppose that rule forall is applied to convert ψb to ψa and that J |= ψa.
Application of this rule is the main focus of the proof: we prove that J |= ψb.
That is, we assume that

J |= ψ′

⎡⎢⎣ ∧
i∈In

ψ

(ϕI(i)→ ϕV (i))

⎤⎥⎦
︸ ︷︷ ︸

ψa

(1)

and prove that
J |= ψ′ [(∀i)(ϕI(i)→ ϕV (i))

]︸ ︷︷ ︸
ψb

. (2)

Below, we prove that

J |=

⎡⎢⎣ ∧
i∈In

ψ

(ϕI(i)→ ϕV (i)) → (∀i)(ϕI(i)→ ϕV (i))

⎤⎥⎦ ,

which implies (2) since ψ′ is in negation normal form. Our proof takes the form

ϕI(proj(z)) ϕV (proj(z))

J |=

ϕI(z) ϕV (z)

(A) (B)
?
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where, for arbitrary z ∈ Zn, we prove the implication labeled “?” by proving (A)
and (B). The top implication follows from (1) and the definition of proj.

For (A), consider the atoms of the index guard under J . If �J ≤ mJ , then
the definition of proj implies that proj(�J) ≤ proj(mJ ). At worst, it may be that
�J < mJ , while proj(�J) = proj(mJ). For an equation, �J = mJ iff proj(�J) =
proj(mJ ). Then (A) follows by structural induction over the index guard, noting
that the index guard is a positive Boolean combination of atoms.

For (B), recall that arrays in J are constructed using proj. In particular, for
any z, aJ [z] = aJ [proj(z)], so that (B) follows.

Therefore, J |= ψb, and SATA is complete.

Lemma 2 (Sound). If ψ is satisfiable, then ψ5 is satisfiable.

Proof. An interpretation I satisfying ψ can be altered to J satisfying ψ5 by
assigning fJ

a (i
I
) = aI [i

I
] for each array variable a and equating all else. Universal

quantification is replaced by conjunction over a finite subset of all indices, thus
weakening each (positive) literal.

Theorem 1. If satisfiability of quantifier-free (TEUF ∪ TZ ∪
⋃

k T k
elem)-formulae

is decidable, then SATA is a decision procedure for satisfiability in the array
property fragment of T {elemk}k

A .

Theorem 2 (NP-Complete). If satisfiability of quantifier-free (TEUF ∪ TZ ∪⋃
k T k

elem)-formulae is in NP, then for the subfragment of the array property frag-
ment of T

{elemk}k

A in which all array property formulae have height at most N ,
satisfiability is NP-complete.

Proof. NP-hardness, even when ψ is a conjunction of literals, follows by NP-
hardness of satisfiability of TZ [6]. Steps 1-3 increase the size of the formula by
an amount linear in the size of ψ. The rule forall increases the size of formulae by
an amount polynomial in the size of ψ and exponential in the maximum height
N . For fixed N , the increase is thus polynomial in ψ. The proof requires only a
polynomial number (in the size of ψ) of applications of rules, so that the size of
the quantifier-free (TEUF ∪ TZ ∪

⋃
k T k

elem)-formula is at most polynomially larger
than ψ. Inclusion in NP follows from the assumption of the theorem.

5 Undecidable Problems

Theorem 1 states that for certain sets of element theories {elemk}k, SATA is
a satisfiability decision procedure for the array property fragment of T {elemk}k

A .
The theory of reals, TR, in which variables range over R and with signature
ΣR = {0, 1,+,−,=, <}, and the theory of integers, TZ, are such element theories.
We now show that several natural extensions of the array property fragment
result in a fragment of T {R}

A or T
{Z}
A for which satisfiability is undecidable. We

identify one extension for which decidability remains open.
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Theorem 3. Satisfiability of the ∃∗∀Z∃Z-fragment of both T
{R}
A and T

{Z}
A is

undecidable, even with syntactic restrictions like in the array property fragment.

Proof. In [3], we prove that termination of loops of this form is undecidable:

real x1, . . . ,xn

θ :
∧

i∈I⊆{1,...,n}
xi = ci

while x1 ≥ 0 do
choose τi : x := Aix

done

ci are constant integers, ci ∈ Z, while each Ai is an n×n constant array of inte-
gers, Ai ∈ Zn×n. θ is the initial condition of the loop. Variables x1, . . . ,xn range
over the reals, R. There are m > 0 transitions, {τ1, . . . , τm}; on each iteration,
one is selected nondeterministically to be taken. x is an Rn-vector representing
the n variables {x1, . . . ,xn}; each transition thus updates all variables simul-
taneously by a linear transformation. We call loops of this form linear loops.
Termination for similar loops in which all variables are declared as integers is
also undecidable.

We now prove by reduction from termination of linear loops that satisfiability
of the ∃∗∀Z∃Z-fragment is undecidable. That is, given linear loop L, we construct
formula ϕ such that ϕ is unsatisfiable iff L always terminates. In other words, a
model of ϕ encodes a nonterminating computation of L.

For each loop variable xi, we introduce array variable xi. Let ρτ (s, t), for
index terms s and t, encode transition τ : x := Ax as follows:

ρτ (s, t) def=
n∧

i=1

xi[t] = Ai,1 · x1[s] + · · ·+ Ai,n · xn[s] .

Let g(s), for index term s, encode the guard x1 ≥ 0:

g(s) def= x1[s] ≥ 0 .

Let θ(s), for index term s, encode the initial condition:

θ(s) def=
∧

i∈I⊆{1,...,n}
xi[s] = ci .

Then form ϕ:

ϕ : (∃x1, . . . ,xn, z)(∀i)(∃j)
[
θ(z) ∧ g(z) ∧

∨
k

ρτk
(i, j) ∧ g(j)

]
.

Suppose ϕ is satisfiable. Then construct a nonterminating computation
s0s1s2 . . . as follows. Let each variable xk of state s0 take on the value xk[z]
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of the satisfying model. For s1, choose the j that corresponds to i = z and as-
sign xk according to xk[j]. Continue forming the computation sequentially. Each
state is guaranteed to satisfy the guard, so the computation is nonterminating.

Suppose s0s1s2 . . . is a nonterminating computation of L. Then construct the
following model for ϕ. Let z = 0; for each index i ≥ 0, set xk[−i] = xk[i] = xk

of state si.
Therefore, ϕ is unsatisfiable iff L always terminates, and thus satisfiability

of the ∃∗∀Z∃Z-fragment of TA is undecidable. Note that ϕ meets the syntac-
tic restrictions of the array property fragment, except for the extra quantifier
alternation.

Theorem 4. Extending the array property fragment with any of

– nested reads (e.g., a1[a2[i]], where i is universally quantified);
– array reads by a universally quantified variable in the index guard;
– general Presburger arithmetic expressions over universally quantified index

variables (even just addition of 1, e.g., i + 1) in the index guard or in the
value constraint

results in a fragment of T {Z}
A for which satisfiability is undecidable.

Proof. In T
{Z}
A , the presence of nested reads allows skolemizing j in ϕ of the

proof of Theorem 3:

(∃x1, . . . ,xn, z, aj)(∀i)
[
θ(z) ∧ g(z) ∧

∨
k

ρτk
(i, aj [i]) ∧ g(aj [i])

]
.

Allowing array reads in the index guard enables flattening of nested reads
through introduction of another universally quantified variable:

ψ[ϕI → ϕV [a[a[i]]]] ⇒ ψ[ϕI ∧ j = a[i] → ϕV [a[j]]] .

Allowing addition of 1 in the value constraint allows an encoding of termination
similar to that in the proof of Theorem 3:

(∃x1, . . . ,xn, z)(∀i ≥ z)

[
θ(z) ∧ g(z) ∧

∨
k

ρτk
(i, i + 1) ∧ g(i + 1)

]
.

Finally, addition of 1 in the index guard can encode addition of 1 in the value
constraint through introduction of another universally quantified variable:

ψ[ϕI → ϕV [a[i + 1]]] ⇒ ψ[ϕI ∧ j = i + 1 → ϕV [a[j]]] .

Theorem 3 implies that a negated array property cannot be embedded in the
consequent of another array property. Theorem 4 states that loosening most
syntactic restrictions results in a fragment for which satisfiability is undecid-
able. One extension remains for which decidability of satisfiability is an open
problem: the fragment in which index guards can contain strict inequalities, <
(equivalently, in which index guards can contain negations). In this fragment,
one could express that an array has unique elements:

(∀i, j)(i < j → a[i] �= a[j]) .
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6 Maps

We consider an array theory in which indices are uninterpreted. For clarity, we
call indices keys in this theory, and call the arrays maps.

Definition 10 (Map Theory). The parameterized map theory T
{elem�}�

M has
signature

ΣM = ΣEUF ∪
⋃
�

Σ�
elem ∪ {·[·], ·{· ← ·}} .

Key variables and terms are uninterpreted, with sort EUF. Element variables
and terms have some sort elem�. Map variables and terms have functional sorts
constructed from the EUF and elem� sorts; e.g., EUF→ elem�.

Definition 11 (Map Property Fragment). A map property is a formula of
the form (∀k)(ϕK(k)→ ϕV (k)), where k is a vector of key variables, and ϕK(k)
and ϕV (k) are the key guard and the value constraint, respectively. The height
of the property is the number of quantified variables in the formula.

The form of a key guard ϕK(k) is constrained according to the grammar

kguard → kguard ∧ kguard | kguard ∨ kguard | atom
atom → var = var | evar �= var | var �= evar

var → evar | uvar

where uvar is any universally quantified key variable, and evar is any existentially
quantified variable.

The form of a value constraint ϕV (k) is also constrained. Any occurrence of
a quantified key variable k ∈ k in ϕV (k) must be as a read into a map, h[k], for
map term h. Map reads may not be nested; e.g., h1[h2[k]] is not allowed.

The map property fragment of TM consists of all existentially-closed Boolean
combinations of map property formulae and quantifier-free TM-formulae.

Definition 12 (Key Set). 2 For a formula ψ, define R = {t : ·[t] ∈ ψ};
B as the set of variables that arise as evars in the parsing of all key guards
according to the grammar of Def. 11; and K = R ∪ B ∪ {κ}, where κ is a fresh
variable.

Definition 13 (SATM).

1. Step 1 of SATA.
2. Apply the following rule exhaustively to remove writes:

ψ[h{k ← e}]
ψ[h′] ∧ h′[k] = e ∧ (∀j)(j �= k → h[j] = h′[j])

for fresh h′ (write)

3. Step 3 of SATA.
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4. Apply the following rule exhaustively, where Kψ3 is determined by the for-
mula constructed in Step 3.

ψ[(∀k)(ϕK(k)→ ϕV (k))]

ψ

⎡⎢⎣ ∧
k∈Kn

ψ3

(ϕK(k)→ ϕV (k))

⎤⎥⎦
(forall)

5. Construct
ψ4 ∧

∧
k∈K\{κ}

k �= κ

6. Step 5 of SATA, except that the resulting formula is decided using a procedure
for TEUF ∪

⋃
� T

�
elem.

Theorem 5. If satisfiability of quantifier-free (TEUF ∪
⋃

� T
�
elem)-formulae is de-

cidable, then SATM is a decision procedure for satisfiability in the map property
fragment of T {elem�}�

M .

The main idea of the proof, as in the proof of Theorem 1, is to define a projection
operation, proj : EUF → KI

ψ3
, for interpretation I. For object o of I, if o = tI

for some t ∈ Kψ3 , then proj(o) = o (= tI); otherwise, proj(o) = κI . If proj is
used to define J , as in the proof of Theorem 1, then proj preserves equations and
disequalities in key guards and values of map reads in value constraints.

The relevant undecidability results from Section 5 carry over to maps, with
the appropriate modifications.

7 Applications, Implementation, and Results

7.1 Verification of Sorting Algorithms

Figure 2 presents an annotated version of InsertionSort in an imperative
language, where the annotations specify that InsertionSort returns a sorted
array. @pre, @post, and @ label preconditions, postconditions, and (loop) asser-
tions, respectively. For variable x, x0 refers to its value upon entering a function;
|a| maps array a to its length; rv is the value returned by a function. Each ver-
ification condition is expressible in the array property fragment of T {Z}

A and is
unsatisfiable, proving that InsertionSort returns a sorted array.

7.2 Verification of Parameterized Programs

The parallel composition of an arbitrary number of copies of a process is often
represented as a parameterized program. Variables for which one copy appears
in each process are modeled as arrays. Thus, it is natural to specify and prove
properties of parameterized programs with a language of arrays.
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@pre �
@post sorted(0, |rv| − 1, rv)
int[] InsertionSort(int[] a) {
int i, j, t;
for (i := 1; i < |a|; i := i + 1)

@(1 ≤ i ∧ sorted(0, i− 1, a) ∧ |a| = |a0|)
{

t := a[i];
for (j := i− 1; j ≥ 0 ∧ a[j] > t; j := j − 1)

@
1 ≤ i < |a| ∧ −1 ≤ j ≤ i− 1
∧ sorted(0, i− 1, a) ∧ |a| = |a0|
∧ (j < i− 1 → (a[i− 1] ≤ a[i] ∧ (∀k ∈ [j + 1, i]) a[k] > t))

a[j + 1] := a[j];
a[j + 1] := t;

}
return a;

}
Fig. 2. InsertionSort

int[] y := int[0..M − 1];
θ: y[0] = 1 ∧ (∀j ∈ [1, M − 1]) y[j] = 0

||
i∈[0,M−1]

request(y, i);
while (true) @((∀j ∈ [0, M − 1]) y[j] = 0 ∧ i = i0 ∧ |y| = |y0|) {

critical;
release(y, i⊕M 1);
noncritical;
request(y, i);
}

Fig. 3. Sem-N

Figure 3 presents a simple semaphore-based algorithm for mutual exclusion
among M processes [4]. The semantics of request and release are the usual
ones:

request(y, i) : y[i] > 0 ∧ y′ = y{i← y[i]− 1}
release(y, i) : y′ = y{i← y[i] + 1}

Mutual exclusion at the critical section is implied by the invariant (∀j ∈ [0,M−
1]) y[j] = 0, which appears as part of the loop invariant. The mutual exclusion
property is verified using the array decision procedure.

7.3 A Decision Procedure for Hashtables

We show how to encode an assertion language for hashtables, with parameter
theories T 1

elem, . . . , T
m
elem for values, into T

{elem�}�

M . Hashtables have the following
operations: put(h, k, v) returns the hashtable that is equal to h except that key
k maps to value v; remove(h, k) returns the hashtable that is equal to h except
that key k does not map to a value; and get(h, k) returns the value mapped by k,
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which is undetermined if h does not map k to any value. init(h) is true iff h does
not map any key. For reasoning about keys, k ∈ keys(h) is true iff h maps k; key
sets keys(h) can be unioned, intersected, and complemented. For the encoding
onto the map property fragment of TM, universal quantification is restricted to
quantification over key variables; such variables may only be used in membership
checking, k ∈ K, and gets, get(h, k). Finally, an init in the scope of a universal
quantifier must appear positively. The encoding then works as follows:

1. Construct ψ ∧ � �= ⊥, for fresh constants � and ⊥.
2. Rewrite

ψ[put(h, k, v)] ⇒ ψ[h′] ∧ h′ = h{k← v} ∧ keysh′ = keysh{k ← �}
ψ[remove(h, k)] ⇒ ψ[h′] ∧ keysh′ = keysh{k← ⊥}

for fresh variable h′.
3. Rewrite

ψ[get(h, k)] ⇒ ψ[h[k]]
ψ[init(h)] ⇒ ψ[(∀k)(h[k] = ⊥)]

ψ[k ∈ keys(h)] ⇒ ψ[keysh[k] �= ⊥]
ψ[k ∈ K1 ∪K2] ⇒ ψ[k ∈ K1 ∨ k ∈ K2]
ψ[k ∈ K1 ∩K2] ⇒ ψ[k ∈ K1 ∧ k ∈ K2]

ψ[k ∈ K] ⇒ ψ[¬(k ∈ K)]

where K, K1, and K2 are constructed from union, disjunction, and comple-
mentation of membership atoms.

Note that we rely on the defined predicate of equality between maps, h1 = h2,
which is defined by (∀k)(h1[k] = h2[k]). Subset checking between key sets, K1 ⊂
K2, and other useful operations can also be defined in this language.

An example specification might assert that (∀k ∈ keys(h))(get(h, k) ≥ 0).
Suppose that a function modifies h; then a verification condition could be

(∀h, s, v, h′)
[

(∀k ∈ keys(h)) get(h, k) ≥ 0 ∧ v ≥ 0 ∧ h′ = put(h, s, v)
→ (∀k ∈ keys(h′)) get(h′, k) ≥ 0

]
.

The key sets provide a mechanism for reasoning about modifying hashtables.

7.4 Implementation and Results

We implemented SATA in our verifying compiler, πVC, which verifies programs
written in the pi (for Prove It) programming language. The syntax of the lan-
guage is similar to that of Figure 2. We used CVC Lite [2] as the underlying
decision procedure. We found that there is usually no need to instantiate quan-
tifiers with all terms in I; instead, the implementation makes several attempts
to prove a formula unsatisfiable. It first tries using the set R, then R ∪ B, and
finally I. Moreover, common sense rules restrict the instantiation in the early
attempts. If any attempt results in an unsatisfiable formula, then the original
formula is unsatisfiable; and if the formula of the final attempt is satisfiable,
then the original formula is satisfiable.
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Frame conditions are ubiquitous in verification conditions. Thus, the imple-
mentation performs a simple form of resolution to simplify the original formula.
After rewriting based on equations in the antecedent, conjuncts in the conse-
quent that are syntactically equal to conjuncts in the antecedent are replaced
with true. In practice, the resulting index sets are smaller. The combination of
the phased instantiation and simplification makes the decision procedure quite
responsive in practice.

We implemented annotated versions of MergeSort, BubbleSort, Inser-
tionSort, QuickSort, Sem-N, and BinarySearch for integer arrays in our
programming language pi. Verifying that the sorting algorithms return sorted
arrays required less than 20 seconds each (1 second for each of BubbleSort
and InsertionSort). Verifying mutual exclusion in Sem-N required a second.
Verifying the membership property of BinarySearch required a second. All
tests were performed on a 3 GHz x86; memory was not an issue.

8 Future Work

Future work will focus on the decidability of the extension identified in Section
5; on the complexity of deciding satisfiability for the full array property fragment
for particular element theories; and, most importantly, on generating inductive
invariants in the array property fragment automatically.
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